常见函数的傅里叶级数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞ ♥ 2 2 0
0 0 ∑
24.4. c = f (x )e in π x /L dx = ♦1
(a + ib
n < 0 ♦ Definition of a Fourier Series
The Fourier series corresponding to a function f (x ) defined in the interval c ÷ x ÷ c + 2L L > 0 are constants, is defined as
where c and
24.1. a 0 + ∑ a
cos n π x + b sin
n π x 2
where
n n =1
L n L
♣a =
1 c +
2 L
n π x
f (x ) cos dx
24.2. ♠ n
L ⎰c
1 c +
2 L
L
n π x
♠b n = L ⎰c
f (x ) s in
L dx
If f (x ) and f '(x ) are piecewise continuous and f (x ) is defined by periodic extension of period 2L , i.e.,
f (x + 2L ) = f (x ), then the series converges to f (x ) if x is a point of continuity and to 1{ f (x + 0) + f (x - 0)} if x is a point of discontinuity.
Complex Form of Fourier Series
Assuming that the series 24.1 converges to f (x ), we have
24.3. f (x ) = ∑ c n e in π x /L
n =-∞
where
♣ 1 (a - ib )
n > 0 1 n 2L c +2 L - c ♠2 n n 2 - n - n ♠ ♥1 a n = 0
Parseval’s Identity
1
c +2 L
a 2 ∞ 24.5. { f (x )}2 dx = 0 + ∑
(a 2 + b 2 )
L ⎰c
n
n
n =1
Generalized Parseval Identity
24.6.
1
c +2 L
a c
∞
f (x )
g (x ) dx =
+ (a c + b d ) ∞
⎰ ) 2
L ⎰
c
2
n =1
n n
n n
where a n , b n and c n , d n are the Fourier coefficients corresponding to f (x ) and g (x ), respectively.
Special Fourier Series and Their Graphs
Fig. 24-1
Fig. 24-2
Fig. 24-3
Fig. 24-4
Fig. 24-5
Fig. 24-6 Fig. 24-7 Fig. 24-8 Fig. 24-9 Fig. 24-10
Fig. 24-11
Fig. 24-12 Miscellaneous Fourier Series