函数的基本性质题型讲解

合集下载

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。

高常考题—函数的性质(含解析)

高常考题—函数的性质(含解析)

函数的性质一、题型选讲题型一 、 函数的奇偶性正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.填空题,可用特殊值法解答,但取特值时,要注意函数的定义域.例1、(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x --D .2x例2、(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15例3、(2020届浙江省台州市温岭中学3月模拟)若函数()2ln 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()1f x <的x 的取值范围为( ) A .11,1e e -⎛⎫- ⎪+⎝⎭B .10,1e e -⎛⎫⎪+⎝⎭C .1,11e e -⎛⎫⎪+⎝⎭D .11,(1,)1e e -⎛⎫-⋃+∞ ⎪+⎝⎭例4、【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =题型二、函数的单调性已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减.例5、(江苏省如皋市2019-2020学年高三上学期10月调研)已知函数22,1()1,1ax x x f x ax x ⎧+≤=⎨-+>⎩在R 上为单调増函数,则实数a 的取值范围为________.例6、函数()()212log 4f x x =-的单调递增区间是例7、(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.题型三、 函数的周期性1、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期2、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a = (3)()()()1f x a f x f x +=⇒的周期2T a = (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a = (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =例8、(2019通州、海门、启东期末)已知函数f(x)的周期为4,且当x ∈(0,4]时,f(x)=⎩⎨⎧cos πx 2,0<x≤2,log 2⎝⎛⎭⎫x -32,2<x≤4.则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12的值为________.例9、(2017南京三模)已知函数f (x )是定义在R 上且周期为4的偶函数. 当x ∈[2,4]时,f (x )=|log 4(x -32)|,则f (12)的值为 ▲ .题型四 函数的对称性函数的对称性要注意一下三点:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。

专题11 函数的基本性质(奇偶性)(解析版)

专题11 函数的基本性质(奇偶性)(解析版)

专题11函数的基本性质(奇偶性)函数的奇偶性[知识点拨]由于f (x )和f (-x )须同时有意义,所以奇、偶函数的定义域关于原点对称. (2)奇、偶函数的对应关系的特点.①奇函数有f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1(f (x )≠0);②偶函数有f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1(f (x )≠0).(3)函数奇偶性的三个关注点.①若奇函数在原点处有定义,则必有f (0)=0.有时可以用这个结论来否定一个函数为奇函数;②既是奇函数又是偶函数的函数只有一种类型,即f (x )=0,x ∈D ,其中定义域D 是关于原点对称的非空集合;③函数根据奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数. (4)奇、偶函数图象对称性的应用.①若一个函数的图象关于原点对称,则这个函数是奇函数; ②若一个函数的图象关于y 轴对称,则这个函数是偶函数.重要考点一:函数奇偶性的判断【典型例题】根据定义,判断下列函数的奇偶性: (1)()52f x x =-;(2)g (x )=x 4+2;(3)21()h x x =;(4)1()2m x x =+. 【答案】(1)奇函数;(2)偶函数;(3)偶函数;(4)既不是奇函数,也不是偶函数. 【解析】(1)依题意知函数()52f x x =-的定义域为R ,且对任意的x ∈R ,有()()()5522f x x x f x -=--==-,所以函数()52f x x =-是奇函数;(2)依题意知函数()42g x x=+的定义域为R ,且对任意的x ∈R ,有()()()4422g x x x g x -=-+=+=,所以函数()42g x x=+是偶函数;(3)依题意知函数21()h x x=的定义域为{|0}x x ≠, 且对任意的{|0}x x x ∈≠,有()2211()()h x h x x x -===-, 所以函数21()h x x =是偶函数; (4)函数1()2m x x =+的定义域为{|2}x x ≠-,定义域不关于原点对称,所以函数1()2m x x =+既不是奇函数,也不是偶函数.【题型强化】1.判断下列函数的奇偶性. (1)f (x )=2x +1x; (2)f (x )=2-|x |; (3)f (x )(4)f (x )=1x x -. 【答案】(1)奇函数;(2)偶函数;(3)既是奇函数又是偶函数;(4)非奇非偶函数. 【解析】(1)因为函数f (x )的定义域是{x |x ≠0},关于原点对称, 又f (-x )=-2x +1x -=-12⎛⎫+ ⎪⎝⎭x x =-f (x ).∴f (x )为奇函数.(2)∵函数f (x )的定义域为R ,关于原点对称, 又f (-x )=2-|-x |=2-|x |=f (x ),∴f (x )为偶函数. (3)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(4)显然函数f (x )的定义域为{x |x ≠1},不关于原点对称, ∴f (x )是非奇非偶函数. 2.判断函数f (x )=x +ax(a 为常数)的奇偶性,并证明你的结论. 【答案】()f x 为奇函数,证明见解析.【解析】()f x 为奇函数,证明如下:()f x 的定义域为{x|x≠0}.对于任意x≠0,()()a a f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭,∴()f x 为奇函数. 【名师点睛】 判断函数奇偶性的方法 (1)定义法:(2)图象法:即若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y 轴对称,则函数为偶函数.此法多用在解选择题、填空题中.重要考点二:奇、偶函数图象的应用【典型例题】已知函数f (x )是定义在R 上的奇函数,且当x <0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象如图所示,(1)画出函数f (x ),x ∈R 剩余部分的图象,并根据图象写出函数f (x ),x ∈R 的单调区间;(只写答案) (2)求函数f (x ),x ∈R 的解析式.【答案】(1)图象见解析;递减区间为(﹣∞,﹣1],[1,+∞);增区间为(﹣1,1);(2)f (x )222020x x x x x x ⎧+≤=⎨-+⎩,,>.【解析】(1)根据题意,函数f (x )是定义在R 上的奇函数,则其图象如图: 其递减区间为(﹣∞,﹣1],[1,+∞); 增区间为(﹣1,1);(2)根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,满足f (x )=x 2+2x ; 当x >0时,则﹣x <0,则f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x , 又由函数f (x )是定义在R 上的奇函数,则f (x )=﹣f (﹣x )=﹣x 2+2x ,综上:f (x )222020x x x x x x ⎧+≤=⎨-+⎩,,>.【题型强化】1.已知奇函数f (x )定义域为[-5,5]且在[0,5]上的图象如图所示,求使f (x )<0的x 的取值范围.【答案】()(]3,03,5-【解析】由题可知:函数是[-5,5]上的奇函数,则函数在[-5,5]上图象如下:所以f (x )<0的解集为()(]3,03,5-2.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()22f x x x =-. (1)求()f x 的解析式;(2)作出函数()f x 的图象并求出单调增区间.【答案】(1)()222,02,0x x x f x x x x ⎧--<=⎨-≥⎩;(2)图象见解析,单调递增区间为(),1-∞-和()1,+∞.【解析】(1)当0x ≥时,()22f x x x =-.当0x <时,0x ->,则()()()2222f x x x x x -=--⨯-=+.因为函数()y f x =是R 上的奇函数,则()()22f x f x x x=--=--.因此,()222,02,0x x x f x x x x ⎧--<=⎨-≥⎩;(2)函数()y f x =的图象如下图所示:由图象可知,函数()y f x =的单调递增区间为(),1-∞-和()1,+∞.【名师点睛】1.研究函数图象时,要注意对函数性质的研究,这样可避免作图的盲目性和复杂性. 2.利用函数的奇偶性作图,其依据是奇函数图象关于原点对称,偶函数图象关于y 轴对称.重要考点三:利用函数的奇偶性求解析式【典型例题】若函数()21x ax b f x x +=++在[]1,1-上是奇函数,则()f x 的解析式为______. 【答案】()21xf x x =+ 【解析】()f x 在[]1,1-上是奇函数,()00f ∴=,0a ∴=,()21xf x x bx ∴=++.又()()11f f -=-,1122b b -∴=--+,即0b =,()21x f x x ∴=+. 【题型强化】1.已知函数()y f x =是定义在R 上的奇函数,且0x ≥时,2()2f x x x =-,则0x <时,()f x =________【答案】22x x --【解析】设0x <,则0x ->,所以()22()22f x x x x x -=-+=+,又因为()()f x f x -=-,所以2()2f x x x -=+,所以()f x =22x x --. 故答案为:22x x --2.已知函数()223px f x q x +=-是奇函数,且()523f =-,则函数()f x 的解析式()f x =________.【答案】2223x x+-【解析】奇函数()y f x =的定义域为,,33q q ⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,关于原点对称,所以03q=,得0q =,故()223px f x x +=-,又()523f =-,即42563p ⨯+=--,得2p =, 因此()22222233x x x x f x ++=--=.故答案为2223x x+-. 【名师点睛】利用函数奇偶性求函数解析式利用函数奇偶性求函数解析式的关键是利用奇偶函数的关系式f (-x )=-f (x )或f (-x )=f (x )成立,但要注意求给定哪个区间的解析式就设这个区间上的变量为x ,然后把x 转化为-x (另一个已知区间上的解析式中的变量),通过适当推导,求得所求区间上的解析式.重要考点四:忽略函数奇偶性对定义域的限制条件导致判断错误【典型例题】已知定义在[3,3]-上的函数()y f x =是增函数. (1)若(1)(21)f m f m +>-,求m 的取值范围;(2)若函数()f x 是奇函数,且(2)1f =,解不等式(1)10f x ++>.【答案】(1)[1,2)-;(2){32}xx -<∣. 【解析】(1)由题意可得,3133213121m m m m -≤+≤⎧⎪-≤-≤⎨⎪+>-⎩,求得12m -<,即m 的范围是[1,2)-.(2)∵函数()f x 是奇函数,且(2)1f =,∴(2)(2)1f f -=-=-,∵(1)10f x ++>,∴(1)1f x +>-,∴(1)(2)f x f +>-,∴12313x x +>-⎧⎨-≤+≤⎩,∴32x -<≤.∴不等式的解集为{32}xx -<∣. 【题型强化】1.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)用定义法证明函数()f x 的单调性;(3)若()()210f m f m +->,求实数m 的取值范围. 【答案】(1)()21x f x x =+(2)证明见解析(3)113m << 【解析】(1)由题意可得:()001242255fb a bf ⎧==⎪+⎨⎛⎫== ⎪⎪⎝⎭⎩,解得:1a b =⎧⎨=⎩.即()21xf x x =+(2)证明:设1211x x -<<<()()()()()()121212122222*********x x x x x x f x f x x x x x ---=-=++++因为1211x x -<<<,所以120x x -<,1210x x -> 所以()()120f x f x -<,即()()12f x f x < 故()f x 在()1,1-上是增函数(3)()()210f m f m +->,即()()()2112f m f m f m >--=-所以11121112m m m m-<<⎧⎪-<-<⎨⎪>-⎩,解得:113m <<2.定义在[]22-,上的偶函数()f x ,当[]2,0x ∈-时()f x 单调递增,设()()1f m f m -<,求m 的取值范围.【答案】112m -≤< 【解析】解:()f x 是定义在[]2,2-上的偶函数, 又()()1f m f m -<,∴ ()()1f m f m -<又当[]2,0x ∈-时()f x 单调递增∴当[]0,2x ∈时单调递减.而10,0,1,m m m m -≥≥∴->()22212221m m m m⎧-≤-≤⎪⎪∴-≤≤⎨⎪->⎪⎩ 解得112m -≤<即所求m 的取值范围为11,2⎡⎫-⎪⎢⎣⎭.【名师点睛】1.函数y =f (x )是奇函数或偶函数的一个必不可少的条件是定义域关于原点对称. 2.确定函数的定义域时,要针对函数的原解析式.重要考点五:逻辑推理与转化思想的应用——再谈恒成立问题【典型例题】已知函数2()(1)|2|()f x x a x a a R =++++∈.(1)写出一个奇函数()g x 和一个偶函数()h x ,使()f x =()g x +()h x ; (2) 若()()h x g x ≥对于任意的x ∈R 恒成立,求实数a 的取值范围.【答案】(1)2()|2|h x x a =++,()(1)g x a x =+;(2){}13⎡-+⋃-⎣.【解析】(1)由奇偶函数的特征由2()(1)|2|()f x x a x a a R =++++∈的函数特征可知2yx 是偶函数,()1y a x =+是奇函数,2y a =+是偶函数,∴奇函数()g x 是()()1g x a x =+,偶函数2()|2|h x x a =++;(2)由(1)可知()221xa a x ++≥+恒成立,即()2120x a x a -+++≥恒成立,()21420a a ∆=+-+≤ ,即()2124a a ++≥ ()2124a a +⇒+≥或()2124a a ++≤-整理为2270a a --≤或2690a a ++≤,解得:11a -≤+3a=-,∴a的取值范围是{}13⎡-+⋃-⎣【题型强化】1.已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若,[1,1]αβ∈-,0αβ+≠时,都有()()0f f αβαβ+>+.(1)解关于x 的不等式()21(33)0f x f x -+-<;(2)若对任意[1,1]x ∈-,[1,1]a ∈-,不等式2()21f x t at ≤-+恒成立,求实数t 的取值范围. 【答案】(1)41,3x ⎛⎤∈ ⎥⎝⎦(2)2t ≥或2t ≤-或0t =【解析】(1)因为()f x 是定义在[1,1]-上的奇函数,故任取1211x x ,则()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=--,1211x x -≤<≤,()120x x ∴+-≠,故有()()12120f x f x x x +->-,120x x -<,()()120f x f x ∴-<,即()f x 在[1,1]-上是增函数,因为()f x 是定义在[1,1]-上的奇函数,且在[1,1]-上是增函数,不等式可()21(33)0f x f x -+-<化为()21(33)f x f x -<-,所以221331111331x x x x ⎧-<-⎪-≤-≤⎨⎪-≤-≤⎩,解得41,3x ⎛⎤∈ ⎥⎝⎦;(2)由(1)知()f x 在[1,1]-上是增函数,所以()f x 在[1,1]-上的最大值为(1)1f =, 要使2()21f x t at ≤-+对任意[1,1]x ∈-,[1,1]a ∈-恒成立,只要2221120t at t at -+≥⇒-≥,设2()2g a t at =-,因为对任意[1,1]a ∈-,()0g a ≥恒成立,所以22(1)20(1)20g t t g t t ⎧-=+≥⎨=-≥⎩解得2t ≥或2t ≤-或0t =. 2.已知()f x 是定义在[1,1]-上的奇函数且单调递增,(1)1f =. (1)解不等式:1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (2)若2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 的取值范围. 【答案】(1)3,12⎡⎫--⎪⎢⎣⎭;(2)(]{}[),202,-∞-+∞【解析】(1)()f x 为定义在[]1,1-上的增函数,∴由1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭得:111211111121x x x x ⎧-≤+≤⎪⎪⎪-≤≤⎨-⎪⎪+<⎪-⎩,解得:312x -≤<-, ∴不等式1121f x f x ⎛⎫⎛⎫+<⎪ ⎪-⎝⎭⎝⎭的解集为3,12⎡⎫--⎪⎢⎣⎭. (2)()f x 为定义在[]1,1-上的增函数且()11f =,()1f x ∴≤,∴要使()221f x t at ≤-+对所有[]1,1x ∈-,[]1,1a ∈-恒成立,只需2211t at -+≥对[]1,1a ∈-恒成立,即220t at -≥恒成立.设()22g a t at =-,则只需()0g a ≥恒成立,即()min 0g a ≥.当0t =时,()0g a =,满足题意;当0t >时,()g a 在[]1,1-上单调递减,则()()2min 120g a g t t ==-≥,解得:2t ≥;当0t <时,()g a 在[]1,1-上单调递增,则()()2min 120g a g t t =-=+≥,解得:2t ≤-.综上所述:t 的取值范围为(]{}[),202,-∞-+∞.【名师点睛】1.在我们数学研究中,存在大量的恒成立问题,如:(1)f (x )在区间D 上单调递增,则对任意x 1,x 2∈D ,当x 1<x 2时,f (x 1)<f (x 2)恒成立;(2)若f (x )是奇函数,定义域为M ,则f (-x )=-f (x )对任意x ∈M 恒成立;若f (x )是偶函数,定义域为M ,则对任意x ∈M ,f (-x )=f (x )恒成立;(3)若f (x )的最大值为M ,最小值为m ,定义域为A ,则对任意x ∈A ,有m ≤f (x )≤M . 解答这类问题时,应充分利用其恒成立的特点选取解答方法.2.遇到f (-x )与f (x )的关系问题时,应首先从函数f (x )的奇偶性入手考虑,如果f (x )不具有奇偶性,看是否存在奇(偶)函数g (x ),使f (x )用g (x )表示,再利用g (x )的奇偶性来解答.课后练习1.若函数()222,0,0x x x f x x ax x ⎧-≥=⎨-+<⎩为奇函数,则实数a 的值为( )A .2B .2-C .1D .1-【答案】B 【解析】()f x 为奇函数 ()()f x f x ∴-=-当0x <时,0x -> ()()()2222f x f x x x x x ∴=--=-+=--又0x <时,()2f x x ax =-+ 2a ∴=-,本题正确选项:B2.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xfx <的解集为( )A .(1,2)B .(2,1)--C .(2,1)(1,2)--⋃D .(1,1)-【答案】C【解析】由图像可知在0x ≥时,在()()012+∞,,,()0f x >;在(1,2),()0f x <; 由()f x 为奇函数,图象关于原点对称,在0x <时,在()(),21,0∞-⋃--,()0f x <;在(2,1)--,()0f x >;又()y xfx =,在0x ≥时与()y f x =同号,在0x <时与()y f x =异号 故不等式()0xfx <的解集为:(2,1)(1,2)--⋃,故选:C3.已知定义在R 上的奇函数()f x ,对任意实数x ,恒有()()3f x f x +=-,且当30,2x ⎛⎤∈ ⎥⎝⎦时,()268f x x x =-+,则()()()()0122020f f f f +++⋅⋅⋅+=( )A .6B .3C .0D .3-【答案】B【解析】由题得()()6[(3)3]3[()]()f x f x f x f x f x +=++=-+=--=,所以函数的周期为6. 由题得(0)0,(1)1683,f f ==-+=(2)(2)(23)(1)3f f f f =--=-+==,(3)(3)(33)(0)f f f f =--=-+=,(4)(4)(43)(1)(1)3f f f f f =--=-+=-=-=-, (5)(5)(53)(2)(2)3f f f f f =--=-+=-=-=-所以(0)(1)(2)(3)(4)(5)0f f f f f f +++++=, 所以()()()()0122020f f f f +++⋅⋅⋅+=336[(0)(1)(2)(3)(4)(5)](0)(1)(2)(3)(4)3f f f f f f f f f f f ++++++++++=.故选:B.4.下列函数中,是偶函数,且在(],0-∞上是增函数的是( ) A .12y x = B .2y xC .3y x =D .,0,0x x y x x -≥⎧=⎨<⎩【答案】D【解析】A .定义域为[)0,+∞,不关于原点对称,故不符合;B .定义域为R 关于原点对称,()()()22f x x x f x -=-==,所以是偶函数,在(],0-∞上是减函数,不符合;C .定义域为R 关于原点对称,()()()33f x x x f x -=-=-=-,所以是奇函数,不符合; D .定义域为R 关于原点对称,当0x ≥时,()()f x x f x =-=-,当0x <时,()()f x x f x ==-,所以()f x 是偶函数,(],0x ∈-∞时,()f x x =是增函数,符合.故选:D.5.如果奇函数()f x 在区间[]3,7上是增函数且最小值为5,那么它在区间[]7,3--上是( ) A .增函数且最小值为5- B .增函数且最大值为5- C .减函数且最小值为5- D .减函数且最大值为5-【答案】B【解析】任取1x 、[]27,3x ∈--,且12x x <,即1273x x -≤<≤-,则2137x x ≤-<-≤,由已知,奇函数()y f x =在区间[]3,7上是增函数,则()()12f x f x ->-,即()()12fx f x ->-,()()12f x f x ∴<,所以,函数()y f x =在区间[]7,3--上是增函数,对任意的[]7,3x ∈--,[]3,7x -∈,由题意,()5f x -≥,可得()5f x -≥,则有()5f x ≤-,所以,函数()y f x =在区间[]7,3--上有最大值5-.故选:B.6.已知偶函数()f x 在区间[)0,+∞上的解析式为()1f x x =+,下列大小关系正确的是( )A .()()12f f >B .()()12f f >-C .()()12f f ->-D .()()12f f -<【答案】D【解析】因为偶函数()f x 在区间[)0,+∞上的解析式为()1f x x =+所以得到()f x 在[)0,+∞上单调递增,在(],0-∞上单调递减,所以()()12f f <,所以A 选项错误;因为()f x 为偶函数,所以()()22f f -=, 所以()()()122f f f <=-,所以B 选项错误;因为()()()()1122f f f f -=<=-,所以C 选项错误; 因为()()()112f f f -=<,所以D 选项正确.故选:D.7.设函数3()1f x ax bx =+-,且(1)3f -=,则(1)f 等于( ) A .3- B .3 C .5- D .5【答案】C【解析】令3()g x ax bx =+,则3()()g x ax bx g x -=--=-,所以3()g x ax bx =+是奇函数, 又()()1113f g -=--=,所以()14g -=,所以()()()111115f g g =-=---=-. 故选:C.8.已知定义在R 上的函数()f x 满足:()2()f x f x =--,且函数(1)f x +是偶函数,当[]1,0x ∈-时,2()1f x x =-,则20203f ⎛⎫= ⎪⎝⎭________.【答案】139【解析】因为函数()f x 满足:()2()f x f x =--,且函数(1)f x +是偶函数,所以(1)(1)2f x f x ++--=,且(1)(1)f x f x +=-+,可得(1)(1)2f x f x -++--=,即(1)(1)2f x f x ++-=所以(2)()2f x f x ++=…①,(4)(2)2f x f x +++=…② ②-①,可得 (4)()f x f x +=,即()f x 是周期为4的周期函数;4420201684333f f f ⎛⎫⎛⎫⎛⎫=⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又1151311223333394922f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=-==--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以 20203319f ⎛⎫=⎪⎝⎭.故答案为:139. 9.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()11f =-,则满足()111f x -≤-≤的x 的取值范围是_________. 【答案】[]0,2【解析】函数()y f x =是R 上的奇函数,则()()111f f -=-=,由()111f x -≤-≤可得()()()111f f x f ≤-≤-,由于函数()y f x =在R 上单调递减,则111x -≤-≤,解得02x ≤≤. 因此,满足()111f x -≤-≤的x 的取值范围是[]0,2.故答案为:[]0,2.10.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,()12x f x -=,有下列命题:①2是函数()f x 的周期;②函数()f x 在()2,3上是增函数;③函数()f x 的最大值是1,最小值是0;④直线2x =是函数()f x 图象的一条对称轴.其中所有正确命题的序号是__________.【答案】①②④【解析】用1x +换()()11f x f x =+-中的x ,得()()2f x f x +=,所以()f x 是以2为周期的周期函数,故①正确;又函数()f x 是定义在R 上的偶函数且[]0,1x ∈时,()12x f x -=,作出函数()f x 的部分图象如图所示由图知,函数()f x 在()2,3上是增函数,故②正确;函数()f x 的最大值是1,最小值是12, 故③错误;直线2x =是函数()f x 图象的一条对称轴,故④正确. 故答案为:①②④11.已知函数()f x 为奇函数且(1)2f =,求(-1)f =_______. 【答案】﹣2【解析】函数()y f x =是奇函数,且(1)2f =,则()(-1)=12f f -=-.故答案为:﹣2. 12.已知()f x x x =,若()()()220f x m m f x m -≤>对任意1x ≥恒成立,则实数m 的取值范围为____________. 【答案】[)1,+∞【解析】()f x x x =的定义为R ,关于原点对称,()()()f x x f x x x x =---=--=.()f x ∴为定义在R 上的奇函数.当0x >时,()2f x x x x ==,在()0,∞+上单调递增.()f x ∴为定义在R 上的增函数.0m >()()22m f x m x x mx mx f mx ∴===()()()()220f x m m f x f mx m -≤=>2x m mx ∴-≤,即()120m x m --≤,设()()()12,1g x m x m x =--≥若()()()220f x m m f x m -≤>对任意1x ≥恒成立.则需()()0,1g x x ≤≥恒成立.当1m =时,在[)1,+∞上()10g x =-≤恒成立当1m <时,()g x 在[)1,+∞上单调递增,则不满足题意,舍去当1m 时,()g x 在[)1,+∞上单调递减,则需()1130g m =-≤解得13m ≥,即1m综上所述:m 1≥。

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结一、知识归纳1.函数的奇偶性2.函数的周期性(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.解题提醒:①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.题型一 函数奇偶性的判断典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1)1-x1+x; (2)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0;(3)f (x )=4-x 2x 2;(4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x1+x ≥0,所以-1<x ≤1,所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法)当x >0时,f (x )=-x 2+2x +1,-x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1,-x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).所以f (x )为奇函数. 法二:(图象法)作出函数f (x )的图象,由奇函数的图象关于原点对称的特征知函数f (x )为奇函数.(3)因为⎩⎨⎧4-x 2≥0,x 2≠0,所以-2≤x ≤2且x ≠0,所以定义域关于原点对称. 又f (-x )=4-(-x )2(-x )2=4-x 2x 2,所以f (-x )=f (x ).故函数f (x )为偶函数. (4)函数的定义域为R , 因为f (-x )+f (x ) =log a [-x +(-x )2+1]+log a (x +x 2+1)=log a (x 2+1-x )+log a (x 2+1+x )=log a [(x 2+1-x )(x 2+1+x )]=log a (x 2+1-x 2)=log a 1=0, 即f (-x )=-f (x ),所以f (x )为奇函数.通性通法:判定函数奇偶性的3种常用方法 (1)定义法(2)图象法(3)性质法①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.题型二 函数的周期性典型例题(1)已知函数f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,若对任意的n ∈N *,定义f n (x )=f {f [f …n 个f (x )]},则f 2 019(2)的值为( )A.0B.1C.2 D.3(2)设定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x-x2,则f(0)+f(1)+f(2)+…+f(2 019)=________.解析:(1)∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,∴f n(2)的值具有周期性,且周期为3,∴f2 019(2)=f3×673(2)=f3(2)=2,故选C.(2)∵f(x+2)=f(x),∴函数f(x)的周期T=2,∵当x∈[0,2)时,f(x)=2x-x2,∴f(0)=0,f(1)=1,∴f(0)=f(2)=f(4)=…=f(2 018)=0,f(1)=f(3)=f(5)=…=f(2 019)=1.故f(0)+f(1)+f(2)+…+f(2 019)=1 010.答案:(1)C(2)1 010通性通法:1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a.(2)若f(x+a)=1f(x),则T=2a.(3)若f(x+a)=-1f(x),则T=2a(a>0).题型三函数性质的综合应用函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.角度一:奇偶性的应用1.函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=()A.-2x B.2-xC.-2-x D.2x解析:选C x>0时,-x<0,∵x<0时,f(x)=2x,∴当x>0时,f(-x)=2-x.∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-2-x.故选C.角度二:单调性与奇偶性结合2.已知f(x)为奇函数,且当x>0时,f(x)单调递增,f(1)=0,若f(x-1)>0,则x的取值范围为()A.{x|0<x<1或x>2}B.{x|x<0或x>2}C.{x|x<0或x>3} D.{x|x<-1或x>1}解析:选A因为函数f(x)为奇函数,所以f(-1)=-f(1)=0,又函数f(x)在(0,+∞)上单调递增,所以可作出函数f(x)的示意图,如图,则不等式f(x-1)>0可转化为-1<x-1<0或x-1>1,解得0<x<1或x>2.角度三:周期性与奇偶性结合3.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为()A.(-∞,-3) B.(3,+∞)C.(-∞,-1) D.(1,+∞)解析:选D∵f(x+3)=f(x),∴f(x)是定义在R上的以3为周期的函数,∴f(7)=f(7-9)=f(-2).又∵函数f(x)是偶函数,∴f(-2)=f(2),∴f(7)=f(2)>1,∴a>1,即a∈(1,+∞).角度四:单调性、奇偶性与周期性结合4.定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,2)上单调递减,则下列结论正确的是()A.0<f(1)<f(3) B.f(3)<0<f(1)C.f(1)<0<f(3) D.f(3)<f(1)<0解析:选C由函数f(x)是定义在R上的奇函数,得f(0)=0.由f(x+2)=-f(x),得f(x+4)=-f(x+2)=f(x),故函数f(x)是以4为周期的周期函数,所以f(3)=f(-1).又f(x)在[0,2)上单调递减,所以函数f(x)在(-2,2)上单调递减,所以f(-1)>f(0)>f(1),即f(1)<0<f(3).故选C.通性通法:函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.。

题型七函数的基本性质(复习讲义)(原卷版)

题型七函数的基本性质(复习讲义)(原卷版)

题型七函数的基本性质(复习讲义)【考点总结|典例分析】考点01一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时, y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.2.一次函数的图象特征与性质(1)一次函数的图象≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.1.已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2 B.y x+2 C.y=4x+2 D.y=3x+22.如图,在平面直角坐标系中,直线l 1:y=与x 轴,y 轴分别交于点A 和点B ,直线l 2:y=kx (k ≠0)与直线l 1在第一象限交于点C .若∠BOC=∠BCO ,则k 的值为( )A B C D .3.如图,在平面直角坐标系中,点A ,C 分别在x 轴、y 轴上,四边形ABCO 是边长为4的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP ,AP ,当点P 满足DP+AP 的值最小时,直线AP 的解析式为_____.4.如图,在平面直角坐标系中,直线3y x =-+过点(5,)A m 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与2y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.考点02反比例函数 一、反比例函数的概念1.反比例函数的概念:一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数. 2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围 自变量x 和函数值y 的取值范围都是不等于0的任意实数. 二、反比例函数的图象和性质 1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k|;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.1.反比例函数经过点,则下列说法错误..的是( ) A .B .函数图象分布在第一、三象限C .当时,随的增大而增大D .当时,随的增大而减小2.一次函数与反比例函数在同一坐标系中的图象可能是( )ky x=(2,1)2k =0x >y x 0x >y x y ax a =-(0)ay a x=≠A .B .C .D .3.如图,平行四边形的顶点在轴的正半轴上,点在对角线上,反比例函数的图像经过、两点.已知平行四边形的面积是,则点的坐标为( )A .B .C .D . 4.如图,点,点都在反比例函数的图象上,过点分别向轴、轴作垂线,垂足分别为点,.连接,,.若四边形的面积记作,的面积记作,则( )A .B .C .D .5.如图,直线与反比例函数的图象交于A ,B 两点,已知点A 的坐标为,的面积为8.(1)填空:反比例函数的关系式为_________________;(2)求直线的函数关系式;(3)动点P 在y 轴上运动,当线段与之差最大时,求点P 的坐标.OABC A x ()3,2D OB ()0,0k y k x x =>>C D OABC 152B 84,3⎛⎫ ⎪⎝⎭9,32⎛⎫ ⎪⎝⎭105,3⎛⎫⎪⎝⎭2416,55⎛⎫⎪⎝⎭(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =AB (0)k y x x =>()6,1AOB AB PA PB6.如图,一次函数的图象与反比例函数的图象相交于,两点.(1)求一次函数和反比例函数的表达式;(2)直线交轴于点,点是轴上的点,若的面积是,求点的坐标.考点03二次函数一、二次函数的概念:一般地,形如y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0).(2)顶点式:y=a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ). (3)交点式:y=a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.三、二次函数的图象及性质 1.二次函数的图象与性质y kx b =+my x=()1,2A (),1B n -AB x C P x ACP △4P开口向上开口向下四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h) 2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0)2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.1.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0 B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C .a =23m + D .点P 1(t ,y 1),P 2(t+1,y 2)在抛物线上,当实数t >13时,y 1<y 2 3.二次函数y=x 2的图象平移后经过点(2,0),则下列平移方法正确的是( )A .向左平移2个单位,向下平移2个单位B .向左平移1个单位,向上平移2个单位C .向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位4.下列关于二次函数22()1y x m m =--++(m 为常数)的结论,①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是__________.5.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①ab >0;②a+b ﹣1=0;③a >1;④关于x 的一元二次方程ax 2+bx+c =0的一个根为1,另一个根为﹣1a.其中正确结论的序号是_____.6.已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;7.已知抛物线与轴有两个不同的交点.(1)求的取值范围;(2)若抛物线224y x x c =-+x c经过点和点,试比较与的大小,并说明理由.224y x x c =-+()2,A m ()3,B n m n。

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的基本性质

函数的基本性质

函数的基本性质一.函数的单调性:1. 定义:设D 为函数)(x f 定义域的子集。

对任意的D ,21∈x x 且21x x <时,都有⇔>--⇔>--⇔<0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是增加的。

对任意的D ,21∈x x 且21x x <时,都有⇔<--⇔<--⇔>0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是减少的。

2. 图像特点:自左向右看图像是上升的。

(图像在此区间上是增加的) 自左向右看图像是下降的。

(图像在此区间上是减少的)3.判断函数单调性的方法:(1)图像法:作出函数图像,由图像直观判断求解,只能用于判断。

(数形结合) 解题程序:解析式-----图像-----单调区间(2)性质法:需要先记清基本初等函数的单调性。

高中基本初等函数:一次函数:)0(≠+=k b kx y ,二次函数:)0(2≠++=a c bc ax y 反比例函数:)0(≠=k x k y ,简单幂函数:3,2,21,1,1)(-=∈=αααR x y 指数函数:)10(≠>=a a a y x 且,对数函数:)10(log ≠>=a a x y a 且, “对勾”函数:)0(>+=a x ax y①a x f y +=)(与)(x f y =的单调性相同。

②当0>a 时,函数)(x af y =与)(x f y =的单调性相同;当0<a 时,函数)(x af y =与)(x f y =的单调性相反;③在公共定义域内,增函数)(x f +增函数)(x g 是增函数, 减函数)(x f +减函数)(x g 是减函数;增函数)(x f -减函数)(x g 是增函数,减函数)(x f -增函数)(x g是减函数;④两函数积的单调性:当)(x f ,)(x g 在公共区间上都是增(减)函数。

题型02 函数的4大基本性质解题技巧(单调性、奇偶性、周期性、对称性)(解析版)

题型02 函数的4大基本性质解题技巧(单调性、奇偶性、周期性、对称性)(解析版)

题型02函数的4大基本性质解题技巧(单调性、奇偶性、周期性、对称性)技法01函数单调性的应用及解题技巧知识迁移1.同一定义域内①增函数(↗)+增函数(↗)=增函数↗ ②减函数(↘)+减函数(↘)=减函数↘③)(x f 为↗,则)(x f -为↘,)(1x f 为↘ ④增函数(↗)-减函数(↘)=增函数↗⑤减函数(↘)-增函数(↗)=减函数↘ ⑥增函数(↗)+减函数(↘)=未知(导数)2.复合函数的单调性()()()()()()结论:同增异减复合函数,,外函数内函数复合函数,,外函数内函数复合函数,,外函数内函数复合函数,,外函数内函数叫做外函数,叫做内函数,则设函数⇒⎪⎪⎩⎪⎪⎨⎧↓⇒↑↓↓⇒↓↑↑⇒↓↓↑⇒↑↑===u h x f x g u x g h x f ,,【高考数学】答题技巧与模板构建A .是奇函数,且在()∞+,0单调递增B .是奇函数,且在()∞+,0单调递减C .是偶函数,且在()∞+,0单调递增D .是偶函数,且在()∞+,0单调递减()3x x h =在定义域内()∞+,0是增函数,()31xx g =在定义域内()∞+,0是减函数,所以331()f x x x =-在()∞+,0单调递增【答案】A1.(2023·宁夏银川·统考模拟预测)已知函数【答案】C【分析】根据给定的函数,利用奇偶性定义及复合函数单词性判断作答.【详解】函数()22112121x x x f x -=-=++的定义域为R ,()2112()2112x x x xf x f x -----===-++,即函数()f x 是奇函数,AB 错误,因为函数21x y =+在R 上递增,则函数221xy =+在R 上递减,所以函数()f x 是增函数,D 错误,C 正确.故选:C【答案】C【分析】首先确定()f x 定义域关于原点对称,又有()()f x f x -=,可知()f x 为偶函数;利用复合函数单调性的判定方法可确定1,3x ⎛⎫∈-∞- ⎪⎝⎭时,()f x 单调递减,由对称性可知1,3x ⎛⎫∈+∞ ⎪⎝⎭时,()f x 单调递增,由此得到结果.【详解】由310310x x ⎧+>⎪⎨->⎪⎩得:13x ≠±,()f x ∴定义域为1111,,,3333⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ;又()()ln 31ln 31ln 31ln 31f x x x x x f x -=-++--=-++=,()f x ∴为定义域内的偶函数,可排除BD ;当1,3x ⎛⎫∈-∞- ⎪⎝⎭时,()()()()2ln 31ln 31ln 91f x x x x =--+-+=-,291t x =- 在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,ln y t =单调递增,()f x ∴在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,可排除A ;()f x 为偶函数且在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,()f x ∴在1,3⎛+∞⎫⎪⎝⎭上单调递增,C 正确.故选:C.【点睛】关键点点睛:本题对于函数单调性的判断的关键是能够根据x 的范围得到()f x 的解析式,利用复合函数单调性的判断,即“同增异减”的方法确定函数在区间内的单调性.【答案】A【分析】根据真数大于零,可得函数的定义域;结合复合函数“同增异减”的原则,可确定函数的单调递减区间.【详解】由260x x -++>得,()2,3x ∈-所以函数()()213log 6f x x x =-++的定义域为()2,3-令26t x x =-++,则13log y t =是单调递减函数又26t x x =-++,在12,2⎛⎫- ⎪⎝⎭上单调递增,在1,32⎛⎫⎪⎝⎭上单调递减由复合函数的单调性可得函数()()213log 6f x x x =-++的单调递减区间为12,2⎛⎫- ⎪⎝⎭.故选:A.【点睛】本题考查的知识点是复合函数的单调性,函数的定义域,对数函数的性质,属于中档题.技法02 函数奇偶性的应用及解题技巧知识迁移①具有奇偶性的函数定义域关于原点对称(大前提)②奇偶性的定义:奇函数:())(x f x f -=-,图象关于原点对称,偶函数:()()x f x f =-,图象关于y 轴对称③奇偶性的运算由题知()()()()222π1sin 1cos 21cos2fx x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭为偶函数,定义域为R ,【法一】奇偶性的运算()()221cos f x x a x x =+-++只需02=-a 即可【法二】寻找必要条件(特值法)所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =1.(2023·全国·统考高考真题)若(f x 【答案】B【分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可.【详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =,当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-,故此时()f x 为偶函数.故选:B.【答案】D【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.【答案】C【分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.4.(2020·山东·统考高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.【答案】12-; ln 2.【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠-1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-,由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+---1()1ax a f x lnbx++-=++ 函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=-1222241,22b ln b ln a b ln ln-==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称.由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211xf x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意.故答案为:12-;ln 2.技法03 函数周期性的应用及解题技巧知识迁移①若()()x f a x f =+,则()x f 的周期为:a T =②若()()b x f a x f +=+,则()x f 的周期为:ba T -=③若()()x f a x f -=+,则()x f 的周期为:a T 2=(周期扩倍问题)④若()()x f a x f 1±=+,则()x f 的周期为:a T 2=(周期扩倍问题)例3.(全国·高考真题)已知()f x 是定义域为(,)∞∞-+的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50因为()f x 是定义域为(,)-∞+∞的奇函数,所以()()11--=-x f x f ,即()()11--=+x f x f ,所以周期为4【答案】C1.(2023上·海南省·高三校联考)已知函数()f x 是定义在R 上的奇函数,且()13f =,()()51f x f x -=--,则()()20242023f f +=( )A .3-B .0C .3D .6【答案】A【分析】由函数为奇函数可得()0f x =,()()f x f x -=-,再根据()()51f x f x -=--求出函数的周期,再根据函数的周期即可得解.【详解】因为()f x 是定义在R 上的奇函数,所以()0f x =,()()f x f x -=-,因为()()51f x f x -=--,所以()()51f x f x +=-+,则()()4f x f x +=-,所以()()()84f x f x f x +=-+=,所以()f x 是以8为周期的一个周期函数,所以()()20242023f f +()()253825381f f =⨯+⨯-()()01f f =+-()()01f f =-()()013f f =-=-.故选:A .2.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.【答案】【分析】利用赋值法依次求得()()()0,3,,11f f f ,再利用赋值法推得()f x 的周期为12,从而利用函数的周期性即可得解.【详解】因为()()()()12f x y f x y f x f y ++-=,令0x y ==,有()()212002f f =,则()00f =或()04f =.若()00f =,则令1x =,0y =,有()()()121102f f f =,得()10f =,与已知()1f =()04f =.令1x y ==,有()()()212012f f f +=,则()(212462f +=⨯=,得()22f =.令2x =,1y =,有()()()()131212f f f f +=,得()30f =.令3x =,2y =,有()()()()151322f f f f +=,得()5f =-令5x =,2y =,有()()()()173522f f f f +=,得()7f =-.令7x =,2y =,有()()()()195722f f f f +=,得()90f =.令9x =,2y =,有()()()()1117922f f f f +=,得()11f =令0x =,有()()()()102f y f y f f y +-=,得()()-=f y f y ,令3x =,有()()()()133302f y f y f f y ++-==,即()()33f y f y +=--,所以()()()6f y f y f y +=--=-,故()()()126f y f y f y +=-+=,所以()f x 的周期为12.又因为()()()()()()13579110f f f f f f +++++=,所以()()()()()202312113404513370k f k f f f f =-=+++=+⨯=∑ 【点睛】关键点睛:本题解决的关键是利用赋值法推得()f x 的周期性,从而得解.技法04 函数对称性的应用及解题技巧知识迁移轴对称①若()()x f a x f -=+,则()x f 的对称轴为2a x =②若()()b x f a x f +-=+,则()x f 的对称轴为2b a x +=点对称①若()()x f a x f --=+,则()x f 的对称中心为⎪⎭⎫⎝⎛0,2a ②若()()c b x f a x f =+-++,则()x f 的对称中心为⎪⎭⎫⎝⎛+2,2c b a 例4-1.(全国·高考真题)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【法一】函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点.故选项B 正确【法二】关于x=1对称即()()x f x f +=-11,即()()x f x f -=2【答案】B【详解】[方法一]:直接法.由()()-2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +='=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .[方法二]:特值法.由()()-2f x f x =-得()()-+2f x f x =不妨设因为()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-∴当2m =时,11222x y x y m +++==,故选B .[方法三]:构造法.设()()1s x f x =-,则()()()()11s x f x f x s x -=--=-=-,故()s x 为奇函数.设()11t x y x=-=,则()()t x t x -=-,故()t x 为奇函数.∴对于每一组对称点'0i i x x +='=0i i s t +.将1i i s y =-,''1i i t y =-代入,即得'0i i x x +='=2i i y y +∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .[方法四]:由题意得,函数()()f x x ∈R 和()2()f x f x -=-的图象都关于(0,1)对称,所以两函数的交点也关于(0,1)对称,对于每一组对称点(,)i i x y 和''(,)i i x y ,都有''0,2i i i i x x y y +=+=.从而1()22mi i i mx y m =+=⋅=∑.故选B.【答案】B例4-3.(2022·全国·统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .【答案】D1.(2023上·江苏南通·高三统考阶段练习)已知曲线【答案】B【分析】令()32399f x x x x =--++,由()()114f x f x -+--=-和321y x =-++可确定两曲线均关于()1,2--中心对称;利用导数可求得()f x 单调性和极值,结合321y x =-++的单调性可确定两曲线在()1,-+∞上的图象,由此可确定交点个数,结合对称性可求得结果.【详解】令()32399f x x x x =--++,则()()()()3231131919122f x x x x x x -=----+-+=-+-,()()()()3231131919122f x x x x x x --=------+--+=--,()()114f x f x ∴-+--=-,()f x ∴关于()1,2--中心对称;()2131232111x x y x x x -++-===-++++ ,121x y x -∴=+关于()1,2--中心对称;()()()2369331f x x x x x '=--+=-+- ,∴当()(),31,x ∈-∞-⋃+∞时,()0f x '<;当()3,1x ∈-时,()0f x '>;()f x ∴在()(),3,1,-∞-+∞上单调递减,在()3,1-上单调递增,∴()f x 极小值为()3272727918f -=--+=-,极大值为()1139914f =--++=;当()1,x ∈-+∞时,321y x =-++单调递减,且3221y x =-+>-+,当1x =时,31214112y =-+=-<+;作出()f x 与121xy x -=+在1x >-时的图象如下图所示,由图象可知:()f x 与121xy x -=+在()1,-+∞上有且仅有两个不同的交点,由对称性可知:()f x 与121xy x -=+在(),1-∞-上有且仅有两个不同的交点,()()()()()4123412341122222i i i x y x x x x y y y y =∴+=+++++++=-⨯⨯+-⨯⨯∑12=-.故选:B.【点睛】关键点睛:本题考查函数对称性的应用,解题关键是能够根据函数的解析式,确定两函数关于同一对称中心对称,结合两函数图象确定交点个数后,即可根据对称性求得交点横纵坐标之和.【答案】C 【分析】由题意()()()()()()()()()()2132136f x f x f x f x f x f x f x f x f x f x +=+-⇒+=+-+⇒+=-⇒+=,从而()f x 是周期函数,又()2y f x =的图象关于直线12x =对称,从而函数()f x 的图象关于直线1x =对称,由()()()()()()122,3,4,5,6f f f f f f =⇒,从而即可求解.【详解】因为()()()21f x f x f x +=+-,所以()()()321f x f x f x +=+-+,从而可得()()3f x f x +=-,所以()()6f x f x +=,所以函数()f x 的一个周期为6.因为()2y f x =的图象关于直线12x =对称,所以()()1212f x f x -=+, 即函数()f x 的图象关于直线1x =对称.又()12f =,()()()210f f f =-,所以()()201f f ==,所以()()()()()()()()301,412,521,601f f f f f f f f =-=-=-=-=-=-==,所以()()()1260f f f ++⋅⋅⋅+=.由于23除以6余5,所以231()(1)k f k f ==+∑(2)(5)(6)1f f f +⋅⋅⋅+=-=-.故选:C .【点睛】易错点点睛:对于“系数不为1”的复合型函数,一般情况下,内函数多为一次函数型()f kx b +,涉及奇偶性(图象的对称性)时处理方法有:①利用奇偶性(图象的对称性)直接替换题中对应的变量;②类比三角函数;③引入新函数,如令()()g x f kx b =+,则()()()g x f k x b -=-+.本题中,()2y f x =的图象关于直线12x =对称,令()()2g x f x =,则1122g x g x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,从而112222f x f x ⎛⎫⎛⎫⎛⎫⎛⎫-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即()()1212f x f x -=+,函数()f x 的图象关于直线1x =对称,不能误认为函数()f x 的图象关于直线12x =对称.【答案】AC【分析】对于A :根据对称轴的定义分析证明;对于B :举例说明即可;对于C :根据零点的定义结合倍角公式运算求解;对于D :举例说明即可.【详解】对于A :因为()()()()112πcos 2πcos cos 4π2cos2-=-+=+=-f x x x f x x x,所以()f x 的图象关于直线πx =轴对称,故A 正确;对于B :因为()02f =,1π2f ⎛⎫=- ⎪⎝⎭,所以()f x 的图象不关于点π,04⎛⎫⎪⎝⎭中心对称,B 错误.对于C :因为()()()23222cos 12cos 2cos 112cos cos 1cos 2cos 12cos 12cos 1+-+-+=+==---x x x x x f x x x x x ,注意到22112cos 2cos 12cos 022⎛⎫-+=-+> ⎪⎝⎭x x x ,令()0f x =,得cos 1x =-,即()21π,=+∈x k k Z ,故()f x 的所有零点为()21π,+∈k k Z ,故C 正确;对于D :因为()()02,π0==f f ,所以π不是()f x 的周期,故D 错误;故选:AC.【答案】ABD【分析】由函数奇偶性的定义即可判断A 项,运用周期定义即可判断B 项,结合A 项、B 项即可判断C 项,运用完全平方公式、二倍角公式化简函数()f x ,结合换元法即可求得函数的最小值进而可判断D 项.【详解】对于A 项,因为πcos 0ππ,Z ,Z 2sin 02πx x k k k x k x x k ⎧≠≠+⎧⎪⇒∈⇒≠∈⎨⎨≠⎩⎪≠⎩,所以函数()f x 的定义域为π,Z 2k x x k ⎧⎫≠∈⎨⎬⎩⎭,又()()()()()()3333sin cos sin cos cos sin cos sin x x x xf x f x x x x x---=+=--=---,所以()f x 是奇函数,其图象关于原点对称,故A 项正确;对于B 项,()()()()()()3333sin πcos πsin cos πcos πsin πcos sin x x x xf x f x x x x x +++=+=+=++,所以π是函数()f x 的一个周期,故B项正确;对于C 项,由B 项知()()πf x f x +=,由A 项知()()f x f x =--,所以()()πf x f x +=--,所以()f x 的图象关于点π,02⎛⎫⎪⎝⎭对称,故C 项错误;对于D 项,()3344sin cos sin cos cos sin sin cos x x x xf x x x x x+=+==⋅()22222211sin 2sin cos 2sin cos 22sin21sin cos sin2sin22xx x x xx x xx x -+-⋅==-⋅,令sin2t x =,又π0,2x ⎛⎫∈ ⎪⎝⎭,则()20,πx ∈,所以0sin21x <≤,即01t <≤,所以2y t t =-,(01t <≤),又2y t t=-在(0,1]上单调递减,所以当1t =时,2y t t =-取得最小值为2111-=,故D 项正确.故选:ABD.技法05 函数4大性质的综合应用及解题技巧知识迁移1.周期性对称性综合问题①若()()x a f x a f -=+,()()x b f x b f -=+,其中b a ≠,则()x f 的周期为:b a T -=2②若()()x a f x a f --=+,()()x b f x b f --=+,其中b a ≠,则()x f 的周期为:ba T -=2③若()()x a f x a f -=+,()()xb f x b f --=+,其中b a ≠,则()x f 的周期为:ba T -=42.奇偶性对称性综合问题①已知()x f 为偶函数,()a x f +为奇函数,则()x f 的周期为:a T 4=②已知()x f 为奇函数,()a x f +为偶函数,则()x f 的周期为:aT 4=因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+,故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()()1510f f f -===,其它三个选项未知.【答案】B1.(2021·全国·统考高考真题)设函数【答案】D【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.[方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.2.(2023·全国·模拟预测)已知定义在R 上的函数()f x 满足(1)f x -为奇函数,(2)f x -为偶函数.若(2)2f =,则(2024)f =( )A .2-B .0C .2D .2024【答案】A【分析】根据函数的奇偶性以及对称性即可得函数周期性,进而可求解.【详解】由(1)f x -为奇函数,(2)f x -为偶函数,可知函数()f x 的图像关于点(1,0)-中心对称,且关于直线2x =-轴对称,故()()()()()2244f x f x f x f x f x =---=--=---=-⎡⎤⎣⎦,所以函数()f x 是周期为4的函数,由(1)0f -=.(2)2f =得(0)(2)(2)2f f f =--=-=-,所以(2024)(50640)(0)2f f f =⨯+==-.故选:A【点睛】方法点睛:(1)若函数()y f x =的图像同时关于直线x a =与x b =轴对称,则函数()f x 必为周期函数,且2||T a b =-.(2)若函数()y f x =的图像同时关于点(,0)a 与点(,0)b 中心对称,则函数()f x 必为周期函数,且2||T a b =-.(3)若函数()y f x =的图像既关于点(,0)a 中心对称,又关于直线x b =轴对称,则函数()f x 必为周期函数,且4||T a b =-.【答案】5【分析】根据函数奇偶性的性质分析得出该函数的对称性,借助双对称性的周期将求()2022f 转换为求()2f 即可得.【详解】由()12f x +-为奇函数,可得()()1212f x f x +-=--++,则()f x 的图象关于点()1,2对称,又()f x 的定义域为R ,则有()12f =.由()2f x +为偶函数得()()22f x f x +=-+,则()f x 的图象关于直线2x =对称,则()()()4242f x f x f x =--=-+,从而()()24f x f x +=--,则()()=f x f x -,则()()()222f x f x f x +=-+=-,故()f x 是周期为4的偶函数,所以()()()2022450522f f f =⨯+=.而()()()()()1011020f f f f f -+==+=+,所以()01f =-,()()2405f f =-=,故()20225f =.故答案为:5.【答案】1-【分析】推导出函数()f x 是周期为8的周期函数,根据题中条件求出()()1,2,3,,8f k k = 的值,结合函数的周期性可求得()20231k f k =∑的值.【详解】因为函数()y f x =的定义域为R ,且()1f x +为偶函数,()1f x -为奇函数,则()()11f x f x -=+,()()11f x f x --=--,所以,函数()f x 的图象关于直线1x =对称,也关于点()1,0-对称,所以,()()2f x f x -=+,()()2f x f x -=--,所以,()()22f x f x +=--,则()()()84f x f x f x +=-+=,所以,函数()f x 是周期为8的周期函数,当[]1,1x ∈-时,()21f x x =-,则()10f =,()()710f f =-=,()()801f f ==,()()201f f ==,()()310f f =-=,()()()4621f f f =--=-=-,()()()5310f f f =-=-=,()()()6801f f f =--=-=-,所以,()81010101010k f k ==++-+-++=∑,又因为202382531=⨯-,所以,()()()20238112538011k k f k f k f ===-=-=-∑∑.故答案为:1-.【点睛】结论点睛:对称性与周期性之间的常用结论:(1)若函数()f x 的图象关于直线x a =和x b =对称,则函数()f x 的周期为2T a b =-;(2)若函数()f x 的图象关于点(),0a 和点(),0b 对称,则函数()f x 的周期为2T a b =-;(3)若函数()f x 的图象关于直线x a =和点(),0b 对称,则函数()f x 的周期为4T a b =-.。

高中数学 必修一函数性质详解及知识点总结及题型详解

高中数学 必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。

构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(xg 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

函数基本性质题型及解题技巧

函数基本性质题型及解题技巧

函数基本性质题型及解题技巧函数基本性质题型及解题技巧一、函数解析式的求法:1.配凑法:将关系式配凑成括号内的形式。

例如,已知$f(x+)=\frac{x^2}{2}$,求解析式$f(x)$。

解:因为$f(x+)=\frac{x^2}{2}=(x+)^2-2$,所以$f(x)=x^2-2$,$x\in(-\infty,-2]\cup[2,\infty)$。

2.换元法:令括号内的部分等于$t$,然后解出$x$,带入得到关于$t$的解析式,最后再换回$x$。

例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。

解:令$t=x+1$,则$x=(t-1)^2$,$(t\geq1)$,因此$f(t)=(t-1)^2+2(t-1)=t^2-1$。

所以$f(x)=x^2-1$,$(x\geq1)$。

3.待定系数法:根据已知函数类型,设相应的函数解析式,然后根据已知条件算出相应系数。

例如,已知$f(x)$是二次函数,且$f(0)=2$,$f(x+1)-f(x)=x-1$,求$f(x)$。

解:设$f(x)=ax^2+bx+c$,由$f(0)=2$得$c=2$,由$f(x+1)-f(x)=x-1$,得恒等式$2ax+a+b=x-1$,解得$a=\frac{1}{2}$,$b=-\frac{1}{2}$。

因此,所求函数的解析式为$f(x)=\frac{1}{2}x^2-\frac{1}{2}x+2$。

4.消元法(方程组法):若函数方程中同时出现$f(x)$与$f(-x)$,则一般用$x$代之或用$-x$代之,构造另一个方程,然后联立解方程组得到$f(x)$。

例如,已知$3f(x)+2f(-x)=x+3$,求$f(x)$。

解:因为$3f(x)+2f(-x)=x+3$,令$x=-x$得$3f(-x)+2f(x)=-x+3$,消去$f(-x)$得$f(x)=\frac{x}{5}+\frac{3}{5}$。

二、绝对值图像的画法:5.对于函数$y=ax^2+b|x|+c$,找出$x=0$的点和两个对称轴上的点,然后将它们连起来。

函数的概念与性质(解析版)--2024高考数学常考题型精华版

函数的概念与性质(解析版)--2024高考数学常考题型精华版

第1讲函数的概念与性质【考点分析】1.函数的定义域、值域、解析式是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单的基本方法.2.函数的单调性、奇偶性是高考命题热点,每年都会考一道选择或者填空题,分值5分,一般与指数,对数结合起来命题【题型目录】题型一:函数的定义域题型二:同一函数概念题型三:函数单调性的判断题型四:分段函数的单调性题型五:函数的单调性唯一性题型六:函数奇偶性的判断题型七:已知函数奇偶性,求参数题型八:已知函数奇偶性,求函数值题型九:利用奇偶性求函数解析式题型十:给出函数性质,写函数解析式题型十一:()=x f 奇函数+常数模型(()()常数⨯=+-2x f x f )题型十二:中值定理(求函数最大值最小值和问题,()()()中f x f x f 2min max =+,中指定义域的中间值)题型十三:.单调性和奇偶性综合求不等式范围问题题型十四:值域包含性问题题型十五:函数性质综合运用多选题【典型例题】题型一:函数的定义域【例1】(2021·奉新县第一中学高一月考)函数()f x =的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4答案:C解析:对于函数()f x =,有1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 1f x -=的定义域为()1,4.故选:C.【例2】函数()21log (3)f x x =-的定义域为【答案】()()3,44,⋃+∞【详解】由题意知()230log 30x x ->⎧⎨-≠⎩,得()223log 3log 1x x >⎧⎨-≠⎩,所以331x x >⎧⎨-≠⎩,所以()()3,44,x ∈⋃+∞.【例3】(2020·集宁期中)已知函数)32(-x f 的定义域是]41[,-,则函数)21(x f -的定义域()A .]12[,-B .]21[,C .]32[,-D .]31[,-【答案】C【详解】因为函数)32(-x f 的定义域是]41[,-,所以41≤≤-x ,所以5325≤-≤-x ,函数)(x f 的定义域为]55[,-,令5215≤-≤-x ,解得32≤≤-x 【例4】若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。

专题3.2 函数基本性质(解析版)

专题3.2 函数基本性质(解析版)

专题3.2函数的基本性质知识点一:函数的单调性1.增函数、减函数的概念一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说()f x 在区间D 上是减函数.知识点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <;(3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间(1)单调区间的定义如果函数f (x )在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数f (x )的单调区间.函数的单调性是函数在某个区间上的性质.知识点诠释:①单调区间与定义域的关系:单调区间可以是整个定义域,也可以是定义域的真子集;②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;③不能随意合并两个单调区间;④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性?3.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x <;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.4.函数单调性的判断方法(1)定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断。

(2)图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性。

函数的基本性质(考点加经典例题分析)

函数的基本性质(考点加经典例题分析)

函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。

2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。

) 3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,当0>a 时函数)(x f 在对称轴a bx 2-=的左侧单调减小,右侧单调增加; 当0<a 时函数)(x f 在对称轴abx 2-=的左侧单调增加,右侧单调减小;例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

4.证明方法和步骤:⑴设元:设21,x x 是给定区间上任意两个值,且21x x <; ⑵作差:)()(21x f x f -; ⑶变形:(如因式分解、配方等);⑷定号:即0)()(0)()(2121<->-x f x f x f x f 或; ⑸根据定义下结论。

例2、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。

例3:函数322-+=x x y 的单调减区间是 ( )A.]3,(--∞B.),1[+∞-C.]1,(--∞D.),1[+∞ 6.函数的单调性的应用:判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。

例4:求函数12-=x y 在区间]6,2[上的最大值和最小值.二、奇偶性1.定义:如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数;(等价于:0)()()()(=--⇔=-x f x f x f x f )如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。

函数的基本性质(总结版)

函数的基本性质(总结版)

函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系;的关系;○3 作出相应结论:作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则,则f (x )是偶函数;是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则,则f (x )是奇函数。

是奇函数。

(3)简单性质:)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:,那么在它们的公共定义域上: 奇+奇=奇,奇´奇=偶,偶+偶=偶,偶´偶=偶,奇´偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,在某个区间上是增函数或是减函数,那么就说函数那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

热点2-2 函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

热点2-2 函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

热点2-2 函数的单调性、奇偶性、对称性、周期性10大题型函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。

一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.2、验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.三、常见奇、偶函数的类型1、()x x f x a a -=+(00a a >≠且)为偶函数;2、()x x f x a a -=-(00a a >≠且)为奇函数;3、()2211x x x x x x a a a f x a a a ----==++(00a a >≠且)为奇函数;4、()log a b xf x b x-=+(00,0a a b >≠≠且)为奇函数;5、())log af x x =(00a a >≠且)为奇函数;6、()f x ax b ax b =++-为偶函数;7、()f x ax b ax b =+--为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=-f x a f x a ,则2=T a ;(3)若()()+=-f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=-f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=-T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=-f a x f a x ,则函数图象关于=x a 对称; (2)若()()2=-f x f a x ,则函数图象关于=x a 对称; (3)若()()+=-f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22-=-f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=-f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=-f x f x ,函数为偶函数,即偶函数为特殊的线对称函数;(2)若函数()f x 满足()()22-=-f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()-=-f x f x ,函数为奇函数,即奇函数为特殊的点对称函数;4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2-b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2-b a ;(3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4-b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a .(2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a .(4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结0=x2=f(x),所以f(x)为偶函数.4)因为f(x)有意义,则x>0,所以f(x)的定义域不关于原点对称。

所以f(x)为非奇非偶函数.二、知识归纳1.函数的单调性1)单调递增对于函数f(x),如果对于定义域内的任意两个数x1和x2,当x1<x2时,有f(x1)<f(x2),那么函数f(x)就叫做单调递增函数.2)单调递减对于函数f(x),如果对于定义域内的任意两个数x1和x2,当x1<x2时,有f(x1)>f(x2),那么函数f(x)就叫做单调递减函数.3)严格单调性如果对于定义域内的任意两个不相等的数x1和x2,有f(x1)<f(x2)或f(x1)>f(x2),那么函数f(x)就叫做严格单调函数.4)单调性判定设函数f(x)在区间[a,b]上连续,在(a,b)内可导,则①当f'(x)>0时,函数f(x)在(a,b)上单调递增;②当f'(x)<0时,函数f(x)在(a,b)上单调递减;③当f'(x)=0时,函数f(x)在x处取极值.2.函数的极值1)极值定义设函数f(x)在点x0的某个去心邻域内有定义,如果对于x0的任何一个邻域内的x值,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么就称f(x0)是函数f(x)的一个极大值(或极小值),而x0就称为函数f(x)的一个极值点.2)判别极值的方法①一阶导数法设函数f(x)在点x0处可导,且f'(x0)=0,则1)当f''(x0)>0时,f(x0)是函数f(x)的一个极小值;2)当f''(x0)<0时,f(x0)是函数f(x)的一个极大值;3)当f''(x0)=0时,判别困难,需用其他方法.②二阶导数法设函数f(x)在点x0处二阶可导,则1)当f''(x0)>0时,f(x0)是函数f(x)的一个极小值;2)当f''(x0)<0时,f(x0)是函数f(x)的一个极大值;3)当f''(x0)=0时,判别困难,需用其他方法.3.函数的凹凸性1)凹函数对于函数f(x),如果对于定义域内的任意两个数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做凹函数.2)凸函数对于函数f(x),如果对于定义域内的任意两个数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)≥λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做凸函数.3)严格凹凸性如果对于定义域内的任意两个不相等的数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做严格凹函数或严格凸函数.4)凹凸性判定设函数f(x)在区间[a,b]上具有二阶导数,则①当f''(x)>0时,函数f(x)在(a,b)上是凹函数;②当f''(x)<0时,函数f(x)在(a,b)上是凸函数;③当f''(x)=0时,函数f(x)在x处可能是拐点.解题提醒:①判定函数的单调性时,要注意定义域的连续性和可导性.②判定函数的极值和拐点时,要注意函数的可导性和二阶导数的符号.题型二函数单调性、极值和凹凸性的判定典型例题:求函数f(x)=x3-3x2+3的单调性、极值和凹凸性.解:(1)单调性f'(x)=3x2-6x,令f'(x)=0,得x=0或x=2。

函数基本性质题型及解题技巧

函数基本性质题型及解题技巧

函数基本性质题型及解题技巧一、函数解析式的求法:1. 配凑法:把关系式配凑成含有括号里的形式; 例:已知221)1(xx x x f +=+,求解析式; 解:因为221)1(x x x x f +=+=2)1(2-+xx ,所以2)(2-=x x f , ),2[]2,(+∞⋃--∞∈x 。

2. 换元法:令括号里的部分等于t ,然后解出x 在带进去,得出关于t 的解析式,最后在换成x ; 例:已知x x x f 2)1(+=+,求)(x f 解析式; 解:令,1+=x t 则)1(,)1(2≥-=t t x ,所以1)1(2)1()(22-=-+-=t t t t f所以)1(,1)(2≥-=x x x f3. 待定系数法:(已知函数类型)告诉你什么函数,就设什么函数解析式,然后根据已知条件算出相应系数, 例:已知()f x 是二次函数,且(0)2,(1)()1f f x f x x =+-=-,求()f x解:设2()(0)f x ax bx c a =++≠,由(0)2,f =得2c =由(1)()1f x f x x +-=-,得恒等式2ax+a+b=x-1,得13,22a b ==-,故所求函数的解析式为213()222f x x x =-+.4. 消元法(方程组法):若函数方程中同时出现()f x 与1()f x 或者()f x 与)(x f -,则一般x 用1x 代之或x 用-x 代之,构造另一个方程.然后联立解方程组得到()f x例:已知3()2()3f x f x x +-=+,求()f x解:因为3()2()3f x f x x +-=+,① x 用x -代替得3()2()3f x f x x -+=-+,② 由①②消去()f x -,得3()5f x x =+.二、绝对值图像画法:5. c x b ax y ++=||2的图像画法:找三个点,x=0的点和两个对称轴的点;然后把三个点连起来,a >0,开口向上;a<0,开口向下,形状如“屁股”;6. ||2c bx ax y ++=的图像画法:先画出二次函数的图像,然后把x 轴下方的函数图像对折上去;三、对勾函数性质 7. 对勾函数)0(>+=k xk x y 的性质: 1).单调增区间),(),,(+∞--∞k k ,单调减区间),0(),0,(k k -2).x>0时,有最小值,最小值为k 2,当x<0时,有最大值,最大值为k 2-;四、单调性8.分段函数的单调性问题:首先保证每一段是增(减)函数,得到两个不等式,然后左边的最大值(左边的最小值)小于(大于)右边的最小值(右边的最大值)得到另一个不等式,然后解不等式组;例: 已知1,2)24(1,{)(≤+->=x x a x a x f x ,是R 上的单调递增函数,则实数a 的取值范围为_________;解:因为f (x )是R 上的单调递增函数,所以可得⎩⎪⎨⎪⎧ a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,9. 抽象函数的单调性证明:在高中数学中,主要有两种类型的抽象函数,一是“()f x y +=)()(y f x f +”型二是“()f xy =)()(y f x f +”型.对于()f x y +型的函数,只需构造2121()[()]f x f x x x =+-,再利用题设条件将它用1()f x 与21()f x x -表示出来,然后利用题设条件确定21()f x x -的范围,从而确定2()f x 与1()f x 的大小关系;对()f xy 型的函数,则只需构造2211()()x f x f x x =⋅即可. 例:已知()f x 的定义域为(0,)+∞,且当1x >时()0f x >.若对于任意两个正数x 和y 都有()()()f xy f x f y =+,试判断()f x 的单调性.解:设120x x >>则,112>x x .又因为当1x >时()0f x >, 0)()()()()()()()(121121112112>=-+=-•=-∴x x f x f x x f x f x f x x x f x f x f ∴()f x 在()0,+∞上单调递增.10. 单调性性质:增+增=增;减+减=减;增-减=增;减-增=减;增=增;减=减;增1=减;减1=增-增=减;-减=增11. 复合函数单调性:同增异减:先列出函数由哪两个函数复合而成,然后求出每一区间两个函数对应的单调性,然后同增异减写出对应区间例:求函数y =x 2+x -6的单调区间解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).13. 作差法证明单调性步骤:1).取值,在定义域内取21x x <;2)最差;3)变形:变形到()()()()••形式,每一个括号能判断出正负,变形方法有提公因式、通风、合并同类项;4)得出结论,方向一致为增函数,方向相反为减函数;五、奇偶性:14. 判断奇偶性之前得保证定义域关于原点对称;反之,一个函数只要告诉你奇偶性,定义域一定关于原点对称,对应区间两个端点值相加为零15. 对于奇函数,只要在0=x 处有意义,也就是定义域里包含0,则0)0(=f (做题易忽略点)16. 对于d cx bx ax x f +++=23)(这种类型的函数,如果)(x f 是偶函数,则奇次项系数为零,如果)(x f 是奇函数,则偶次项系数为零;例:已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( B )A. 1B. 2C. 3D. 417.奇 + 奇 = 奇; 偶 + 偶 = 偶;奇⨯偶 = 奇; 奇⨯奇 = 偶;偶⨯偶 = 偶;(乘和除一致)|奇|=偶,复合函数奇偶性,一偶则偶:复合函数的两个分函数,只要一个为偶,整体就是偶函数;例:若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为 .解:首先由结论15得,0)0(=f ,然后得到0=a ,然后因为分子是奇函数,整体也是奇函数,所以由结论17得分母是偶函数,然后再由结论16得0=b ,然后得到2()1x f x x =+ 18. 告诉你分段函数)(x f 的奇偶性,给出一半的解析式,让你求另一半或整体的解析式的题型做法:给出大于0的解析式,就设0<x ,给出小于0的解析式,就设0>x ,然后把x -带到给出的解析式里求出)(x f -,然后通过奇偶性得到)(x f ,然后写出解析式,记住不要漏掉0=x 的时候;例: 已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=.2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩19. 遇到c x bg x af x H ++=)()((),其中)x f (、)(x g 为奇函数这种题型,构造奇函数解决问题,令c x H x F -=)((),则)(x F 为奇函数; 例:已知f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2).解:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.六、周期性:20.若)(x f T x f =+)(,周期为T ;周期为2T 的有)()(T x f T x f -=+;)()(x f T x f -=+;)()(x f T x f -=+,且)(x f 为奇函数;)(1)(x f T x f =+;)(1)(x f T x f -=+; 例: (1)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则 ( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)【答案】D七、对称性:21.若)()(xafxaf+=-,则)(xf关于ax=对称;22.若)()(xbfxaf-=+,则)(xf关于2ba x +=对称;23.若)(axf+是偶函数,则)(xf关于ax=对称;24.若)(axf+是奇函数,则)(xf关于)(0,a中心对称;。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档