高中数学课件:213分层抽样(新人教必修3)

合集下载

人教版高中数学必修三课件:2.1.3 分层抽样(共15张PPT)

人教版高中数学必修三课件:2.1.3 分层抽样(共15张PPT)

晚会,要产生两名“幸运者”,则合适的抽样方法分别为( C )
A.系统抽样,系统抽样,简单随机抽样
B.简单随机抽样,分层抽样,简单随机抽样
C.系统抽样,分层抽样,简单随机抽样
D.分层抽样,简单随机抽样,简单随机抽样
4、某校高三一班有学生54人,二班有学生42人,现在要用分层抽
样的方法从两个班抽出16人参加军训表演,则一班和二班分别被
抽取的人数是( C )
A.8,8
B.10,6
C.9,7
D.12,4
5、某大学为了解在校本科生对参加某项社会实践活动的意向,拟
采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量
为300的样本进行调查,已知该校一年级、二年级、三年级、四年
级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取
A.将总体分成几部分,按预先设定的规则在各部分抽取
B.抽样过程中每个个体被抽到的机会均等
C.将总体分成几层,然后分层按照比例抽取
D.没有共同点
目标检测
3、①教育局到某学校检查工作,打算在每个班各抽调2人参加座
谈;②某班期中考试有10人在85分以上,25人在60~84分,5人
不及格,欲从中抽出8人参加改进教与学研讨;③某班级举行元旦
适应范围
总体中 的个体 数较少
总体中 的个体 数较多
总体由 差异明 显的几 部分组 成
样本的是( B )
A.从10名同学中抽取3人参加座谈会 B.某社区有500个家庭,其中高收入的家 庭125户,中等收入的家庭280户,低收入的 家庭95户,为了了解生活购买力的某项指标, 要从中抽取一个容量为100户的样本 C.从1 000名工人中,抽取100人调查上班 途中所用时间 D.从生产流水线上,抽取样本检查产品质 量

人教A版高中数学必修三213分层抽样课件共17张

人教A版高中数学必修三213分层抽样课件共17张
分析(:3)三个学段中个体有较大差别,应如何 提高样本的代表性? 应考虑他们在样本中所占的比例。 (4)如何确定各学段所要抽取的人数? 按比例分配人数到各个阶段,得到各个学段
所要抽取的个体数 .
创设情景
假设某地区有高中生2400人,初中生10900人,小学生 11000人.此地区教育部门为了了解本地区中小学生的近视 情况及其形成原因,要从本地区的中小学生中抽取1%的学 生进行调查,你认为应当怎样抽取样本?
后勤人员24名。为了了解教职工对学校在校务公开方面的意
见,拟抽取一个容量为20的样本。
③分层抽样
知识应用
例 某高中共有900人,其中高一年级
300人,高二年级200人,高三年级400
人,现采用分层抽样抽取容量为45的
样本,那么高一、高二、高三各年级
抽取的人数分别为( D )
A.15,5,25
B.15,15,15
抽样


作业
? 课本62页,课后练习第一题,要求按学习小组合 作写出统计报告,要求体现统计数据、抽样过程 和结论。
222126200 134123040 4343300
258215080 1112190 63600
问题一 总体容量是多少? 问题二 应该采用哪种抽样?
分层抽样时,若某层中按 抽样比算不是整数时,则 需先剔除几个个体,在剔
问题三
如何确定每层的样本数?
除时要随机剔除以保证每 个个体被抽取的机会相等.
问题四 实际抽样过程中遇到什么问题?
解: 高中生人数 :2400×1%=24
初中生人数 :10900×1%=109
小学生人数 : 11000×1%=110
然后分别在各个学段运用系统抽样方法抽取 .

2.1.3分层抽样课件ppt人教A版(必修3)ppt.ppt

2.1.3分层抽样课件ppt人教A版(必修3)ppt.ppt

1.分层抽样利用了调查者对调查对象事先掌 握的各种信息,考虑了保持样本结构与总体 结构的一致性,从而使样本更具有代表性, 在实际调查中被广泛应用.
2.分层抽样是按比例分别对各层进行抽样, 再将各个子样本合并在一起构成所需样本.其 中正确计算各层应抽取的个体数,是分层抽 样过程中的重要环节.
3.简单随机抽样是基础,系统抽样与分层抽 样是补充和发展,三者相辅相成,对立统一.
思考:样本容量与总体的个体数之比是 分层抽样的比例常数,按这个比例可以 确定各层应抽取的个体数,如果各层应 抽取的个体数不都是整数该如何处理?
调节样本容量,剔除个体.
例:某单位有老年人28人,中年人54 人,青年人81人,为了调查他们的身体 状况,从他们中抽取容量为36的本, 最适合抽取样本的方法是( ) A.简单随机抽样 B.系统抽样 C.分层抽样 D.先从老年人中剔除1人,再用 分层抽样
解:用分层抽样来抽取样本,步骤是:
(1)分层:按年龄将150名职工分成三层: 不到35岁的职工;35岁至49岁的职工;50岁 以上的职工.
(2)确定每层抽取个体的个数.抽样比为,则在 不到35岁的职工中抽125×1/5=25人;在35岁 至49岁的职工中抽280×1/5=56人;在50岁以 上的职工中抽95×1/5=19人.
(3)利用简单随机抽样或系统抽样的方法,从 各年龄段分别抽取25,56, 19人。
(4)综合每层抽样,就是所抽取的样本组成样本.
思考:分层抽样的操作步骤如何?
第一步,计算样本容量与总体的个体数 之比.
第二步,将总体分成互不交叉的层,按 比例确定各层要抽取的个体数. 第三步,用简单随机抽样或系统抽样在 各层中抽取相应数量的个体.
2. 某中学有180名教职员工,其中教学 人员144人,管理人员12人,后勤服务 人员24人,设计一个抽样方案,从中 选取15人去参观旅游.

2.1.3 分层抽样 高三数学上册必修课件

2.1.3   分层抽样 高三数学上册必修课件

应用实例
例1 . 高一(7)班有54名学生,其中男生有24名
女生有30名,现从该班学生当中选9名学生来参加
唱红歌比赛 ,则男女生当中分别抽取多少名?
解析:(1)样本容量与总体的个体数的比为
9 =1 54 6
(2)确定各个层要抽取的数目:
男生: 24 1 = 4
6
女生: 30 1 = 5
6
(3)采用简单随机抽样在各层中抽取
一般地,在抽样时,将总体分成互不交叉的层, 然后按照一定的比例,从各层独立地抽取一定数 量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。
布置作业
1. 教材第64页习题第五题 2. 同步练习第26页内容
由于样本的容量与总体的个体数的比是1:100
因此,样本中包含的各部分的个体数应该是
2400 , 10900 , 11000
100
100
100
即抽取24名高中生,109名初中生和110名 小学生作为样本。
分层抽样的步骤:
(1)分层:按某种特征将总体分成若干部分。 (2)按比例确定每层抽取个体的个数。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。
男生:4名 女生:5名;这样便得到了所要抽取 的样本。
随堂练习
1. 某学校有教师160人,其中有高级职称的32人, 中级职称的56人,初级职称的72人.现抽取一个容 量为20的样本,用分层抽样法抽取的中级职称的
教师人数应为( C )
A.4
B.6
C.7
D.9
高考链接
1.(2009辽宁)某城市有210家百货商店,其 中大型商店20家,中型商店40家,小型商店 150家。为了掌握各商店的营业情况,计划抽 取一个容量为21的样本,按照分层抽样方法 抽取时,各种百货商店分别抽取多少家?写 出抽样过程。

人教版高中数学必修三_2.1.3分层抽样课件

人教版高中数学必修三_2.1.3分层抽样课件
2.1.3
分层抽样
复习回顾
已经学过的两种抽样方法?
◆简单随机抽样:
{①抽签法; ②随机数表法; 适用范围:总体中个体较少。
◆系统抽样:
{步骤: 编号
分段
抽取
适用范围:总体中个体较多。
问题情景:
某校小学六年级、初中三年级和高中三年级分别 有1000,800和700名同学,为了了解全校毕业班学生的 视力情况,从以上三个年级中抽取容量为100的样本, 你认为应当怎样抽取样本较为合理?
思考:(1)总体、个体、样本、样本容量分别是 什么?
(2)如果在2500名学生中随机抽取100名学 生,有无不足之处?
问题情景:
某校小学六年级、初中三年级和高中三年级分别 有1000,800和700名同学,为了了解全校毕业班学生的 视力情况,从以上三个年级中抽取容量为100的样本, 你认为应当怎样抽取样本较为合理? 思考:(4)三个年级同学有较大差别,应如何提高样
一、分层抽样的定义
指抽样时,将总体分成互不交叉层然 后按照一定的比例,从各层独立地抽取一 定数量的个体,将各层取出的个体合在一 起作为样本。
要点分析: (1) 当总体是由差异明显的几个部分组成时 ,往往选用分层抽样的方法.
(2)每个个体被抽中的可能性相同
该层个体数
(3)每一层抽取的数=
总体个体数
பைடு நூலகம்
样本容量 总体个体数
户,中等收入家庭 400 户,低收入家庭 75 户,为
了调查社会购买力的某项指标,要从中抽取一个容
量为 100 户的样本,记作①;某中学高二年级有 12
名足球运动员,要从中选出 3 人调查学习负担情况,
记作②;从某厂生产的 802 辆轿车中抽取 8 辆测试

高中数学2.1.3分层抽样1课件新人教A版必修3

高中数学2.1.3分层抽样1课件新人教A版必修3

单位职工与身体状况有关的某项指标,要从中抽取一个容 量为100的样本。由于职工年龄与这项指标有关,试问:应 用什么方法抽取?
解:1)确定样本容量与总体的个体数之比100:500 = 1:5
2)利用抽样比确定各年龄段应抽取的个体数,依次为 125,280,95 ,即25,56,19。 5 55
3)利用简单随机抽样或系统抽样的方法,从各年龄段分 别抽取25,56,19人,然后合在一起,就是所抽取的样 本。
分层抽样
假设某地区有高中生2400人,初中生10900人,小学 生11000人。此地区教育部门为了了解本地区中小学生的 近视情况及其形成原因,要从本地区的中小学生中抽取 1%的学生进行调查。你认为应当怎样抽取样本?能在 14300人中任意取143个吗?能将143个份额均分到这三部 分中吗?
分析:考察对象的特点是由具有明显差异的几部分组成。
1、根据总体的差异将总体分为互不交叉 的层。2、按比例kn N
在各层中抽取个体。
3、合成样本。
2、某单位有职工200人,其中老年职工40人,现从该 单位的200人中抽取40人进行健康普查,如果采用分 层抽样进行抽取,则老年职工应抽取的人数为多少?
课堂小结: n
(1)分层抽样是等概率抽样N ,它也是公平的。用分层 抽样从个体为N的总体中抽取一个容量为n的样本时,在 整个抽样过程中每个个体被抽到的概率相等。
当已知总体由差异明显的几部分组成时,为了使样本更 充分地反映总体的情况,常将总体分成几个部分,然后 按照各部分所占的比例进行抽样,这种抽样叫做“分层 抽样”,其中所分成的各部分叫做“层”。
1、一个单位的职工500人,其中不到35岁的有125人,35到 49岁的有280人,50岁以上的有95人。为了了解这个

人教版高中数学必修三课件:2.1.3分层抽样

人教版高中数学必修三课件:2.1.3分层抽样

A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法
【答案】 B
(2)某中学有学生 270 人,其中一年级 108 人,二、三年级各 81 人,现要利用抽样方法抽取 10 人参加某项调查,考虑选用简 单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样 和分层抽样时, 将学生按一、 二、 三年级依次统一编号为 1, 2, …, 270,并将整个编号依次分为 10 段.
关于上述样本的下列结论中,正确的是( A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样
)
【解析】 因为一、二、三年级的人数之比为108∶81∶81 =4∶3∶3,又因为共抽取10人,根据系统抽样和分层抽样的特 点可知,①②③都可能为分层抽样,②④不可能为系统抽样, 故选D. 【答案】 D
(2)分层抽样的特点: ①适用于总体由差异明显的几部分组成的情况. ②更充分的反映了总体的情况. ③等可能抽样,每个个体被抽到的可能性都相等. (3)分层抽样的公平性: 在分层抽样的过程中每个个体被抽到的可能性是相同的, 与层数及分层无关.
三种抽样方法有何区别与联系?
答:
类 别 简单随 机抽样 共同点 (1)抽样过程 中每个个体 被抽到的可 系统抽样 能性相等; (2)每次抽出 个体后不再 放回,即不 分层抽样 放回抽样 各自特点 从总体中 逐个抽取 将总体均分成几个 部分,按事先确定 的规则在各部分抽 取 将总体分成几层, 分层次进行抽取 在各层抽样时采用简 单随机抽样或系统抽 样 总体由存在明 显差异的几部 分组成 在起始部分采用简单 随机抽样 总体中的个体 数较多 相互联系 适用范围 总体中的 个体数较少

人教A版高中数学必修三课件高一:2.1.3分层抽样.pptx.pptx

人教A版高中数学必修三课件高一:2.1.3分层抽样.pptx.pptx
当总体由差异明显的几部分组成时,往往采用分层抽样
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
归纳总结分层抽样的特点:
(1)分层抽取;
(2)按比例抽取;
(3)必须结合简单随机抽样或系统抽样完成.
【做一做】有一批产品,其中一等品10件,二等品25件,次品5件.用
题型一 题型二 题型三
确定各层抽取的个体数
【例2】某全日制大学共有学生5 600人,其中专科生有1 300人,本
科生有3 000人,研究生有1 300人,现采用分层抽样的方法调查学生
利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科
生、本科生与研究生这三类学生中分别抽取多少人?
解:抽样比是
剖析:(1)若总体由差异明显的几部分组成,则选用分层抽样.
(2)若总体所含个体没有差异,则考虑采用简单随机抽样或系统抽
样.
当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小
时宜用随机数法;当总体容量较大,样本容量也较大时宜用系统抽
样.
(3)采用系统抽样时,当总体容量 N 能被样本容量 n 整除时,抽样
280 5 600
=
1 20
,
则应在专科生、本科生与研究生这三
类学生中分别抽取1 300× 1 = 65(人),3 000× 1 = 150(人),1 300×
20
20
1 20ቤተ መጻሕፍቲ ባይዱ
=
65(人).
反思一个总体中有m个个体,用分层抽样方法从中抽取一个容量
为n(n<m)的样本,某层中含有x(x<m)个个体,在该层中抽取的个体

数学:2.1.3《分层抽样》课件(新人教b版必修3)

数学:2.1.3《分层抽样》课件(新人教b版必修3)

总体由差 异明显的 几部分组 成
练习: 某公司在甲、乙、丙、丁四个地区分别有 150个、120个、180个、150个销售点,公司为了 调查产品的销售情况,需从这600个销售点中抽 取一个容量为100的样本,记这项调查为①;在 丙地区中有20个特大型销售点,要从中抽取7个 调查其销售收入和售后服务等情况,记这项调查 为②;要从丁地完成抽取分配到的销售点情况,记 这项调查为③, 问:完成这三项调查宜分别采用 什么方法?
①用分层抽样,②用简单随机抽样. ③简单随机抽样或系统抽样
; / 赢方国际 ;
都不敢置信/尽管叶静云知道马开此刻壹定相信动用秘法才能爆发如此实力/可秘法难道就不相信实力の展现吗?叶静云不由想到纪蝶/心想三年前马开要相信存在如此の实力/纪蝶当年逃の过壹劫吗?纪蝶之前在将军墓外对马开都不愿意多上壹眼/或许在纪蝶の心里马开只不过相信 壹佫过客而已/根本不值得她侧目/但要相信纪蝶知道马开存在着可战大修行者の手段/她还会如此吗?叶静云脑海里突然闪过壹佫念头:要相信存在壹天马开能赶超纪蝶/那纪蝶又将如何面对马开?这佫念头壹冒出来/叶静云都觉得本人心跳加速咯起来/她想要见到那样の画面/但马 上她又觉得好笑/纪蝶相信什么人?相信哪里の传人/又存在至尊金修炼/马开想要赶超相信做梦/它和纪蝶の距离只会越来越远/纪蝶相信真正の人杰/大陆将来注定存在着她浓墨重彩の壹笔/马开自然不知道叶静云想什么/它手里の大刀不断の斩咯出去/和黑玉城主交锋在壹起/黑玉 城主相信强悍の/尽管存在着煞气の涌动/可对方借着意境の优势/都生生の挡下来/并且占据咯优势/|恁终究还不相信咱の对手/或许成长几年可以/但恁没存在机会咯/|黑玉城主盯着马开/杀意十足/马开笑咯笑/并不做回答/它不想过多浪费煞气/要不然完全可以爆发和对方力量相 当の煞气/|收拾恁足够咯/|马开舞动之间/横斩而出/月震斩横扫
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点三 抽样方法的综合应用
例 3 下列问题中,最适合用简单随机抽样法抽样的

( B)
A.某电影院有 32 排座位,每排有 40 个座位,座位号
是 1~40.有一次报告会坐满了听众,报告会结束以
后为听取意见,要留下 32 名听众进行座谈
B.从 10 台冰箱中抽出 3 台进行质量检查
C.某企业有 2 000 人.其中管理人员 20 人,工人 1 968
量为 100 户的样本,记作①;某中学高二年级有 12
名足球运动员,要从中选出 3 人调查学习负担情况,
记作②;从某厂生产的 802 辆轿车中抽取 8 辆测试
某项性能,记作③.则完成上述 3 项应采用的抽样方
法是
()
A.①用简单随机抽样,②用系统抽样,③用分层抽样
B.①用分层抽样,②用简单随机抽样,③用系统抽样
答案 B
知识点二 分层抽样法的应用 例 2 某学校有在编人员 160 人,其中行政人员 16
人,教师 112 人,后勤人员 32 人,教育部门为了 了解学校机构的改革意见,要从中抽取一个容量为 20 的样本,试确定用何种方法抽取,并写出抽样 过程.
分析 总体由差异明显的几部分组成,故采用分层抽 样.
解 因为本题样本总体分成三类:行政人员、教师、 后勤人员,符合分层抽样的特点,故选用分层抽样方 法.
因为12600=18,所以从行政人员中抽取 16×18=2(人), 从教师中抽取 112×18=14(人),从后勤人员中抽取 32×18=4(人). 因为行政人员和后勤人员较少,可将他们分别按 1~ 16 和 1~32 编号,然后采用抽签法分别抽取 2 人和 4 人,对教师从 000,001,…,111 编号,然后用随机数 法抽取 14 人. 这样就得到了符合要求的容量为 20 的样本.

取 10 人参加某项调查,考虑选用简单随机抽样、 分层抽样和系统抽样三种方案.使用简单随机抽样
和分层抽样时,将学生按一、二、三年级依次分为
10 段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270.
2.分层抽样的适用条件 分层抽样尽量利用事先所掌握的各种信息,并充 分考虑保持 样本结构 与 总体结构 的一致 性,这对提高样本的代表性非常重要.当总体是 由 差异明显 的几个部分组成时,往往选用分层 抽样的方法.
分层抽样的具体步骤是什么?
步骤1:根据已经掌握的信息,将总体分成互
不相交的层
分层
步骤2:根据总体的个体数N和样本容量n计算抽
C.①用简单随机抽样,②用分层抽样,③用系统抽样
D.①用分层抽样,②用系统抽样,③用简单随机抽样
解析 对于①,总体由高收入家庭、中等收入家庭和 低收入家庭差异明显的三部分组成,而所调查的指标 与收入情况密切相关,所以应采用分层抽样. 对于②,总体中的个体数较少,而且所调查内容对 12 名调查对象是平等的,应用简单随机抽样. 对于③,总体中的个体数较多,应用系统抽样.故选 B.
人,后勤人员 12 人.为了解企业机构改革意见,
要从中抽取一个容量为 20 的样本
D.某乡农田有山地 8 000 亩,丘陵 12 000 亩,平地
24 000 亩,洼地 4 000 亩,现抽取农田 480 亩估计
全乡农田平均产量
变式迁移 3 某初级中学有学生 270 人,其中一年级 108 人,二、三年级各 81 人,现要利用抽样方法
课时作业
变式迁移 2 某城市有 210 家百货商店,其中大型商
店 20 家,中抽取一个容量为 21
的样本,按照分层抽样方法抽取时,各种百货商店
分别要抽取多少家?写出抽样过程.
解 (1)样本容量与总体的个体数的比为22110=110; (2)确定各种商店要抽取的数目: 大型:20×110=2(家),中型:40×110=4(家), 小型:150×110=15(家); (3)采用简单随机抽样在各层中抽取大型:2 家;中型: 4 家;小型:15 家;这样便得到了所要抽取的样本.
样比k= n:N
求比
步骤3:确定每一层应抽取的个体数目,并使每一
层应抽取的个体数目之和为样本容量n 定数
步骤4:按步骤3确定的数目在各层中随机抽取个 体,合在一起得到容量为n样本
抽样
对点讲练
知识点一 分层抽样的概念
例 1 某社区有 700 户家庭,其中高收入家庭 225 户,中等收入家庭 400 户,低收入家庭 75 户,为 了调查社会购买力的某项指标,要从中抽取一个容
关于上述样本的下列结论中,正确的是( D )
A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样
课堂小结 1.分层抽样的概念和特点
当总体由有明显差别的几部分组成时,为了使抽 取的样本更好地反映总体的情况,常采用分层抽样. 分层抽样的优点是使样本具有较强的代表性,而且在 各层抽样时又可灵活地选用不同的抽样法. 2.分层抽样方法的应用 3.三种抽样方法的选择 简单随机抽样、系统抽样及分层抽样的共同特点是在 抽样过程中每一个个体被抽取的机会都相等,体现了 抽样方法的公平性和客观性.其中简单随机抽样是最 基本的抽样方法,在系统抽样和分层抽样中都要用到 简单随机抽样.当总体中的个体数较少时,常采用简 单随机抽样;当总体中的个体数较多时,常采用系统 抽样;当已知总体是由差异明显的几部分组成时,常 采用分层抽样.
2.1.3 分层抽样 自主学案
学习目标 1.理解分层抽样的概念. 2.掌握分层抽样的使用条件和操作步骤,会用分层
抽样法进行抽样. 自学导引 1.分层抽样的概念
在抽样时,将总体分成 互不交叉的层,然后按照 一定的比例 ,从各层 独立 地抽取一定数量的个 体,将各层取出的个体合在一起作为样本,这种 抽样方法是一种分层抽样.
相关文档
最新文档