第四章 线性系统的根轨迹图
第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】
![第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】](https://img.taocdn.com/s3/m/a59e859a58f5f61fb73666d4.png)
根轨迹起于开环极点,终于开环零点。
由根轨迹方程,有
m
n
K (s zi )+ (s pi )=0
i 1
i 1
根轨迹起点 K =0 s pi , i 1, , n n个开环有限极点
由根轨迹方程,又有
m
n
(s zi )+(K )1 (s pi )=0
i 1
i 1
根轨迹终点 K s zi , i 1, , m m个开环有限零点
a
(2k 1)
nm
, k 0, 1,
ቤተ መጻሕፍቲ ባይዱ
a
=
(a1 n
b1 m
)
由多项式的根与系数关系
n
n
a1 pi b1 zi
i 1
i 1
n
m
pi z j
a
i 1
j 1
nm
例4.2-1 已知单位反馈系统的开环传递函数为
K G(s)
s(s 3) (s )2 2
0, 0
试分析开环极点参数变化时渐近线。
1
n
1
j1 d z j i1 d pi
分离点处相邻两条根 轨分迹离分点支处切一线共之有间多的少
夹条角根等轨于迹分支/?l
分离点处根轨迹的分离角d 为
d (2k 1) / l k 0,1,
分离点处,根轨迹进
侧的开环实有限零极点数为奇数。
系统的开环零极点分为 两类:实数零极点和复数 零极点,且复数零点或复 数极点必共轭成对。
系统开环零极点的分布为
图示,取实轴任一点 s=s1
·对复共轭开环极点
p4 j, p5 p4 j,
(s1 j)+(s1 +j)=2
自动控制原理第第四章 线性系统的根轨迹法
![自动控制原理第第四章 线性系统的根轨迹法](https://img.taocdn.com/s3/m/e0aca4abf01dc281e43af075.png)
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
第四章 线性系统的根轨迹法
![第四章 线性系统的根轨迹法](https://img.taocdn.com/s3/m/f8556c0e581b6bd97f19eac2.png)
n
j
s
lim s
s i
nm
nm
sz
i 1
开环传递函数中,若令 s 当 m<n 时, G(s)H(s) =0
称 s ( m<n),是 G(s)H(s) 的无限零点 (n-m个)。
• 法则2. 根轨迹的分支数、对称性和连续性: 根轨迹的分支数与开环有限零点数 m、开环有 限极点数 n 中的大者相等,连续对称于实轴。
d 2.3
4)确定起始角。量测各向量相角,算得起始 角=-71. 6°
5)确定根轨迹与虚袖交点。闭环特征方程式 为:
s 5s 8s 6 s K 0
4 3 2
将s j代入,得实部方程为: 8 K 0
4 2
虚部方程为: 5 6 0
3
解得: 1.1 K 8.16 ,
2
试绘制闭环系统的概略根轨迹。 解 按下述步骤绘制概略根轨迹: 1)确定实轴上的根轨迹。实轴上[0,-3]区域必 为根轨迹。 2)确定根轨迹的渐近线。由于n-m=4,故有四条 根轨迹渐近线,其: a 1.25
a 45 ,135
3)确定分离点。
1 d 1 d 3 1 d 1 j 1 d 1 j 0
三、n-m条渐近线;
四、根轨迹的出射角、入射角; 五、根轨迹与虚轴的交点; 六、根轨迹的分离点、会合点; 结合根轨迹的连续性、对称性、根轨迹的 支数、起始点和终点,闭环极点与闭环极点之 和及之积等性质画出根轨迹。
例4—4 设系统开环传递函数为设系统开 环传递函数为: K
G( s) s( s 3)( s 2s 2)
d 3.414 ,d 0.586(舍去)
第四章课件根轨迹
![第四章课件根轨迹](https://img.taocdn.com/s3/m/ed496c4751e79b896902261b.png)
经整理得: 2 s3 1s2 1 2s 0 8 0 s0.55
法则6 根轨迹的起始角和终止角:
根轨迹离开开环复数极点处的切线与正实轴的夹 角,称为起始角,以 p i 表示;
根轨迹进入开环复数零点处的切线与正实轴的夹 角,称为终止角,以 z i表示。
起始角、终止角可根据下式求出:
pi
(2k1)
m
j1 zj
法则3 根轨迹的渐近线:
当系统开环极点个数n大于开环零点个数m时, 有n-m条根轨迹分支沿着与实轴交角为 、交a 点为 的一组 a 渐近线趋向于无穷远处,且有
a
(2k1)
nm
n
m
pi zj
σa
i1
j1
nm
(k0,1,2,,nm1)
证明:根轨迹方程式可写成如下形式:
m
G(s)H(s) K*
(s zj )
设系统的开环传递函数为: G(s)H(s)K* P(s)
系统的特征方程式为:
Q(s)
D (s) 1 G (s)H (s) 1 K * P (s) Q (s) K * P (s) 0 Q (s)
对上式求导,得到: D ( s ) Q (s ) K * P ( s ) 0
由以上两式消去 K *得到
Q (s )P (s ) Q (s )P (s ) 0
点个数之和为奇数,则该区域必是根轨迹。 证明:
设s0为实轴上的某一测试点; j是各个开环零点到s0点向量的相角; i是各个开环极点到s0点向量的相角。
因为复数共轭零、极点到实轴上的任一点
的向量相角之和为2 ,因此在确定实轴上
的根轨迹时,可以不考虑它们的影响。
由图可见,s0点右边开 环实数零极点到s0点的向量 相角均为。
自动控制原理根轨迹法
![自动控制原理根轨迹法](https://img.taocdn.com/s3/m/fea73e45fe00bed5b9f3f90f76c66137ee064f8a.png)
21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域
和
为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n
《自动控制原理》第4章 线性系统的根轨迹法
![《自动控制原理》第4章 线性系统的根轨迹法](https://img.taocdn.com/s3/m/e6d472371ed9ad51f11df231.png)
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,
第4章 线性系统的根轨迹法(《自动控制原理》课件)
![第4章 线性系统的根轨迹法(《自动控制原理》课件)](https://img.taocdn.com/s3/m/51c45668a98271fe910ef9ca.png)
如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同
第四章 线性系统的根轨迹法(下)
![第四章 线性系统的根轨迹法(下)](https://img.taocdn.com/s3/m/c1287490b52acfc788ebc985.png)
1164-23 在带钢热轧过程中,用于保持恒定张力的控制系统称为“环轮”,其典型结构图如图4-47所示。
环轮有一个0.6m ~0.9m 长的臂,其末端有一卷轴,通过电机可将环轮升起,以便挤压带钢。
带钢通过环轮的典型速度为10.16m s 。
假设环轮位移变化与带钢张力的变化成正比,且设滤波器时间常数T 可略去不计。
要求:(1) 概略绘出0a K <<∞时系统的根轨迹图;(2) 确定增益a K 的取值,使系统闭环极点的阻尼比0.707ζ≥。
(b)图4-47 轧钢机控制系统解 本题主要研究根轨迹的绘制及系统参数选择。
(1) 绘系统根轨迹图电机与轧辊内回路的传递函数()()()120.250.2510.250.5G s s s s ==+++ 令0T =,系统开环传递函数为()()()()()()2220.50.50.510.51a K s K G s s s s s s s *+==++++式中,0.5a K K *=。
概略绘制根轨迹图的特征数据为:渐近线:交点与交角2.50.6254a σ-==- 45,135a ϕ=±± 分离点:由11200.51d d d ++=++ 解出0.212d =-。
根轨迹与虚轴交点:闭环特征方程()()20.51s s s K *+++4322.520.50s s s s K *=++++=列劳思表1174s 1 2 K * 3s 2.50.52s 1.8 K *1s 0.9 2.51.8K *-0s K *令0.9 2.50K *-=,得0.36K *=。
令21.80s K *+=代入s j ω=及0.36K *=,解出0.447ω=。
交点处20.72a K K *==系统概略根轨迹图如图(a)所示。
图(a) 概略根轨迹图(2) 确定使系统0.707ζ≥的a K在根轨迹图上,作0.707ζ=阻尼比线,得系统主导极点1,20.1550.155s j =-±利用模值条件,得1s 处的0.0612K *=;分离点d 处的0.0387K *=。
线性系统的根轨迹法
![线性系统的根轨迹法](https://img.taocdn.com/s3/m/7b0b1f33001ca300a6c30c22590102020740f2c5.png)
法则7. 根轨迹与虚轴的交点
交点和临界根轨迹增益的求法:
解: 方法一
例8.
,试求根轨迹与虚轴的交点。
K*=0 w =0 舍去(根轨迹的起点)
与虚轴的交点:
闭环系统的特征方程为:
s=jw
劳斯表:
01
s2的辅助方程:
02
K* =30
03
当s1行等于0时,特征方程可能出现纯虚根。
04
等效的开环传递函数为:
参数根轨迹簇
二、附加开环零、极点的作用
试验点s1点
例1.设系统的开环传递函数为: 试求实轴上的根轨迹。
解:
零极点分布如下:
p1=0,p2=-3,p3=-4,z1=-1,z2=-2
实轴上根轨迹为:[-1,0]、[-3,-2]和 (- ∞ ,-4]
jw
-2
-1
1
2
-1
-2
s
.
.
.
.
.
.
.
.
三、闭环零极点与开环零极点的关系
反馈通路传函:
前向通路传函:
典型闭环系统结构图
KG*--前向通路根轨迹增益 KH*--反馈通路根轨迹增益
K*--开环系统根轨迹增益
1
闭环传递函数:
2
开环传递函数:
01
04
02
03
闭环系统根轨迹增益,等于开环系统前向通路根轨迹增益。 对于单位反馈系统,闭环系统根轨迹增益等于开环系统根轨迹益。
(5)用(s-s1)去除Q(s),得到余数R2 ;
(6)计算s2 =s1-R1/R2 ;
(7)将s2 作为新的试探点重复步骤(4)~(6)。
例4.试用牛顿余数定理法确定例3的分离点。
自动控制原理第四章根轨迹法(管理PPT)
![自动控制原理第四章根轨迹法(管理PPT)](https://img.taocdn.com/s3/m/6f93e609777f5acfa1c7aa00b52acfc789eb9f9c.png)
根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
s4 - 线性系统的根轨迹法
![s4 - 线性系统的根轨迹法](https://img.taocdn.com/s3/m/ebfe64007cd184254b3535f2.png)
再看例4.2
例4.2 已知某负反馈系统的开环传递函数为 : G ( s ) H ( s ) = 概略绘制 K*从0→∞变化时的根轨迹。 解: 首先判断其属于1800根轨迹。 ① ②
n
K* s ( s + 1)( s + 2)
–
Im 2 1 Re 0
③
–
④ 求重根点:
m 1 1 = ∑ ∑ d − p j =1 i =1 d − z i j
—
-3
-2
×
—
-1
×
—
- 0.42
●
×
–
1 1 1 有: + + = 0 ⇒ 3d 2 + 6d + 2 = 0 d d +1 d + 2
⎧− 0.42 − 6 ± 36 − 24 d= = −1 ± 0.58 = ⎨ 6 ⎩− 1.58(舍去)
标在图上. 那这两条根轨迹沿什么方向离开重根点、趋向于渐近线呢?
规则 2: 根轨迹的每一条分支都是连续的;根轨迹对称于实轴。
3. 根轨迹的起点和终点
起点: K * = 0 时, 特征根 S = ? i 终点: K * → ∞ 时,特征根 S i = ?
n
根轨迹起始 于开环极点
j
根轨迹终止 于开环零点
整理特征方程可得:K = −
*
∏ (s − p ) ∏ (s − z )
i =1 n j j =1
K * ∏ s − zi
m
∏ (s − z )
i =1 j
m
∏ (s − p
j =1
n
=1
0°根轨迹 相角条件
)
模值条件
i
自动控制原理_第4章_线性系统的根轨迹法
![自动控制原理_第4章_线性系统的根轨迹法](https://img.taocdn.com/s3/m/8caa172c3968011ca30091bc.png)
4.2 绘制根轨迹的依据--根轨迹方程
R(s)
G ( s) H ( s)
C(s)
一、闭环零极点与开环零极点的关系
* KG
* KH d
G( s)
Π ( s z j )
j 1
a
( s pi ) Π i 1
* a
b
* KG A( s)
B( s)
c
H ( s)
Π ( s zl )
K* G( s) s( s 1)(s 2)
试绘制系统的概略根轨迹。 解:开环极点 p1=0, p2=-1, p3=-2,无开环零点。
实轴上的根轨迹 (-∞,-2], [-1,0]。 渐进线 n=3,m=0,有三条渐进线。
0 1 2 1 交点 a nm 3
i 1
pi
1/4<K<∞时,s1,s2为一对共轭复根; K=1/2时,s1,2=-1/2±j0.5。
注意:一组根对应同一个K;K 一变,一组根变;K一停, 一组根停;
K=0.5 K=0 -1
jω
j0.5 0
σ
-j0.5 根轨迹:简称根迹,它是指系统中某一 K=0.1875 K=0.25
参数在可能的取值范围内连续变化时, 闭环系统特征根在s平面上的变化轨迹。
a
pi z j
i 1 j 1
n
m
nm
a
(2k 1) nm
k 0,1,2,, 直到获得(n m)个夹角为止 .
开环传递函数
G ( s) H (s) K * Π ( s z j )
j 1 m
( s pi ) Π i 1
n
K*
线性系统的根轨迹分析
![线性系统的根轨迹分析](https://img.taocdn.com/s3/m/4b73496ecf84b9d528ea7a94.png)
s1右边所有位于实轴上的每一个极
点或零点所提供的幅角为180°;
s1左边所有位于实轴上的每一个极点或零点所提供的幅角为0°。
已知系统的开环传递函数,试确定实轴上的根轨迹。
K ( s 1 )( s 4 )( s 6 ) G ( s ) 2 2 s( s 2 )( s 3 )
表示两重极点
第四章 线性系统的根轨迹分析
主要内容
§4—1 根轨迹的基本概念 §4—2 绘制根轨迹的基本条件和基本规则 §4—3 广义根轨迹 §4—4 滞后系统的根轨迹 §4—5 利用根轨迹分析系统的性能 §4—6 用MATLAB绘制系统的根轨迹
§4—1 根轨迹的基本概念 闭环极点(即闭环特征方程根) 闭环控制系统稳定 性、瞬态响应特性 问题1: 如何按希望性能将闭环极点合适的位置? 问题2: 当系统的某些参数(如开环增益)变化时,反复求解, 不方便,有没有简便分析方法? 根轨迹:当系统某一参数在规定范围内变化时,相应的系 统闭环特征方程根在s平面上的位置也随之变化移动,一个 根形成一条轨迹。 系统特征根的图解方法!!! 广义根轨迹:系统的任意一变化参数形成根轨迹。 狭义根轨迹(通常情况): 变化参数为开环增益K,且其变化取值范围为0到∞。
s平面
j
6
5
4 3 2
1
o
[-1,-2] 右侧实零、极点数=3。 [-4,-6] 右侧实零、极点数=7。
五、根轨迹的渐近线 当系统n>m时,有(n-m)条根轨迹分支 终止于无限远零点。 沿着渐近线趋于无限远处, 渐近线也对称于实轴(包括与实轴重合)。
渐近线与实轴的倾角(k=0,1,2,…) : ( 2 k 1 ) 180 a n m 渐近线与实轴交点的坐标值:
第4章线性系统的根轨迹分析
![第4章线性系统的根轨迹分析](https://img.taocdn.com/s3/m/cff5996b5ef7ba0d4a733bef.png)
k (s z1)(s z2 )(s zm ) 1 (s p1)(s p2 )(s pn )
(4-2-6)
g(t) c(t) 1 et /
闭环系统特征方程为
f (s) s3 3s2 2s k 0
df (s) 3s2 6s 2 0 ds
s1 0.422, s2 1.578
由前边分析得知,s2 不是根轨迹上的点,故舍 去。s1是根轨迹与实轴分离点坐标。最后画出
根轨迹如图4-2-4所示。
图4-2-4 例4-2-1的跟轨迹图
利用多项式乘法和除法,由式(4-2-6)可得
n
s n ( pi )s n1
k
i 1 m
s m ( z j )s m1
j 1
m
n
s nm ( z j
pi )s nm1
j 1
i 1
将式(4-2-8)代入上式可得
m
n
(s )nm snm ( z j pi )snm1
(n m)
(4-2-1)
式中 s z j ( j 1,2,, m) 为系统的开环零点 s pi (i 1,2,, n) 为系统的开环极点
k称为根轨迹增益或根轨迹放大倍数。设系统为v型, 即有s=0的开环极点,将式(4-2-1)改写为
G(s)H (s)
K (1s 1)( 2s 1)( ms 1)
当1<k<∞时,两个闭环极点变为一对共轭复数极点
明当sk1→、s21、∞ 时s12,位js1于、k(s-121,将,且j趋0s1)、向点s于且2 无平的限行实远于部处虚不。轴随图的k变4直-化1线的,上控说。
自动控制理论第四章 线性系统的根轨迹分析
![自动控制理论第四章 线性系统的根轨迹分析](https://img.taocdn.com/s3/m/880434b4f121dd36a32d8229.png)
由以上分析得知:
根轨迹表明了系统参数对闭环极点分布的影 响,通过它可以分析系统的稳定性、稳态和 暂态性能与系统参数之间的关系。
利用根轨迹,可对系统动态特性进行下述分析: (1)判断该系统在K1从0到变化时的稳定性; (2)判断系统在K1从0到变化时根轨迹的条数; (3)判断该系统K1取值在何范围时处于过阻尼、 临界阻尼和 欠阻尼状态; (4)判断系统的“型”,从而计算系统稳态特性; (5)当K1值确定后,在根轨迹上找到闭环极点,从而计算系 统闭环性能指标;或反之;
•根轨迹法作为经典控制理论的基本方法,与频率特性法 互为补充,是分析和研究自动控制系统的有效工具。
•实际上,我们可以利用matlab方便地绘制系统的根轨 迹图。
本章内容
第一节 根轨迹的基本概念 第二节 绘制根轨迹的方法 第三节 参量根轨迹和多回路系统根轨迹 第四节 正反馈系统和零度根轨迹 第五节 利用根轨迹分析系统的暂态性能 第六节 延迟系统的根轨迹 本章小结、重点和习题
当K1由0变化到时,试按一般步骤与规则绘制 其根轨迹图。 解: (1)本系统为3阶系统,有3条根轨迹; (2)起始点:系统没有开环零点,只有三个开环 极点,分别为p1=0,p2=-1,p3=-2。 (3)渐近线:K1时, p1 p2 p3 0 1 2 a 1 有3条根轨迹趋向无穷远处, nm 30 其渐近线与实轴的交点和 (2q 1)180 (2q 1)180 a nm 3 倾角分别为:
满足相角条件,s1=-1.5+j2.5是该系统根轨迹上的点。
(3)利用幅值条件求得与s1 相对应的K1值。
K1
s1 ( s1 2) ( s1 6.6) ( s1 4)
1.5 j 2.5 0.5 j 2.5 5.1 j 2.5 2.5 j 2.5
第10讲第4章根轨迹
![第10讲第4章根轨迹](https://img.taocdn.com/s3/m/d6ee3cf1f90f76c661371a38.png)
4.5.2 开环零极点对系统的影响
对于图4-1所描述的系统,影响系统稳定性有三 大因素:开环增益、开环极点、开环零点影响,请看图4-13所示的例子。
图4-13a,b 开环零、极点对系统的影响
第四章 根轨迹法
图4-13c,d,e,f 开环零、极点对系统的影响 第四章 根轨迹法
第四章 根轨迹法
(b)
(c)
(d)
(e)
第四章 根轨迹法
(f)
4.5.4 闭环零极点与时间响应
系统的动态性能最终体现在时间响应,影响时间响 应的因素有两个:闭环传递函数和输入函数。在第三章 中已经分析:时间响应的暂态分量主要取决于闭环零、 极点,时间响应的稳态分量主要取决于输入函数。 如前所说,闭环系统的稳定性完全取决于闭环极 点,实际上时间响应的暂态分量也主要取决于闭环极 点。每一个闭环极点si对应时间响应中的一个因子 exp(sit)——称为系统的一个模态(Mode),si在S平 面上的位置决定了它对应的暂态分量的运动形式。
图4-13(a)-(d)所对应的系统开环传递函数 分别为:
a 图 : 图 : b 图 : c 图 : d
1 G(s)H(s) = s(s + 2) s +3 G(s)H(s) = s(s + 2) s +3 G(s)H(s) = s(s − 2) s −3 G(s)H(s) = s(s + 2)
第四章 根轨迹法
第四章 根轨迹法
第四章 根轨迹法
j
σ
——闭环极点位置
———
的共轭
图4-15 闭环极点分布与暂态分量的运动形式
第四章 根轨迹法
设计系统时合理配置闭环极点是十分重要的,根 据上述规律,一般首先配置主导极点,然后配置非主 导极点,非主导极点与虚轴的距离应当是主导极点与 虚轴距离的2~5倍,这样系统的时间响应就主要取决 于一对主导极点。 主导极点一般安排为一对共轭复数极点,位于 如图4-5虚轴左边60o扇形区内,且离虚轴有一定的距 离,其理由在于: 1)闭环主导极点为共轭复数,使闭环系统的动态 性能与一个二阶欠阻尼系统相似,二阶系统的动态性 能是分析得最透彻的,欠阻尼系统则具有较快的反应 速度。
自动控制原理 第四章
![自动控制原理 第四章](https://img.taocdn.com/s3/m/e7746ac905087632311212cf.png)
m
(s p )
j 1
n
G( s) ( s ) 1 G( s) H ( s)
G( s) H ( s)
*
K ( s z1 ) ( s z m ) 1 ( s p1 )( s p2 ) ( s pn )
m
K K*
j 1 i 1 n
m
zi pj
i 1 j 1
例 判定si是否为根轨迹上的点。
解.
模值条件 相角条件
• 对s平面上任意的点,总存在一个 K* ,使其 满足模值条件,但该点不一定是根轨迹上的点。 • s平面上满足相角条件的点(必定满足幅值条 件) 一定在根轨迹上。
满足相角条件是s点位于根轨迹上的充分必
要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来 确定。
由代数定理: a n 1
p
i 1
n
i
l i a n 1 C
i 1
n
D( s ) s n a n 1 s n 1
an 2 s n 2 K * s n 2
an 3 s n 3 K *bn 3 s n 3
a0 K *b0
(对应重根)
分离角:(2k+1)*180/L
试根:
d [ 1,0.5] d1 0.5 d 2 0.6 d 3 0.55
d 0.55
d d 1 d 4 K d2
* d
0.589
法则7
与虚轴交点:
1)系统临界稳定点
2)s = jw 是根的点
例 某单位反馈系统的开环传递函数为
K * ( s 2) G( s) s( s 1)
自动控制原理 第四章 线性系统的根轨迹方法(2011-3) (2)
![自动控制原理 第四章 线性系统的根轨迹方法(2011-3) (2)](https://img.taocdn.com/s3/m/85a4788b71fe910ef12df8d3.png)
பைடு நூலகம்β = 45
−ξπ 1−ξ 2
β = 60
[ s]
j
⎧45° < β < 60° ⎨ ⎩ 2 < ωn < 5
−5
−2
0
13
ξ ξ ξ ξ ξ ξ ξ
= 0.0 σ % = 100% = 0.4 σ % = 25% = 0.5 σ % = 15% = 0.6 σ % = 10% = 0.7 σ % = 5% = 0.8 σ % = 2% = 1.0 σ % = 0%
A
ξ = 0.5
Im
λ3 = −2.34 X
−2
λ1 = −0.33 + j0.58
−1
X
−0.5
60
0
X
Re
λ2 = −0.33 − j0.58
21
三、高阶系统动态性能指标估算
1、高阶系统单位阶跃响应
(1) 高阶系统的单位阶跃响应包括常数项和响应模态。 (2) 除常数项以外,高阶系统的单位阶跃响应是系统模态的组 合,组合系数即部分分式系数。 (3) 模态由闭环极点确定,而部分分式系数与闭环零点、极点 分布有关,闭环零点、极点对系统动态性能均有影响。
ξ ≥ 1− r
( α)
2
ωd ≤ r
α − r ≤ ωn ≤ α + r
α − r ≤ ξωn ≤ α + r
如果设定区域
ξωn ≥ q
则选择 r ≤ min
(α − q , α
ξ ≥ ξ min
1− ξ
2 min
)
8
[例]:如图系统,求系统具有最小阻尼时K值及相应的 动态性能和稳态误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。