北师大版八年级数学平面直角坐标系说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学八年级说课稿平面直角坐标系第一课时
北师大版八年级数学平面直角坐标系说课稿
平面直角坐标系(第一课时
一、背景分析
(1学习任务分析
本节课的学习任务是:理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。认识并能画出平面直角坐标系。能在给定的直角坐标系中,由点的位置写出它的坐标及由坐标描出点的位置。“平面直角坐标系”作为“数轴”的进一步发展,实
现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。是今后学习函数、函数与方程、函数与不等式关系的必要知识。所以平面直角坐标系是沟通代数和几何的桥梁,是今后学习的一个重要的数学工具。目的是让学生尽早接触平面直角坐标系这种数学工
具,更快更好地感受数形结合的思想。
所以,本节课的教学重点是:理解平面直角坐标系及相关概念,能由点的位置写出它的坐标。
(2学生情况分析
学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时经过前两节《位置的确定》课的学习,对平面上的点由一个有序数对表示,有了一定的认识。八年级的学生经过一年的初中学习已经具备了初步的逻辑推理能力和空间想象能力,自主探索、合作交流已经成为他们学习数学的重要方式,所以学生学习本节课时已经具备了必要的相关知识与技能。
如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的只限于机械地记忆,这样会影响对数形结合思想的形成。同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。
因此本节的难点是平面直角坐标系中的点与有序实数对间的一一对应,理解点的横纵坐标对确定点在平面直角坐标系中位置的意义。
二、教学目标设计
根据新课标要求和学生现有知识水平,从三个方面提出本节课的
教学目标:
1、理解平面直角坐标系的有关概念,并学会正确地画出直角坐标系;理解平面
内点的坐标的意义,会根据坐标确定点和由点求得坐标。
2、通过对平面直角坐标系的概念理解,让学生感受到一种量随另一种量变化的现象,体会数形结合思想的作用。
3、通过平面直角坐标系点与坐标之间关系的探究过程及解决简单的实际问题,培养学生的好奇心,创新精神,通过学生参与数学活动增强团队精神,培养学生合作意识。
三、课堂结构设计
创设情境,引出新知→→探索新知,形成概念→→操作演练、形成技能→→组织游戏,拓展应用
在本节课教学中,首先由确定平面内点的位置方法开始提出问题,产生建立平面直角坐标系的必要性,认识平面直角坐标系概念,及有序数对与平面直角坐标系内点的一一对应关系的论证,最后通过问题解决与游戏环节,加深理解点的横纵坐标对确定点在平面直角坐标系中位置的意义。
四、教学过程设计
活动一、创设情境,引出新知(全体活动
1、出示新桥镇行政区图片,图中标示出一中、二中、和几个行政村的的位置。
2、问题:你能表示出这种位置关系吗?
3、问题:如果引入方格线,现在你能表示图中一中、二中的位置吗?
(模块一,从学生熟悉的数轴出发,使学生将新旧知识联系起来,符合学生的认知规律。引入图片既可以提高学生兴趣,同时开阔了学生眼界,连续三个问题步步提出将平面直角坐标系引入的必要性逐渐展现在学生面前,同时把本节课与前面《位置的确定》紧密联系在一起,而此处方格线具有的无界性,引发成学生思维冲突,设立一个参照点(原点的成为确定位置所必需的。
活动二、探索新知,形成概念(全体活动、小组活动
1、出示平面直角坐标系发明人数学家笛卡尔资料。
2、通过教师引导、操作、逐步演示的方式,师生共同板演画图学习平面直角坐标系及其相关概念。
3、教师引导,利用多媒体演示确定平面内点的位置的方法。
(为了学生更好地叙述坐标的产生,教师可把这种叙述方式固定下来“过点A作横轴的垂线,垂足对应的数字是3,3叫作点A的横坐标,过点A作纵轴的垂线,垂足对应的数字是2,2叫作点A的纵坐标,因此点A的坐标是A(3,2,记忆用一句话表示:先横后纵,逗号隔开,加上括号
(通过坐标含义的讲解、坐标叙述的规范,坐标口诀的传授加强学生对平面直角坐标系内点的坐标的理解与记忆。
4、在建立好平面直角坐标系的题图中,那么你能表示十六中的位置吗?其余的各地点坐标如何表示?小组交流,并请一位同学为
大家叙述 E、G、F 坐标得到的过程。本题中增加了四个点,其中两个点在象限内,两个点在坐标轴上,目的是让学生明确了求不同位置点的坐标的方法,其中设计 E 点是为了让学生与 B 点比较以便更好地理解了点的坐标的有序性。活动三、操作演练、形成技能(小组活动,全体活动) 1、提出问题:①、写出图中的多边形 ABCD 各顶点的坐标。②E(-2,3),F(-2,-2)G(3,-2)H (3,3)你能在图中描出以上各点吗?③B、E、H、C 的坐标之间有什么关系,其所在的线段的位置有什么特征?图中还有具备这种关系的点吗?④E、F 的坐标之间有什么关系,线段 EF 的位置有什么特征?⑤你得到了什么结论? 2、小组讨论。 3、全班交流。(此处对问题的设置增加了由坐标描点的内容,学生此处会
遇到困难,但通过小组交流一般都可以用判断的方法得到所描点的正确性,由点写出坐标与由坐标描出点的位置的共同操作,有利于学生更好地理解了点的坐标的含义,同时对两者之间的学习不进行刻意的割裂,这样不但引出了问题同时也把有序数对与平面直角坐标系中的点一一对应思想进一步渗透。)活动四、组织游戏,拓展应用(全体活动)
1、设每位同学都表示平面内的一个点,我们让中间位置的一位同学代表坐标原点,让他横、纵向的同学分别代表横轴、纵轴,分别取向右与向前为正方向,在教室内建立平面直角坐标系。请同学们根据老师所说的坐标特点站起来。 (1请横、纵坐标都为 0 的同学站起来。 (2请横坐标为 0 的同学站起来。 (3请纵坐标为0 的同学站起来。 (4请横、纵坐标之一为 0 的同学站起来。你发现了什么?(全班交流明晰:横轴上的点纵坐标为 0,纵轴上的点横坐标为 0,原点坐标为(0,0 (5请横纵坐标均为正的同学站起来。 (6 请横纵坐标均为负的同学站起来。 (7 请横坐标为负、纵坐标为正的同学站起来。 (8 请横坐标为正、纵坐标为负的同学站起来。你又发现了什么?(全班交流明晰:四个象限中点的符号特征。请横坐标为 2 的同学站起来。请纵坐标为 3 的同学站起来。请横纵坐标相等的同学站起来。请横纵坐标互为相反数的同学站起来。你得出了什么结论?(全班交流
师生小结,反思新知合作小结既有助于训练学生概括归纳能力,又有助于学生在归纳过程中把所学的知识条理化、系统化。同时为落实教师主导、学生主体地位。布置作业,巩固新知必做题:教材 P154 随堂练习 1;选做题:如图所示,四边形 ABCO 是直角梯形,AB∥OC,OA=10,AB =9,∠OCB=45°,求点 A、B、C 的坐标及直角梯形的面积。习题 5.3 第 1,2,3 题。