格子玻尔兹曼方法入门攻略-DongkeSun

合集下载

格子玻尔兹曼方法及其在大气湍流研究中的应用_图文(精)

格子玻尔兹曼方法及其在大气湍流研究中的应用_图文(精)

第22卷第3期2007年3月地球科学进展A DVAN CE S I N E AR T H S C I E N C EV o l.22N o.3M a r.,2007文章编号:1001-8166(200703--12格子玻尔兹曼方法及其在大气湍流研究中的应用*程雪玲,胡非,赵松年,姜金华(中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京100029摘要:文章的目的是对格子玻尔兹曼方法进行系统的介绍,格子玻尔兹曼方法(L a tti ce B o lt z m a nn M e t hod的出现直接来源于20世纪60年代的元胞自动机(C e ll u l a r A u t om a t a思想,而这一方法用于解决流动现象时,又可以追溯到19世纪的分子运动论,求解的是B o lt z m a nn提出的玻尔兹曼输运方程,因此将这一方法称为格子玻尔兹曼方法,之前也被称为格子气自动机(L a tti c e G a s A u t om a-t o n。

该方法多用于研究复杂现象,如材料晶体凝聚时的生长过程、城市土地利用的演化等方面。

在20世纪70年代由H a r dy、P om e au和P a zz i s建立了第一个用于研究流体运动的格子气自动机,此后,这一方法被广泛用来模拟各种流动问题,诸如二相流、孔隙介质中的渗流等,并根据这一方法开发了相应的商业软件P ow e r F l o w。

同时,格子玻尔兹曼方法由于其在微观水平描述运动的特点,成为研究湍流的一个很好的数值计算工具,特别是用其进行直接数值模拟(D N S计算,成为继传统的差分法、有限体积法和谱方法之后的又一有力的手段。

而作为大气运动的一个主要现象的大气湍流,比普通湍流更加复杂,在这里着重介绍了大气湍流的特点和应用格子玻尔兹曼方法模拟湍流的发展过程。

关键词:格子玻尔兹曼;元胞自动机;格子气;直接数值模拟;大气湍流中图分类号:P425.2文献标识码:A1引言元胞自动机是空间和时间都离散、物理参量只取有限数值集的物理系统的理想化模型。

格子玻尔兹曼方法

格子玻尔兹曼方法

格子玻尔兹曼方法格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种基于微观粒子动力学的计算流体力学方法,它通过模拟流体微观粒子在格子空间上的运动来描述流体的宏观行为。

相比传统的有限元方法和有限差分方法,格子玻尔兹曼方法具有较好的并行性能和适应性,特别适用于多孔介质流动、复杂边界条件下的流动以及多相流等问题的模拟。

格子玻尔兹曼方法的基本思想是将流体系统离散化为一个个小的流体微团,这些微团在空间网格上运动,并通过碰撞和迁移过程来模拟流体宏观行为。

在每个时间步长内,微团在空间网格上按照一定的规则进行迁移,并在碰撞过程中遵循玻尔兹曼方程,通过碰撞和迁移过程来模拟流体的宏观行为。

通过在空间网格上迁移和碰撞的过程,可以模拟出流体的宏观运动规律,从而实现对流体流动的模拟和计算。

格子玻尔兹曼方法的优势之一是其较好的并行性能。

由于其基于网格的离散化特性,格子玻尔兹曼方法在并行计算上具有天然的优势,能够有效地利用多核、多节点的计算资源,实现对大规模流体问题的高效模拟。

这使得格子玻尔兹曼方法在计算流体力学领域得到了广泛的应用,特别是在大规模流体模拟和高性能计算方面具有很大的优势。

另外,格子玻尔兹曼方法在处理复杂边界条件和多相流问题上也具有一定的优势。

由于其基于微观粒子动力学的特性,格子玻尔兹曼方法能够比较灵活地处理复杂的边界条件,如固体边界、移动边界等,同时也能够较为方便地模拟多相流体的运动,包括气液两相流、多组分流体等,这使得格子玻尔兹曼方法在工程领域的应用具有广阔的前景。

总的来说,格子玻尔兹曼方法作为一种基于微观粒子动力学的计算流体力学方法,具有较好的并行性能和适应性,特别适用于多孔介质流动、复杂边界条件下的流动以及多相流等问题的模拟。

它在大规模流体模拟和高性能计算方面具有很大的优势,同时也能够比较灵活地处理复杂的边界条件和多相流问题,因此在工程领域具有广泛的应用前景。

格子玻尔兹曼方法的发展将为流体力学领域的研究和工程应用带来新的机遇和挑战。

玻尔兹曼格子法

玻尔兹曼格子法

玻尔兹曼格子法玻尔兹曼格子法是一种统计物理学方法,用于研究气体、液体、固体等宏观物质的宏观性质。

它最初由奥地利物理学家路德维希·玻尔兹曼提出,后来得到很大发展。

本文将对玻尔兹曼格子法进行简要介绍。

玻尔兹曼格子法的基本思想是将宏观物理量用微观粒子的运动描述。

在这种方法中,将物质看作是由大量微观粒子组成的,每个微观粒子在空间中占据一个节点,这些节点组成了一个网格。

粒子可以在节点之间传输动量和能量,从而模拟了宏观物质的行为。

为了模拟粒子的运动,需要定义一个玻尔兹曼方程来描述粒子在给定条件下的运动。

这个方程通常也称为Boltzmann-Lattice方程或者Lattice-Boltzmann方程。

在这个方程中,f_i代表了在节点i上的粒子分布函数,它描述了在给定方向和速度下,粒子在该位置的可能性。

t代表时间,delta t代表时间间隔,v_i代表在第i个方向上的速度,w_i表示速度v_i对应的权重系数。

C表示碰撞参数,它描述了粒子在碰撞时的反弹弹性和散射性。

在模拟中,可以通过改变C的值,调整模拟的物理性质。

方程右侧的第一项描述了粒子直接移动到邻近的节点上的现象,而方程右侧的第二项描述了粒子之间的相互碰撞。

这个方程通过一系列的迭代和更新,可以模拟出粒子的运动和行为。

玻尔兹曼格子法有许多的优点。

首先,它可以非常好地模拟流体力学中的湍流和流动现象。

其次,由于网格结构相对简单,计算速度比传统的流体动力学方法更快。

此外,它还可以轻松地实现并行计算,使得计算速度得到了很大程度上的提升。

最后,由于它采用了微观粒子的表示方法,因此在处理多相流、气液两相流和等离子体等问题时非常有效。

总之,玻尔兹曼格子法是一种非常有前景的统计物理学方法,它可以帮助研究人员更好地了解宏观物质的真实行为。

格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流

格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流

201020446(2) 北京师范大学学报(自然科学版)Journal of Beijing Normal University (Natural Science ) 139 格子Boltzmann 方法模拟二维轴对称狭窄血管内的脉动流3张立换 康秀英 吉驭嫔(北京师范大学物理学系,100875,北京)摘要 将格子Boltzmann 方法应用到二维轴对称余弦狭窄血管模型,模拟比较加入脉动后流场速度、压强和剪切应力分布,并详细分析了不同狭窄模型、Reynolds 数和Womersley 数对血液流动规律的影响,从而为研究血管壁病变和动脉硬化形成机制提供了有用的理论参考.关键词 格子Boltzmann 方法;Reynolds 数;Womersley 数;脉动流;动脉狭窄3北京师范大学青年科学基金资助项目通信作者收稿日期:2009205219 格子Boltzmann 方法(lattice Boltzmann met hod ,简称LBM )是20世纪80年代迅速发展起来的一种新的流体动力学数值模拟方法[122].与以宏观连续方程的离散化为基础的传统数值方法不同,LBM 从微观层次出发,采用统计物理方法得出流体的宏观特性,而且在可操作性方面,它计算方便,编程易于实现,边界易于处理等优点已经得到广泛地证实.由于心血管疾病多集中于具有复杂几何形状和具有复杂流动特性的区域,流动区域和剪切应力的分布对理解、诊断和治疗这种疾病有很重要的作用.近年来,LBM 在血液动力学方面的应用越来越受到重视[326].本文的主要工作是用格子Boltzmann 方法模拟二维轴对称狭窄血管内脉动流的流动特性.首先对狭窄血管内定常流特性进行了研究,模拟比较不同狭窄模型和不同Reynolds 数对管壁切应力、压强和压力梯度分布的影响.然后对二维轴对称狭窄血管内脉动流的流动特性进行了研究,模拟比较在改变Reynolds 数、Womersley 数时动脉血流的流动特性,找到动脉血流的非定常性对狭窄血管中流场速度、压强和剪切应力分布的影响,从而对常见的心血管疾病发展机制给出物理解释,为进一步分析动脉粥样硬化的形成、发展及其影响提供新的研究方法和理论参考.1 二维轴对称狭窄血管内定常流特性的研究111 管壁几何模型 假定血管的狭窄处为轴对称,如图1所示,狭窄形状采用常用的余弦形状,即y =h2[1+co sπL(x -x 0)],(1)图1 二维轴对称余弦狭窄模型 其中h 是狭窄的最大高度,对应于x =x 0处,L 是狭窄总长度的一半,L x 是血管段的长度,L y 是狭窄发生前的血管宽度.112 数值计算 模拟中,计算网格选为N x ×N y =300×40,狭窄中心处为x 0=121,通过调整h 和L 来控制血管狭窄程度.血管出入口采用压强边界条件[7],管壁边界采用Mei 改进的曲线边界条件[8].为了研究不同狭窄情况下管壁的切应力、压强和压强梯度的变化规律,我们选择3个不同的狭窄模型,如表1.表1 不同的狭窄模型狭窄模型M1M2M3狭窄高度h L y /8L y /4L y /4狭窄长度2L16h 8h 16h 在保证Reynolds 数(Re =ρUL y μ=UL yν,ν=μ/ρ为流体运动学黏滞系数,U 为入口附近的平均速度)一定时,计算得3种模型管壁切应力、压强和压强梯度见 140 北京师范大学学报(自然科学版)第46卷 图2~4.Re =114,狭窄中心x 0=121.图2 3种狭窄模型下管壁切应力分布 从图2中可以看出,管壁切应力振荡的负峰值在靠近狭窄中心(x 0=121)的上游,这个峰值达到一定值后,该部位血管内皮组织易发生机械应力损伤.当狭窄长度一定时,狭窄高度越大,切应力的负峰值越大,如图2中的M1和M2;当狭窄高度一定时,狭窄长度越短,切应力的负峰值越大,如图2中的M2和M3.同时也可以看出在狭窄处的下游切应力变小,特别是M2,血液容易在此处发生流体分离.模拟得到狭窄区域的压强和压强梯度分布如图3和4所示.在相同狭窄长度下,狭窄高度越大,血管狭窄上游压强下降越大,下游压强上升越大,同时狭窄区域前后的压强落差越大,如图3中的M1和M2.另一方面,在相同狭窄高度下,狭窄长度越长,血管狭窄上游压强下降越大,同时狭窄区域前后的压强落差越大,如图3中的M2和M3.压强梯度在狭窄区域波动加图3 管壁上压强分布(Re =114),p 0是狭窄发生前的压强,u 0是x =20处的中心流速 图4 管壁上的压强梯度分布(Re =114) 剧,压强梯度波动最大的是狭窄模型M2(图4),其对应的切应力负峰值也为最大值,狭窄部位管壁切应力与压强梯度的变化规律具有相似性.选择模型M2,比较管壁切应力和狭窄附近的流场分布随Re 的变化规律,如图5和6.从图5中可以看出,狭窄模型一定时,随着Re 的增加,管壁切应力增大,在狭窄区域的下游,切应力的增加相对减小,这是由于出现了流体分离,如图6的流场分布.图6显示了模型M2在不同Re 下狭窄附近的流场分布,可以看出,随着Re 的增大,在狭窄下游管壁处出现流动分离区,且Re 越大,流动分离区越大.113 分析与结论 通过改变参数,我们获得了大量有关狭窄血管中的流场的信息.模拟结果表明,血管局部图5 管壁切应力随Reynolds 数的变化曲线(狭窄模型M2) 第2期张立换等:格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流141图6 不同Re下的流场分布(M2,Re=114、215、318)狭窄会对血液的流动状态产生明显的影响,从而带来一系列的生理和病理方面的复杂变化.例如,动脉硬化斑块主要发生在几何形状急剧变化和高Re流动状态的血管内.在动脉硬化斑块发展的初期,血管狭窄度比较小,对于黏度是常数的血液流体,其Re比较小,无流动分离,管壁切应力可能达到临界应力值,对狭窄上游血管壁内皮细胞造成损伤,使壁面进一步异常增生,导致血管狭窄度增加,进而导致此处流动Re的增加.当血管狭窄增大到一定值时,在狭窄下游管壁附近就会有流动分离区形成,在该区域内血液会发生滞留,血液中的血小板和纤维蛋白就会沉积,并在血管壁处形成网络结构致使血液中的脂质颗粒沉积,而最终导致动脉粥样硬化现象的出现.同时,狭窄度较大时,对应的压力梯度的值也会较大,也可以反映病变血管的异常血液流动情况.2 二维轴对称狭窄血管内脉动流的流动特性选择模型M2为研究对象,模拟中选取周期T=10000,流动的Womersley数(α=L y2ων,ω=2πf=2π/T是脉动的角频率)为α=31357,入口压强随时间周期性变化,即p(0,t)=Δp cosωt+p out,Δp为一常量,出口压强pout设为定值,图7显示一个周期8个不同时刻的脉动流管道中心中轴线上的压强分布.从图7中可以看出,中轴线上的压强不是线性变化,在靠近狭窄部位压强下降幅度明显增加,在最大狭窄处附近压强出现极小值,狭窄下游压强又逐渐回升,远离狭窄后,压强变化逐渐恢复类直管变化趋势,并且压强随时间的波动存在一定的滞后,如图中1/8T和7/8T,2/8T和6/8T以及3/8T和5/8T不完全重合.狭窄中心x0=121,狭窄长度为78.图7 iT/8时刻中轴线上的压强分布 142 北京师范大学学报(自然科学版)第46卷 脉动流前半周期的流场分布如图8所示.从图中可以看出,在T/4时刻,在狭窄下游管壁附近开始出现流动分离区,且分离区逐渐扩大,如3T/8时刻,接着又缓慢消失,如T/2时刻,流体平滑地流过凸包.图8 脉动流在前半周期内不同时刻的流场分布 需要注意的是心脏的周期性泵血作用使动脉中的血液以脉动的形式流动,动脉中血液流动的参量———压强、流量等流动参数也会随时间变化,虽然动脉中血液的流动是脉动流而不是定常流,但动脉中血流的方向平均来说却是始终不变的,即总是从动脉流向毛细血管,再流向静脉.因此,可以把由心脏收缩和舒张所引起的动脉中的脉动流看作是一定常流分量与一振荡分量的叠加,即在图8所示的流场分布中叠加上一个定常流,最终倒流的出现时间将非常短暂,且流速很小.对应于一个周期中的不同时刻,我们发现,管壁切应力的随时间的波动也存在一定的滞后.如图9给出前半周期的切应力分布.3 结束语我们讨论了二维余弦狭窄血管中血液流动的切应力、流场速度、压强和压强梯度在不同狭窄模型和不同图9 前半周期内管壁切应力的变化曲线Re下的分布规律,所得结论与用其他实验,理论和数值模拟得到的结论相同[9211],但用LBM方法编程简单,参数易于选择,从分布函数就可以得到所有主要宏 第2期张立换等:格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流143观量,证实了LBM在此模型下的适用性.考虑到血液流动的脉动性,研究了一个脉动周期中流场的变化特点,并与定常流动比较,分析其差异.由于Womersley数的选择在血流参数范围内,故认为上述结论具有参考性.值得注意的是,流动分离区并不同于定常流动所述那样在管壁处停留,而是随着时间的演化,流动分离区间歇性的出现,如对α=710797的流场分布模拟显示,与α=31357的不同点是流动分离区在管壁附近产生后,随着时间的推移,又会向管轴附近发展.与定常流情况下在Re达到300后才出现明显的分离区不同,对于脉动流,在Re较小时,就已经可以观察到明显的流动分离区了.4 参考文献[1] Qian Y H,d’Humieres D,lallemand ttice B GKmodels for Navier2Stokes equation[J].Europhys Lett, 1992,17:479[2] Chen H,Chen S,Matthaeus W H.Recovery of theNavier2Stokes using a lattice2gas Boltzmann method[J].Phys Rev A,1992,45:R5339[3] Artoli A M,Kandhai D,Hoef sloot H ttice B GKsimulations of flow in a symmetric bif urcation[J].FutureG eneration Computer Systems,2004,20:909[4] Boyd J,Buick J,Cosgrove J A,et al.Application of thelattice Boltzmann model to simulated stenosis growth in a two2dimensional carotid artery[J].Phys Med Biol,2005, 50:4783[5] Li H B,Fang H P,Lin Z ttice Boltzmannsimulation on particle suspensions in a two2dimensional symmetric stenotic artery[J].Phys Rev E,2004,69: 031919[6] 康秀英,刘大禾,周静,等.用格子Boltzmann方法模拟动脉分叉流场[J].北京师范大学学报:自然科学版,2005, 41(4):364[7] Z ou Q,He X.On pressure amd velocity boundaryconditions for the lattice Boltzmann B GK model[J].Phys Fluids,1997,9(6):1591[8] Mei R,L uo L S,L uo Shyy W.An accurate curvedboundary treatment in the lattice Boltzmann method[J].J Comput Phys,1999,155:307[9] 姚力,李大治.刚性轴对称狭窄血管内压强及其梯度的研究[J].应用数学和力学,2006,27(3):311[10] 刘国涛,王先菊,艾保全,等.狭窄动脉血管中Poiseuille流动对管壁切应力的影响[J].中山大学学报:自然科学版,2004,4(6):29[11] 秦杰,刘辉,孙利众,等.刚性狭窄管内血流压力分布的研究[J].生物力学,1989,4(6);57SIMU LATING B LOOD FLOW IN A TWO2DIMENSIONALSYMMETRIC STENOTIC ARTER Y BYTHE LATTICE BOL TZMANN METH ODZHAN G Lihuan KAN G Xiuying J I Yupin(Depart ment of Physics,Beijing Normal University,100875,Beijing,China)Abstract In t his st udy t he lattice Boltzmann met hod has been applied to a two2dimensional symmet ric stenotic artery.The velocity,p ressure and shear st ress distribution of blood flow were simulated and compared when p ulsatio n over t he blood was added.We have observed t he impact of blood flow when changing t he steno sis struct ure,Reynolds number and Womersley number.These data provide a p hysical explanation for blood vessel lesions and arterio sclero sis.K ey w ords lattice Boltzmann met hod;Reynolds number;Womersley number;p ulsating blood;steno sed artery。

格子玻尔兹曼方法

格子玻尔兹曼方法

格子玻尔兹曼方法格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种基于微观粒子动力学的计算流体力学方法,它是由Lattice Gas Automata(LGA)经过演化和发展而来的。

LBM是一种离散的方法,它通过在空间网格上模拟分子碰撞和传输过程来描述流体的宏观运动。

与传统的有限差分法、有限体积法相比,LBM具有计算效率高、并行性好、适应复杂边界条件等优点,因此在流体力学领域得到了广泛的应用。

LBM的基本思想是将流体系统离散化,将连续的流体宏观运动转化为离散的微观碰撞和传输过程。

在LBM中,流体被看作是由大量微观粒子组成的,这些微观粒子在空间网格上按照一定的规则进行碰撞和传输。

通过对微观粒子的运动状态进行统计,可以得到流体的宏观性质,如密度、速度等。

LBM的核心是格子玻尔兹曼方程(Lattice Boltzmann Equation,简称LBE),它描述了微观粒子在空间网格上的运动规律。

在LBM中,流体的宏观性质由分布函数来描述,分布函数是表示在某一时刻某一空间点上流体微观粒子的分布情况。

在每个时间步内,分布函数按照一定的规则进行碰撞和传输,通过迭代计算可以得到流体在空间网格上的演化过程。

LBM的计算过程可以并行化,因此在计算效率上具有明显的优势。

LBM的另一个优点是它对复杂边界条件的处理能力强。

由于LBM是基于离散网格的方法,因此可以比较容易地处理复杂的边界条件,如曲面边界、移动边界等。

这使得LBM在模拟复杂流体系统时具有一定的优势。

除此之外,LBM还有一些其他的优点,如对多相流、多孔介质流动等复杂流体现象的模拟能力强,对于非稳态流动和湍流流动的模拟也有一定的优势。

总之,格子玻尔兹曼方法作为一种新兴的计算流体力学方法,具有诸多优点,逐渐得到了流体力学领域的广泛关注和应用。

随着计算机硬件性能的不断提升,LBM的应用前景将更加广阔,相信它会在流体力学领域发挥越来越重要的作用。

格子boltzmann方法

格子boltzmann方法

格子boltzmann方法格子玻尔兹曼方法是一种常用的数值计算方法,它主要用于模拟稀薄气体等流体力学问题。

下面我将从方法原理、模拟过程和应用领域三个方面详细介绍格子玻尔兹曼方法。

首先,格子玻尔兹曼方法基于玻尔兹曼方程和格子Boltzmann方程,通过将连续的物理系统离散化为网格系统进行模拟。

网格系统中的每个格子代表一个微观粒子的状态,而碰撞、传输和外部力的作用通过计算和更新这些格子的状态来实现。

该方法主要包含两个步骤:碰撞和传输。

在碰撞过程中,格子中的粒子通过相互作用和碰撞来改变其速度和方向,从而模拟了分子之间的碰撞过程。

在传输过程中,碰撞后的粒子根据流体的速度场进行移动,从而模拟了背景流场对粒子运动的影响。

其次,在格子玻尔兹曼方法中,模拟的过程可以简化为两个部分:演化和碰撞。

在每个时间步长内,系统首先根据粒子速度和位置的信息计算出相应格点上的分布函数,然后通过碰撞步骤更新这些分布函数以模拟粒子之间的碰撞效应。

通过迭代演化和碰撞步骤,系统的宏观行为可以得到。

格子玻尔兹曼方法中最常用的碰撞操作是BGK碰撞算子,它根据粒子的速度和位置信息计算出新的分布函数,并用该新分布函数代替原来的分布函数。

而在传输过程中,粒子通过碰撞后得到的新速度和方向进行移动。

最后,格子玻尔兹曼方法在流体力学领域具有广泛的应用,特别是在稀薄气体流动、微纳尺度流动和多相流等问题中。

由于其适用于模拟分子尺度和介观尺度流动问题,因此在利用普通的Navier-Stokes方程难以模拟的问题中表现出了良好的效果。

此外,格子玻尔兹曼方法还可以用于模拟流动中的热传导问题、气体分子在多孔介质中的传输问题以及颗粒与流体相互作用等多种复杂流动现象。

近年来,随着计算机性能的不断提高,格子玻尔兹曼方法也得到了快速发展,在模拟大规模真实流体问题方面取得了不错的结果。

总结来说,格子玻尔兹曼方法通过将连续的物理系统离散化为网格系统,模拟粒子碰撞和传输过程,实现了对流体力学问题的数值模拟。

对流扩散模型的格子波尔兹曼方法及其应用

对流扩散模型的格子波尔兹曼方法及其应用

对流扩散模型的格子波尔兹曼方法及其应用一、引言介绍对流扩散模型的重要性及本文的研究目标二、格子波尔兹曼方法概述介绍格子波尔兹曼方法的基本原理及其优点三、对流扩散模型的格子波尔兹曼方法详细说明如何将对流扩散模型应用于格子波尔兹曼方法中,分析其有效性四、应用案例分析实际应用案例分析,比较格子波尔兹曼方法和其他方法的优劣,分析改进空间五、结论总结本文研究结果,展望其未来发展趋势及应用前景随着科学技术的快速发展,对流扩散模型在各种领域中得到了广泛的应用。

比如,对流扩散模型可以用来研究海洋环境中的污染物扩散现象,以及空气中的传热和传质现象。

对流扩散模型的研究具有重要意义,因为它可以帮助我们更好地理解自然现象,为环境保护和新能源等领域的发展提供理论支持。

然而,传统的对流扩散模型具有求解难度大,计算量大等缺点,因此,如何采用高效且准确的数值模拟方法对其进行研究,成为当前研究的热点问题。

格子波尔兹曼方法作为一种新兴数值模拟方法,近年来已受到广泛的关注和研究。

这种方法可以将复杂的流场问题转化为一个简单的格子结构,并通过构造某种物理量或概率密度函数的演化方程来描述流场变化,从而实现高精度数值模拟的目的。

本文将介绍对流扩散模型的格子波尔兹曼方法及其应用。

具体分为五个章节。

首先,在引言中介绍对流扩散模型的重要性及本文研究目标。

其次,在格子波尔兹曼方法概述章节中详细介绍了该方法的基本原理及其优点。

接着,在对流扩散模型的格子波尔兹曼方法章节中,将阐述如何将对流扩散模型应用于格子波尔兹曼方法中,并分析其有效性。

在应用案例分析章节,将详细介绍实际应用案例,并比较格子波尔兹曼方法和其他方法的优劣,分析改进空间。

最后,在结论章节对本文研究结果进行总结,并展望其未来发展趋势及应用前景。

总之,本文旨在通过对对流扩散模型的格子波尔兹曼方法及其应用的研究,提出一种高效、准确的数值模拟方法,以便更好地研究该领域的相关问题,并为环境、能源等领域的发展提供理论指导。

声波衰减的格子-boltzmann方法模拟

声波衰减的格子-boltzmann方法模拟

声波衰减的格子-boltzmann方法模拟一、啥是声波衰减呀?咱先得搞明白声波衰减是个啥概念。

简单来说呢,声波在传播的时候呀,它的能量会越来越小,就像跑步跑着跑着没力气了一样。

比如说吧,你在一个特别空旷的大广场上喊一嗓子,那声音传出去老远之后就变得很微弱了,这就是声波衰减在起作用。

这衰减的原因可不少呢,像介质的吸收啦,散射啦,都会让声波的能量一点点地减少。

二、格子 - Boltzmann方法是啥玩意儿?这名字听起来就特别高大上对吧?其实呢,它就是一种模拟物理现象的方法。

想象一下啊,我们把空间分成好多好多小格子,就像搭积木一样。

然后呢,每个小格子里都有一些小粒子在跑来跑去,这些小粒子的运动就能够反映出物理现象啦。

对于声波衰减这个事儿呢,我们就可以用这些小格子和小粒子的运动来模拟声波是怎么一点点衰减的。

这种方法可厉害了,它能够处理那些很复杂的物理过程,就像一个超级聪明的小助手。

三、为啥要用格子 - Boltzmann方法来模拟声波衰减呢?这里面学问可大了。

你想啊,传统的方法有时候会遇到一些麻烦事儿,比如说计算特别复杂的情况就搞不定了。

但是格子 - Boltzmann方法就不一样啦。

它能够很自然地处理那些复杂的边界条件,就像一个特别灵活的小机灵鬼。

而且呀,它还能很清楚地展现出微观的物理过程,就像给我们一双透视眼一样,让我们能看到那些小粒子是怎么影响声波衰减的。

再加上现在计算机技术这么发达,用这个方法来模拟,速度也能挺快的,就像开着小跑车在信息高速公路上飞驰一样。

四、具体怎么模拟呢?这可就有点复杂了,不过咱也能大概说说。

首先呢,得确定那些小格子的大小和形状,这就像是给我们的小世界定个框架一样。

然后呢,要给那些小粒子设定初始的状态,比如说它们的速度啦,位置啦之类的。

接下来呀,就根据一些物理规律,让这些小粒子在小格子里跑来跑去。

在这个过程中呢,我们要时刻关注那些和声波衰减有关的因素,像小粒子之间的碰撞啦,和小格子边界的相互作用啦。

任意复杂流-固边界的格子boltzmann处理方法

任意复杂流-固边界的格子boltzmann处理方法

任意复杂流-固边界的格子boltzmann处理方

格子Boltzmann方法是一种模拟任意复杂流-固边界的流体动力学系统的数值方法,它利用格子来模拟质点运动,同时采用本征量子力学理论中质点间碰撞时的分布函数来描述质点运动的统计特性。

在此方法中,所有流体方程都使用一种称为“格子Boltzmann方程”的对称形式来表示。

它包括扰动和召回(恢复)项,其中扰动项在边界和外力作用下添加附加信息,而召回项利用非平衡本征分布函数的特性,以引入本征的分散和流动力学属性。

该方法可以计算流动力学方程,包括质点温度、流速和压力、与空气的拖曳和热传递等,从而解决复杂的流体流动和热传递问题。

格子Boltzmann方法原理及其应用

格子Boltzmann方法原理及其应用

格子Boltzmann方法原理及其应用摘要在上世纪八十年代后期提出的格子Boltzamnn方法克服了格子气方法的缺点,其本身也在不断的发展之中.格子Boltzamnn方法在流体运动计算方面展现了非凡的风采,成功地模拟了包括均相不可压缩湍流和多孔介质中的多相流动在内的流体动力学问题.但和成熟的流体动力学计算方法相比,特别在工程实际应用上,该方法还有许多值得研究的地方.本文主要介绍工程实际应用时,具体模型的选择问题.首先从理论上对应用最为广泛的几种基本模型进行了详尽的分析和比较.选择了Poiseuille流动,然后从计算精度、数值稳定性和收敛速度这几个方面进行了细致的比较.从理论和实验两个角度验证了D2G9模型的优越性,为工程实际应用上模型的具体选择提供了一定的参考依据.通过研究二阶精确的格子Boltzamnn模型,提出了非牛顿流体.非牛顿流动性是使用幂法则模型实现的.它可以估算出模型的精确程度,同时不会限制这个模型.二阶精度由剪切变稀和剪切增稠液体的幂法则模型参数范围给出.这些结果与Gabbanelli等人的结果相比,精确度更高,并且得到了更快的计算效率.结果表明了格子Boltzamnn方法适用于非牛顿流体模拟.对于实际流动模拟,本文应用二维9速度模型模拟了四种情况的方柱绕流问题.在第一种情况中,单个方柱位于流场中央,给出了流线图,等涡线图,模拟了卡门涡街现象,并计算了升、阻力系数,Strouhal数等参数;在第二种情况中,计算细长矩板截面柱绕流问题,得到了Strouhal数随着矩形长宽不同的比值下的变化情况;在第三种情况中,两个方柱并列位于流场中央,考察了方柱间距对于流场的影响;在第四种情况中,计算了水平来流为剪切流的方柱绕流问题,比较了速度梯度取不同值下流场的变化情况.所有有关力的求解均采用动量转换法.所得结果,包括流线、等涡线、升/阻力系数曲线等均与已有文献的实验或数值结果基本一致,显示LBM方法及其力的求解方法——动量转换法是有效的,能够精确的模拟各流场.其次,我们还引入一种两相耦合机制对D2G9模型进行了修正,从而使之可以正确处理气固两相流中输运相和颗粒相之间的相互作用.随后,我们模拟了后台阶流动,并和传统CFD方法的模拟结果以及修正其他模型的模拟结果进行了验证,得到了令人满意的结论.从一定程度上验证了两相耦合机制的可行性.通过软件模拟获得了水包油、过渡流型和油包水三种流型的典型模拟图.经分析发现:由软件模拟的流型特点和由探针获得的流型特点具有较好的一致性.在本文最后,我们介绍了以经典算例一方腔流为例,对格子Boltzamnn方法的核心代码进行了优化的方法,主要讲述对时间和空间上的优化,优化的程序使计算效率提高数倍.在并行的框架下,核心演化的代码换为优化后的程序,计算效率有大幅度的提高.关键词:格子方法;格子Boltzamnn 方法;格子气自动机;格子Boltzamnn模型.AbstractIn the latter of 80’s,the Lattice Boltzamnn Method(LBM)was introduced mainlyto cope with major drawbacks of its ancestor,the Lattice Gas Automata(LGA).Eversince,it has undergone a number of refinements and extensions which have taken it tothe point where it can successfully compute a number of non trivial flows,raging fromhomogeneous incompressible turbulence to multiphase flows in porous geometries.Yet,when compared with conventional computational fluids dynamics methods,such as finiteelement,finite difference,it is apparent that there is still a way to go before LBM canachieve full engineering status.In this paper,we mostly focus on the choice of the basic LB models in theengineering application fields.Firstly,we expatiate the basic LB models in theory.Then,we simulate the Poiseuille flow with those basic LB models.And wecompare the simulation results from the computation precision、the numerical stabilityand the convergence rate.Finally,we draw a conclusion that the D2G9 model is the bestchoice in the engineering application fields.Simulation of Flow past square cylinder with LB Method.For the simulation of actual flow,we use D2Q9 investigate fourcases of flow past square cylinders in this paper.For case 1,one singlesquare cylinder is located at the center of the channel,we describe thestreamline contour,vortices contours,simulate the Karman vortex,then compute the lift coefficient,drag coefficient,Strouhal numbersetc.For the case 2,simulate the flow past a cylinder of rectangularcross-section;compute the change of Strouhal numbers varying withthe side ratio.For case 3:two square cylinders arranged side by side inthe center of the channel,the flow features at different spacing ratiosare studied.For case 4:we compute the linear shear flow over a squarecylinder,compare the evolution of flow with different velocitygradient.The results of thesimulation including the streamlines,vorticity contours,lift and drag coefficients etc.are agreed with thoseof available literatures,and show that LB method and itsmomentum-exchange method can achieve accurate results and obtainthe reasonable flow in detail.we employ a two-way coupling mechanisms to modify theD2G9 model.With the modified D2G9 model,we can handle with the interactionsbetween carrier phase and dispersed phase in the model.Then,we simulate abackward-facing step model,and the results are compared qualitatively with the result ofthe traditional CFD method and the other modified LB models.Though the comparison,we can see that the two-way coupling mechanisms can handle with the gas-solid twophases flows successfully.Three kinds of flow pattern,which are oil-in-water flow,transitional flow andwater-in-oil flow,have been got by simulation.According to the result of simulation,theoil-water two-phase flow pattern transition boundary model has been got by.By the analysisof simulation,the characteristic of three kinds of flow pattern of vertical oil which has beengot by analysis of the signals is consistent with results by simulation.We take the classical problem-cavity flow as an example and optimize the kerne codes of the LBM. The optimization include two aspects :time and space .The efficiency of the optimized code increased much more .In the parallel frame,the efficiency also increased if the kernel code is taken the optimized code.Key word:1atrice method;1atrice bohzmann method;lattice gas automata;LBM目录第1章概述 11.1研究格子 Boltzamnn方法的意义 11.2 格子 Boltzamnn方法的发展历程 31.2.1孕育阶段 31.2.2 萌芽到成长阶段 31.3 格子 Boltzamnn方法应用概况及优缺点 51.3.1格子Boltzamnn方法应用概况 51.3.2格子Boltzamnn的优缺点 61.4本论文的研究目的 81.5 相关研究的综述与专注情况 8第2章格子Boltzamnn方法介绍 102.1 Boltzamnn方程的产生 102.2细胞自动机(CA) 112.3格子气自动机(LGA) 122.4格子Boltzamnn方法(LBM) 132.5 格子Boltzamnn的基本结构 162.6本章小结 17第3章格子Boltzamnn方法的基本模型比较 183.1 格子 Boltzamnn 方法基本模型概述 183.2 进行常压力梯度驱动的Poiseuille流动模拟比较几种基本模型 23 3.3本章小结 27第4章格子Boltzamnn方法的算法设计 284.1格子Boltzamnn方法的算法实现 284.2格子Boltzamnn方法的高效算法设计 304.2.1优化算法 304.2.2优化实验 324.3 本章小结 34第5章格子Boltzamnn方法的实际应用 355.1二阶精确格子Boltzamnn非牛顿流体的流动模拟 35 5.1.1理论背景 355.1.2方法和计算结果分析 385.1.3 本节小结 405.2 格子Boltzamnn方法的方柱绕流模拟 405.2.1 单个方柱位于流场中央的绕流问题 405.2.2 细长矩形截面住绕流问题 425.2.3 两个并列方柱的绕流问题 445.2.4来流为剪切流的绕流问题 495.3格子Boltzamnn方法模拟气固两相流 515.3.1对气固两相流的模拟模拟对象简介 515.3.2 计算结果分析 545.3.3本节小结 565.4 格子Boltzamnn方法模拟油水两相流软件设计 565.4.1 LBM油水两相流的关键因素选取 575.4.2 软件的设计 605.4.3 本节小结 635.5 简述格子Boltzamnn方法在其他领域中的应用 645.5.1 颗粒悬浮问题的模拟 645.5.2 热导和对流—扩散问题的模拟 645.5.3 偏微分方程的模拟 655.5.4 多相流和多元流的模拟 65结论及展望 67参考文献 68第1章概述1.1研究格子Boltzamnn方法的意义自从二十世纪四十年代出现了第一台电子计算机以来,人们开始进入了电子信息时代.随着高存储、高速度计算机的出现,人们所能解决的问题也越来越广泛,同时所面临的问题也越来越复杂.在对流动现象的研究中,以往人们大部分依靠的是解析方法,但所解决的问题非常有限.而现实生活中所面临的流动问题往往十分复杂,如航空航天器的亚跨超音速飞行、舰船的航行等等,依靠解析的方法来解决这些复杂的流动现象是不可能的.到现今为止,人们对流体运动的研究主要靠实验方法和数值计算方法.实验方法具有直观、结果基本可靠的特点.但也存在较大的缺点:耗费大、周期长,并且结果受实验条件的影响也较大,尤其是如今的航空航天飞行,速度高、飞行条件复杂,用风洞来模拟困难是相当大的.而流体的运动可以由一组偏微分方程描述.在大多数情况下,这些方程(如N-S方程)都是高度非线性的,采用解析的求解方法是不实际也是不可行的.随着大型计算机的出现,使人们可以借助于计算机用数值计算方法来解决复杂的流动问题.因此,在二十世纪六十年代,用数值方法分析求解流动问题的学科——计算流体力学(CFD)逐渐发展起来.伴随着电子计算机的飞速发展以及各种新颖算法的不断出现,CFD已经形成了一门独立的学科,并且在航空航天、船舶、大型能源装置(如核电站)、新型交通工具、海洋工程、环境保护等众多工程技术部门和领域都得到了广泛的应用.随着计算技术的发展、巨型计算机的出现、计算方法的不断改进,计算流体力学在解决流动的理论和工程实际问题中愈加显示出它的巨大作用.目前,计算流体力学已经成为现代计算科学的最有力的推动力之一.在计算流体力学中,传统的数值模拟方法可以分为两大类:(1)从宏观角度出发,基于连续介质假设,采用数值计算方法,求解全位势方程或Euler方程或N-S方程;(2)从微观角度出发,采用分子动力学的方法,对流动进行数值模拟.其中,格子Boltzamnn方法就是典型的一种.格子Boltzamnn方法(Lattice Boltzamnn Method,LBM)1.1.2格子Boltzamnn法(lattice Boltzamnn method)起源于格子气自动机(Lattice Gas Automata,LGA).LGA方法是元胞自动机(Cellular Automata,CA)在流体力学中的具体应用,是空间、时间和速度空间都离散的一个虚拟微观模型,与以连续微分方程为基础的宏观计算流体力学方法有着本质的不同.LGA的微观特性使得它的边界条件非常容易实现,并且计算也很简单.因此,LGA方法非常适于处理边界复杂的问题.更为重要的是,LGA的计算具有局部性和并行性,非常容易在并行机上实现.LGA的出现不但为并行计算提供了许多新思想,而且对并行计算机制造技术产生了重要的影响.但是,LGA方法也有许多不足之处.例如,由于含有随机因素,LGA的计算结果往往包含很大的统计噪声,LGA的宏观方程也不是标准的流体运动宏观方程.格子Boltzamnn方法是为克服LGA方法的一些内在不足而发展起来的一种新方法.LBM不但克服了LGA的缺点,继承了LGA的主要优点,而且还有许多新的优点,如计算量小、计算效率高、编程简单等.LBM的产生与发展,不仅在计算流体力学领域中产生了深远的影响,它所使用的处理方法和观点对其他许多学科也是富有启发性的.格子Boltzamnn法是一种应用非连续介质思想研究宏观物理现象,并可平行运行,求解流体力学问题的新方法.它是由格子气自动机(lattice gas automata,简称LGA)方法发展而来的.该法把流体及其存在的时间、空间完全离散,把流体看成由许多只有质量没有体积的微小粒子组成,所有这些粒子同步地随着离散的时间步长,根据给定碰撞规则在网格点上相互碰撞,并沿网格线在节点之间运动.碰撞规则遵循质量、动量和能量守恒定律.流体运动的宏观特征是由微观流体格子相互碰撞并在整体上表现出来的统计规律.该法是直接从微观模型出发,经过Boole化处理后进行计算,可认为是N-S差分法逼近的一种无限稳定的格式.被广泛应用于复杂几何边界流体流动、多孔介质流、多相流及反应流等.格子气自动机的基本思想是,把计算区域分成许多均匀的正三角形(或正方形)的网格,而那些只有质量无体积的粒子只能在网格点上存在,并沿着网格线在网格间运动.当某一个粒子从某一网格点到邻近的网格点时,有可能和从其他网格点到达该点的粒子相碰撞.根据Pauli不相容原理,在同一时刻同一点上,沿着每一网格线运动方向最多只有一个粒子,流场中的粒子速度不是0(静止)就是1(设格子边长及时间间隔都为1).以三角形网格为例,每一个网格上在某一时刻,其周围的6个网格上粒子沿着网格线聚集到该点,加上该点可能还有一个静止粒子,这样,可能有7个粒子在该点发生碰撞,然后根据碰撞规则再散射出去,演化为新的运动粒子流向各节点的邻居,形成格子气自动机.1986年MeNamaxa和Zaneltti,提出把格子气自动机中的整数运算变成实数运算,建立了格子Boltzamnn 模型,克服了格子气自动机的数值噪声的缺点.后来陈十一和钱跃宏采用了单一时间松弛方法,满足了各项同性,GalIean不变性,并得到了独立于速度的压力项.使格子Boltzamnn模型保留了格子气自动机的优点,克服了其不足,并在理论分析和数值模拟方面都具有很大灵活性,而且程序编制简单,计算效率较高.从格子Boltzamnn方法诞生至今天已有20年,20年间,其在理论和应用研究等方面都取得了迅速发展,并逐渐成为在相关领域研究的国际热点之一,受到国内外众多学者关注.与之传统模拟方法不同,格子Boltzamnn方法基于分子动理论,具有清晰的物理背景.该方法在宏观上是离散方法,微观上是连续方法,因而被称为介观模拟方法.在许多传统模拟方法难以胜任的领域,入微尺度流动与换热、多孔介质、生物流动、磁流体、晶体生长等,格子Boltzamnn方法都可以进行有效的模拟,因此它被用于多种复杂现象的机理研究,推动了相关学科的发展.可以说,格子Boltzamnn方法不仅仅是一种数值模拟方法,而且是一项重要的科学研究手段.此外,格子Boltzamnn方法还具有天生的并行特性,以及边界条件处理简单、程序易于实施等优点.可以预计,随着计算机技术的进一步发展,以及计算方法的逐渐丰富,格子Boltzamnn方法将会取得更多成果,并为科技发展发挥更重要的作用.1.2 格子Boltzamnn方法的发展历程格子Boltzamnn方法自诞生至今年已取得了长足发展,被誉为现代流体力学的一场变革.1.2.1孕育阶段:对格子Boltzamnn方法发展使得了解,得先从格子自动机说起.格子气自动机使更广泛的元胞自动机在流体学中的应用.元胞自动机是一个时间和空间离散的数学模型.20世纪60年代,Broadwell等人首先提出了离散速度模型,用以研究流体中的激波结构.20世纪70年代,为了研究流体的运输性质,法国的Hardy、Pomeau和Pazzis提出了第一个完全离散模型,该模型命名HPP模型.这是历史上的第一个格子气自动机模型.1986年,法国的Frisch、Pomeau和美国的Hasslacher提出具有足够对称的二维正六变形格子气自动机模型,,命名为FHP模型.由于这些方法在还处在一些缺点:(1)有格子气自动机演化方程推导出来的动量方程不满足Gaililei不变形;(2)流体状态方程不仅仅依赖于密度和温度,还与宏观流速有关;(3)破装蒜子具有指数复杂性,对计算量和存储量也有较大要求.因而,我们将这一段格子气自动机的发展过程称作格子Boltzamnn方法的孕育期.1.2.2 萌芽到成长阶段:自1988年底一篇关于格子Boltzamnn方法的论文出现至今,格子Boltzamnn方法从萌芽逐渐成长壮大,并成为目前一大国际研究热点,受到越来越多学者的关注.1988年,McNamra和Zanetti提出把格子气自动机中的Bool运算变成时数运算,格子点上的粒子数不是用整数0或1来表征,而是用实数f来表示系综平均后的局部粒子分布函数,用Boltzamnn方程代替格子气自动机的演化方程,并将该模型用于流体的数值计算.这是最早的格子Boltzamnn模型,从此开启了格子Boltzamnn方法的历史大门.1989年,Higuera和Jimenez提出了一种简化模型:通过引入平衡分布函数,将碰撞算子线性化.该模型不需要碰撞模型,并忽略各自粒子间的碰撞细节,相比于多粒子碰撞模型,容易构造.同年,Higuera等进一步提出了强化碰撞算子方法,以增加模型的数值稳定性.这两模型统成为矩阵模型.经历了上述两类模型,格子Boltzamnn方法消除了统计噪声,克服了碰撞算子指数复杂性,但是由于依然使用Fermi-Dirac平衡态分布函数,格子气自动机的其他缺点仍然存在.1991年,Chen等提出了单松弛时间法,用同一个时间松弛系数来控制不同例子靠近各自平衡态的快慢,进一步简化了碰撞算子;Qian等人在1992年也提出了类似的方法,称之为格子BGK(LBGK)模型.LBGK模型与矩阵模型类似,但与前面两种模型不同的是,当粒子种类数增加时,碰撞算子本身发生生变化,不会变得复杂.至此,格子Boltzamnn方法完全克服了格子气自动机的一系列缺点,并逐渐成熟,成为国际研究的热点.早期的格子Boltzamnn模型只能用于等温不可压缩流动的模拟.但因为存在可压缩效应,会引起一定的误差.为了消除或强敌有可压缩效应引起的误差,许多学者致力于新的格子Boltzamnn模型的研究,并提出了多种等温不可压模型.而后,一些不可压缩热模型成功实现了对有效范围温度变化的热力学和传热学问题的模型.其中,最成功的要数双分布函数模型.他是在密度分布函数的基础上引入了温度分度函数、或内能分布函数、或总能分布函数,并用密度分布函数演化得到速度场,这类模型具有与等温不可压模型相同的数值稳定性,而且可以从根本上解决压缩功和耗热问题.边界处理方面,经历了20年的发展,格子Boltzamnn方法已逐渐发展出适合不同边界条件、不同模型的边界处理格式.网格划分方面,最初的格子Boltzamnn方法是基于正六边形或正四边形的均匀对称网格.由于均匀网格在计算效率、计算精度等方面的不足,从而促进了非均匀网格、多快以及多重网格、无网格等多技术出现.总的来说,这些网格技术延展了格子Boltzamnn方法的应用范围,使得格子Boltzamnn方法主机去年从理论的神殿走向更可能多的实际应用领域.1.3 格子boltzamnn方法应用概况及优缺点1.3.1格子boltzamnn方法应用概况与传统的宏观数值方法相比,具有介观特性的格子Boltzamnn方法其主要优点是物理图像清晰、便捷容易处理以及并行性能好等.因而自诞生之日起,格子Boltzamnn方法就得到了国内外学术界的广泛关注,并寄希望该方法能再注入为尺度流体、多相流、多孔介质内流动与换热、化学反应流等传统法就延受限的领域取得开拓性进展.事实上,在20年的发展过程中,格子Boltzamnn方法的确也已成一个十分活跃极具发展前景的模拟手段.并迅速在微/纳米尺度流、多孔介质流、多相多质流、非牛顿流体、粒子悬隔i浮流、湍流、化学反应流、燃烧问题、磁流体、晶体生长等许多领域得到应用.下面分别以多孔介质流、多相流和非牛顿流体三个方面为例,做较详细说明.由于格子Boltzamnn方法边界条件易于实施,在模拟具有复杂几何构型的问题具有较大的优势,因而这个方向的发展非常迅速.目前,采用格子Boltzamnn方法对多孔介质流进行模拟主要在空隙尺度和代表单元尺度上进行.在孔隙尺度上,可以直接使用格子Boltzamnn方法描述孔隙内的流体流动,多孔介质则当做固体壁面,流体与介质相互作用使用边界处理格式来描述.在多相流方面,由于真实的流动问题常常是多相的,因而对其开展研究具有重要的现实意义.由于格子Boltzamnn方法的介质特性,它可以方便地描述数流动中不同相之间的相互作用,因而在多相流领域具有较好的应用前景.按照设计方法的不用,现有模拟多相流的格子Boltzamnn模型可分为四大类:着色模型、伪势模型、自由模型和其他模型.格子Boltzamnn方法在非牛顿流体领域的应用刚刚起步,主要研究对象是非牛顿幂律流体.Aharonov等最早提出使用矩阵碰撞该算子来计算幂律流问题,即在每一个时步内,调整碰撞算自来该表局部的动力学黏性系数.Boek用该模型模拟了幂律流体在简化多孔介质中模型的流动,模拟结果与达西定律符合良好.最近,Gabbanelli又对上述模型进行了改进,引入分段幂律方程描述剪切率和表现黏度的关系.以上可看出,到目前为止,格子Boltzamnn方法的研究者主要局限在科学界.尽管如此,随着格子Boltzamnn 方法理论体系逐渐完善,以及计算机技术的进一步发展,格子Boltzamnn方法也会走向更加广泛的工业实际应用中.1.3.2格子Boltzamnn的优缺点流体力学的理论描述通常建立在纳维--斯托克斯方程的基础上,作为流体力学的基石,它已处在了一个多世纪.在通常尺度下,|人们对此方程的物理可靠性即准确性并不抱异议.理论上人们一般通过求纳维--斯托克斯方程及其各种简化形式的途径来处理复杂的流体力学问题,现行的计算流体力学研究也主要是围绕着纳维--斯托克斯方程的计算方法展开的.然而,基于其本质上的非线性以及边界条件处理的困难,除少数简单问题外,解析和数值求解纳维--斯托克斯方程都是极具挑战性的任务.除了求解的困难外,作为一种对流体物理的描述,与描述经典力学运动的牛顿运动方程,或与描述量子力学运动的薛定谔方程等原理方程不同,纳维--斯托克斯方程是从更根本的原理性方程出发,在合理地假定某些物理机制可以忽略后,经过统计平均得到的.本质上纳维--斯托克斯方程当然不可能描述那些被忽略了的物理机制带来的宏观现象,比如流体系统中的相变、非牛顿的本构关系以及在分子运动自由程尺度上的物理现象,在这些领域,纳维--斯托克斯方程明显的显示出了他的局限性.从20世纪80年代末开始,一种对于流体力学的全新的理论表相及有效的计算方法初步形成,这就是现在人们通常所谓的格子Boltzamnn方法.关于格子Boltzamnn方法的早期发展,上文已有较全面的综述,在此仅作简单介绍.从历史角度来讲,格子Boltzamnn方法最初是从所谓的格子气模型演化而来的,而后者是一种抽象简化的分子运动数学模型.格子Boltzamnn方法最初的引入有两个主要原因:一是为了降低模型导致的数值噪音;而是能够克服格子气模型里处在的非物理缺陷.可以证明,格子Boltzamnn系统的宏观表象基本满足纳维--斯托克斯方程.从而,人们可以模拟格子Boltzamnn系统地方法来间接地解纳维--斯托克斯方程.标准格子Boltzamnn方程一般用一下的数学表达式描述:式中——粒子分布函数;——碰撞项.用格子玻尔兹曼模型进行流体的数值模拟有一些明显的优越性.如,它的对流(advection)过程是通过常数值速度实现的.这相应的计算是一项极其简单的操作步骤.当适当的格子网格选定后,该过程通常可以用完全平移的方式实现.用计算数学里的常规有限插值语言来讲,它对应于上风插值.但所不同的是其对应的柯郎数(Courant Number)等于1.相比之下,纳维——斯托克思方程的对流项是一个随时空变化的非线性函数.众所周知,对于它的计算不是一项简单的事,并且,数值稳定性的要求迫使人们在实际问题的计算中只能使用比1小得多的柯朗数.在给定空间分辨度的情况下,小柯朗数意味着小时间步长,从而大大延长了计算时间:同时,小柯朗数也增大了数值扩散误差,迫使人们采用更高精度格式或隐式格式.其后果是,或者算法变得极为复杂,并行效率大大降低;或者计算只限制在处理定常流的情况下.事实上,定常流是对流动情况的极大限制.许多重要的流体力学问题,如分离流,即使我们只关心它的时间平均的结果,也是不能用定常流假设来近似的.在此我们也要提一下格子玻尔兹曼方程的另一个本质特性:所有非线性效应在格子玻尔兹曼方法里都包含在碰撞项中,并且是以纯粹局部信息的方式体现的.这进一步发挥了并行计算的长处.所有这些理由意味着格子玻尔兹曼方法是对非定常流动实行大规模并行模拟计算的一种比较优越的方法.相比之下,以流体力学方程(纳维一斯托克思方程或Burnett类型方程)宏观描述为基础的传统计算方法对许多这类问题存存基本困难.除边界条件之外,利用各种封闭性假设推导出的超越纳维一斯托克思的宏观方程直至现今仍存在对其数学规范性的疑问和争议,多相流的计算也存存同样问题.众所周知,流体系统中存在多相的物理机制是分子问的长程作用力,这种机制早已超出了流体力学方程所能描述的物理现象范围.以流体力学方程为基础的多相流计算方法必须依赖额外的模型来模拟流体力学方程本身所不包含的物理现象.除了实际数值结果显示的问题之外,这种方法本质上隐含着严重的基本物理缺陷,这种缺陷集中表现在对相交界面的准确描述上面,即在十分尖锐的相界面附近,纳维一斯托克思方程之类近平衡态的近似表象是有相当疑问的.这也反映在相界面和兀滑动(no—slip)固体边界条件的互斥性上面,为了修补这一缺憾,人们不得不引入各种滑动经验模型.反之,以细观(mesoscopic)为表象基础的格子玻尔兹曼方法可容忍更大的非平衡态程度及更广义的严格边界条件.另外,压力的状态方程在细观表象中是由粒子的相互作用自然得出的,而不用直接输入和处理.在相变情况下,物体的宏观特性将产生不连续性,而对应的微观和细观力学机制并无改变.格子玻尔兹曼方法在模拟多相流上有着广泛的使用.然而,这种为大多数人所熟悉的格子玻尔兹曼方法的理论框架存在本质上的缺陷.由于它运用逆向切普曼一安斯柯格展开的途径来适定平衡态分布函数中的关键参数,以达到复建宏观物理体系的目的,这就使其。

格子玻尔兹曼方法入门攻略-DongkeSun

格子玻尔兹曼方法入门攻略-DongkeSun

格子玻尔兹曼方法入门攻略参考书1格子Boltzmann方法的原理及应用(郭照立科学出版社)格子Boltzmann方法的理论及应用(何雅玲王勇李庆编著科学出版社)起步时不需要读得非常细,但要知道LBM是怎么回事,能解决什么问题。

这本书关于微尺度流动的进展涉及较少。

参考书2数值分析孙志忠东南大学出版社(限于东南大学研究生,其他学校可参考类似图书)研究生必修课程之教科书,要知道数值计算基本方法,掌握偏微分方程的基本解法。

参考书3流体动力学人民教育出版社[美] J.W.戴莱等这本书比较老,可能借不到。

可以去图书馆借一本较老的流体力学书看一看,了解流体力学基本知识。

理解流体、流动、黏性等基本概念以及Euler方程、Navier-Stokes方程等。

参考书4[美] S.V.帕坦卡著传热和流体流动的数值方法安徽科学技术出版社可称为数值传热学和计算流体力学经典入门教材。

阅读此书,学习传热问题、对流扩散、边界条件......认真学习第4章之后的内容。

可参考书中离散方程,编程实现一维、二维、三维传热和扩散问题。

****************预备知识学会使用Visual Studio 2010或更新版本C++编译器编程。

学会使用tecplot、paraview、gnuplot、sigmaplot等软件进行数据可视化。

初级阶段第一步:能够编程实现一维和二维传热或扩散问题的计算,只计算传热不考虑源项。

第二步:能够编程关于传热和扩散问题的实现三类边界条件,并深刻相关物理意义。

第三步:能够编程实现温度回升法、等效热熔法和焓方法计算包含潜热释放的问题。

中级阶段第四步:参考郭照立教授、何雅玲院士的书,编程实现单松弛LBM程序计算流场,周期性边界。

第五步:理解并掌握LBM边界条件处理格式,能够实现Newmann边界与Dirichlet边界,能够计算Poiseuille流、Coutte流及顶盖驱动流。

第六步:结合LBM流场计算程序,编程实现LBM计算对流扩散方程,起步时采用周期边界且不包含源项。

格子boltzmann法

格子boltzmann法

格子boltzmann法
格子波尔兹曼法(Grid-Based Boltzmann Method)是用于计算复杂系统的一种数值模拟方法,该方法基于玻尔兹曼方程,采用格子划分的非总熵方案计算分布函数所描述的传播动力学系统的平衡性质。

格子波尔兹曼方法由三个部分组成,分别是分子动力学基础、格子化方案以及格点迭代方案。

在空间上,格子波尔兹曼方法采用密度聚类格子,由于每个格子内节点之间的影响,允许改变每个节点状态。

在时间上,格子波尔兹曼方法通过欧拉法和龙格-库塔法,将弹性系统的猝灭问题转换为一个接近平衡态的迭代问题。

最终,根据初始条件和格子化方案计算本征周期、如粒子操纵力学系统中的陷阱模式等。

流体动力学的格子boltzmann方法及其具体实现

流体动力学的格子boltzmann方法及其具体实现

流体动力学的格子boltzmann方法及其具体实现格子Boltzmann方法是以Boltzmann方程为基础的,该方程描述了流体中粒子的运动。

格子Boltzmann方法将模拟的流体区域划分为一个个离散的格子,并在每个格子中表示流体的宏观属性,如密度、速度等。

在每个格子中,通过计算碰撞和分布函数来模拟粒子的运动。

具体实现格子Boltzmann方法的步骤如下:1.离散化:首先,将流体区域离散化为一个个格子。

格子的大小可以根据需要进行调整。

2.分布函数:在每个格子中,引入分布函数来描述粒子的密度和速度。

分布函数是一个概率密度函数,表示在给定位置和速度的条件下,粒子在该位置具有该速度的概率。

3.碰撞模拟:在每个格子中,模拟粒子之间的碰撞。

根据碰撞模型,计算粒子之间的相互作用,并更新分布函数。

4.传输:根据速度和分布函数,计算粒子的传输过程。

传输过程描述了粒子从一个格子到另一个格子的流动。

5.边界条件:在模拟流体区域的边界上,需要设置适当的边界条件。

边界条件可以影响流体的流动模式。

6.时间步进:通过迭代计算,不断更新格子中的分布函数。

每个时间步长都对应着碰撞和传输的过程。

格子Boltzmann方法与其他常用的计算流体力学方法相比具有一些优势:1. 高效性:格子Boltzmann方法使用离散化格子的方式来模拟流体运动,计算量相对较小,能够高效地处理大规模流体问题。

2. 并行性:由于格子Boltzmann方法的计算是在各个格子之间进行的,因此可以方便地实现并行计算,利用多核处理器或分布式计算系统,加速计算速度。

3. 多尺度:格子Boltzmann方法可以在不同的尺度上进行模拟,从宏观的流体行为到微观的分子动力学。

4. 可分析性:格子Boltzmann方法建立在Boltzmann方程的基础上,可以通过对方程的分析来推导流体的宏观行为。

总结而言,格子Boltzmann方法是一种基于离散化格子的流体动力学模拟方法,通过计算碰撞和传输过程来模拟流体的运动。

1维格子boltzmann方法

1维格子boltzmann方法

1维格子boltzmann方法1维格子Boltzmann方法引言:1维格子Boltzmann方法是一种用于模拟粒子与固体表面相互作用的数值方法。

它基于Boltzmann方程和离散化的空间网格,通过模拟粒子在网格上的运动来研究物质的输运和反应过程。

本文将介绍1维格子Boltzmann方法的基本原理、数值实现以及应用领域。

一、基本原理1维格子Boltzmann方法的基本原理是通过离散化的空间网格,模拟粒子与固体表面相互作用的过程。

它基于Boltzmann方程,该方程描述了粒子在空间中的运动和碰撞过程。

通过将空间分为离散的格子点,并在每个格子点上计算粒子的运动和碰撞,可以得到粒子在空间中的分布和运动状态。

二、数值实现1维格子Boltzmann方法的数值实现包括以下几个步骤:1. 确定空间网格的大小和分辨率:根据模拟系统的尺寸和精度要求,确定空间网格的大小和分辨率。

2. 初始化粒子分布:根据初始条件,初始化粒子在空间中的分布。

可以根据需要设置不同的初始条件,如均匀分布、高斯分布等。

3. 计算粒子的运动:根据粒子在空间中的速度和位置,计算粒子的运动。

可以使用经典力学的运动方程或者基于概率的运动模型。

4. 计算粒子的碰撞:根据粒子之间的相互作用力和碰撞模型,计算粒子的碰撞过程。

可以使用经典力学的碰撞理论或者基于概率的碰撞模型。

5. 更新粒子分布:根据粒子的运动和碰撞过程,更新粒子在空间中的分布。

可以使用离散化的方法,将粒子的分布离散化到空间网格上。

6. 重复步骤3-5,直到达到模拟结束的条件。

三、应用领域1维格子Boltzmann方法在许多领域有着广泛的应用,包括材料科学、电子学、光学等。

以下是一些典型的应用案例:1. 材料表面反应:通过模拟粒子在材料表面的吸附、反应和解吸过程,可以研究材料的表面反应动力学和机理,从而优化材料的性能和制备工艺。

2. 电子输运:通过模拟电子在半导体器件中的输运过程,可以研究器件的电流特性和性能,从而优化器件设计和制造工艺。

格子玻尔兹曼方法

格子玻尔兹曼方法

格子玻尔兹曼方法格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种基于微观粒子动力学的计算流体力学方法,它是由美国物理学家Hardy-Pomeau-Zaleski和Frisch-Hasslacher-Pomeau两组独立研究小组在20世纪80年代末提出的。

LBM模拟流体的基本思想是将流体看作由大量微观粒子(或分子)组成的,这些微观粒子遵循玻尔兹曼方程描述的碰撞-漫射过程,从而实现对流体宏观宏观流动行为的模拟。

LBM的基本思想是在一个规则的空间网格上,通过碰撞和漫射过程来模拟流体的宏观运动。

在每个网格节点上,通过分布函数来描述流体粒子的密度和速度。

通过在每个时间步内,首先对流体粒子进行碰撞,然后进行漫射,来模拟流体的宏观运动。

这种方法不需要求解流体的宏观宏观运动方程,而是通过模拟微观粒子的运动来得到流体的宏观运动行为。

LBM的优势之一是其并行计算能力强,适合于在大规模并行计算机上进行流体动力学模拟。

另外,LBM还可以很容易地处理复杂的边界条件和多相流等问题,这使得它在工程领域得到了广泛的应用。

LBM的发展历程可以追溯到20世纪80年代末,当时,美国物理学家Hardy-Pomeau-Zaleski和Frisch-Hasslacher-Pomeau两组独立研究小组提出了这一方法。

随着计算机技术的不断进步,LBM在流体动力学领域得到了快速的发展。

目前,LBM已经成为了流体动力学研究领域的一个重要分支,得到了广泛的应用。

总的来说,LBM是一种基于微观粒子动力学的计算流体力学方法,它通过模拟流体微观粒子的碰撞和漫射过程来模拟流体的宏观运动行为。

LBM具有并行计算能力强、适合处理复杂边界条件和多相流等问题的优势,因此在工程领域得到了广泛的应用。

希望随着计算机技术的不断进步,LBM能够在工程实践中发挥更大的作用,为工程问题的解决提供更加有效的方法。

格子boltzmann方法模拟方形腔内纳米流体的自然对流

格子boltzmann方法模拟方形腔内纳米流体的自然对流

格子boltzmann方法模拟方形腔内纳米流体的自然对流格子Boltzmann方法是一种基于分子动力学的计算方法,用于模拟纳米尺度系统的自然对流现象。

自然对流是指由于温度梯度引起的流体的自发运动。

在方形腔内纳米流体的自然对流模拟中,格子Boltzmann方法可以提供高精度和高效率的计算结果。

格子Boltzmann方法的基本思想是通过模拟流体中分子的运动来计算流体的宏观性质。

它将流体视为由大量粒子组成的离散系统,通过迭代求解碰撞和分布函数来模拟流体的运动。

对于方形腔内纳米流体的自然对流模拟,格子Boltzmann方法可以分为以下几个步骤:1. 确定流体的初始状态:包括流体的密度分布、速度分布和温度分布等。

这些初始条件可以根据实验数据或者其他模拟结果进行设定。

2. 确定边界条件:对于方形腔内纳米流体,边界条件可以包括固定壁面、恒定温度或者固定速度等。

这些边界条件可以通过数学模型或者实验数据进行设定。

3. 确定碰撞模型:格子Boltzmann方法中的碰撞模型可以通过使用Boltzmann方程和碰撞积分来描述分子之间的相互作用。

这一步骤是模拟过程中最关键的一步,需要根据实际情况进行合理的设定。

4. 进行格子更新:在格子Boltzmann方法中,流场被离散化为格子,流体的宏观性质通过迭代更新格子上的分布函数来计算得到。

格子的更新可以采用Lattice Boltzmann方程进行计算。

5. 求解宏观性质:通过对流体的速度分布和温度分布进行统计,可以求解得到方形腔内纳米流体的宏观性质,如热流、质量流和压力等。

在方形腔内纳米流体的自然对流模拟中,格子Boltzmann方法可以提供高精度和高效率的计算结果。

与传统的数值模拟方法相比,格子Boltzmann方法具有计算量小、精度高、并行化程度高等优点。

此外,格子Boltzmann方法还可以考虑纳米尺度下的非平衡效应,对于纳米流体的自然对流现象具有较好的描述能力。

参考文献:1. Shan, X., & Luo, L. S. (1993). Numerical study of anisotropic permeability in random porous media. Physical Review E, 47(3), 1815.2. He, X., & Luo, L. (1997). Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physics Review E, 56(6), 6811.3. Guo, Z., Zheng, C., & Shi, B. (2002). Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65(4), 046308.4. Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Vol. 431). Oxford: Oxford University Press.。

格子玻尔兹曼方法

格子玻尔兹曼方法

格子玻尔兹曼方法
格子玻尔兹曼方法是一种用于模拟气体动力学的计算方法。

它通过将模拟区域划分为若干个小的格子,然后在每个格子中模拟气体分子的运动状态,来预测整个气体系统的宏观性质。

在格子玻尔兹曼方法中,每个格子内部的气体分子相互作用被表示为碰撞模型。

根据碰撞模型的不同,格子玻尔兹曼方法可以分为两类:老化型和多尺度型。

在老化型格子玻尔兹曼方法中,每个格子内的气体分子与周围格子内的分子发生碰撞,从而实现能量和动量的传递。

通过不断迭代,系统中的能量和动量逐渐趋于平衡状态。

而在多尺度型格子玻尔兹曼方法中,每个格子内部的气体分子被分为多个不同尺度的子格子,每个子格子内的分子与周围子格子内的分子进行碰撞。

这种方法可以更加准确地模拟气体分子的运动,但计算复杂度也更高。

格子玻尔兹曼方法的一个重要应用是在计算流体力学中。

它可以用来研究气体的流动、传热等问题。

由于该方法可以充分考虑气体分子间的相互作用,因此在研究微观尺度上的气体行为时具有一定的优势。

总的来说,格子玻尔兹曼方法是一种能够模拟气体动力学的计算方法,它通过将模拟区域划分为小的格子,模拟分子之间的碰撞来预测气体系统的宏观性质。

这种方法在计算流体力学中有广泛的应用。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

格子玻尔兹曼方法入门攻略
参考书1
格子Boltzmann方法的原理及应用(郭照立科学出版社)
格子Boltzmann方法的理论及应用(何雅玲王勇李庆编著科学出版社)
起步时不需要读得非常细,但要知道LBM是怎么回事,能解决什么问题。

这本书关于微尺度流动的进展涉及较少。

参考书2
数值分析孙志忠东南大学出版社(限于东南大学研究生,其他学校可参考类似图书)
研究生必修课程之教科书,要知道数值计算基本方法,掌握偏微分方程的基本解法。

参考书3
流体动力学人民教育出版社[美] J.W.戴莱等
这本书比较老,可能借不到。

可以去图书馆借一本较老的流体力学书看一看,了解流体力学基本知识。

理解流体、流动、黏性等基本概念以及Euler方程、Navier-Stokes方程等。

参考书4
[美] S.V.帕坦卡著传热和流体流动的数值方法安徽科学技术出版社
可称为数值传热学和计算流体力学经典入门教材。

阅读此书,学习传热问题、对流扩散、边界条件......认真学习第4章之后的内容。

可参考书中离散方程,编程实现一维、二维、三维传热和扩散问题。

****************
预备知识
学会使用Visual Studio 2010或更新版本C++编译器编程。

学会使用tecplot、paraview、gnuplot、sigmaplot等软件进行数据可视化。

初级阶段
第一步:能够编程实现一维和二维传热或扩散问题的计算,只计算传热不考虑源项。

第二步:能够编程关于传热和扩散问题的实现三类边界条件,并深刻相关物理意义。

第三步:能够编程实现温度回升法、等效热熔法和焓方法计算包含潜热释放的问题。

中级阶段
第四步:参考郭照立教授、何雅玲院士的书,编程实现单松弛LBM程序计算流场,周期性边界。

第五步:理解并掌握LBM边界条件处理格式,能够实现Newmann边界与Dirichlet边界,能够计算Poiseuille流、Coutte流及顶盖驱动流。

第六步:结合LBM流场计算程序,编程实现LBM计算对流扩散方程,起步时采用周期边界且不包含源项。

高级阶段
第七步:结合LBM流场计算程序,参考郭照立的书或文章,编程开发包含外力项的LBM程序。

第八步:以LBM对流扩散程序为基础,参考LBM书或文章,编程开发包含源项对流扩散程序。

第九步:结合LBM计算对流扩散方程,引入Boussinesq假设,实现描述自然对流的LBM程序。

要点:
谦虚谨慎、戒骄戒躁,问题驱动、重在实战。

学而时习之:边动手边看书,充分利用网络。

必须掌握二维输运问题的单松弛LBM,复杂问题可将来探索。

最快的人一个月不到就能上手,慢则几年都不得其门而入。

入门之后,就可以深入学习相关理论与方法,从国际领先的一流科学家那里汲取营养。

孙东科
2017年11月23日。

相关文档
最新文档