相反数与绝对值PPT精品课件

合集下载

《绝对值与相反数》课件

《绝对值与相反数》课件

实例演示
举例:|-3| 等于 3,|7| 等于 7。
绝对值的性质
1 非负性
绝对值始终大于等于零,即 |a| ≥ 0。
2 反对称性
如果 a ≠ 0,则有 |-a| = |a|。
3 三角不等式
对于任意两个数 a 和 b,有 |a + b| ≤ |a| + |b|。
绝对值的运算法则
绝对值加法法则
绝对值之和的绝对值等于原数 的绝对值之和,即 |a + b| = |a| + |b|。
重点回顾及解答疑问
回顾本课程的重点内容,并对学习者提出的问题进 行解答。
参考资料
书籍及文献
- 《数学家的艺术》 - J.E. 尼尔斯特伦德 - 《解读数学》 - I. 斯图尔特
课外拓展阅读推荐
- 《绝对值和相反数的应用》 - 数学世界杂志
网络资源
- 绝对值和相反数 - MathIsFun
《绝对值与相反数》PPT 课件
欢迎大家来到本次课程《绝对值与相反数》的PPT课件。通过本课程,我们将 深入探讨绝对值和相反数的概念、性质和运算法则,并展示它们在数学和实 际生活中的应用。
什么是绝对值
定义
绝对值是一个数离零点的距离,不论这个数是正数、负数还是零。
符号表示
用竖杠“|”括起来表示,例如 |5| 等于 5。
用,例如在财务管理、物流规划和工程
建设等领域。
3
数学公式和问题
通过理解绝对值和相反数的概念和运算 法则,我们可以解决各种数学公式和问 题。
更多应用
想要了解更多关于绝对值和相反数的应 用,请参考本课程提供的参考资料。
总结
绝对值和相反数的关系
绝对值和相反数是数学中重要的概念,它们互为补 充,相辅相成。

23第二章《绝对值与相反数》精品PPT课件

23第二章《绝对值与相反数》精品PPT课件
在一个数前面加上“+”仍表示这 个数,“+”号可省略.
想一想
数轴上表示相反数的两个点和原点 有什么关系?
在数轴上表示相反数(0除 外)的两个点位于原点的 两侧 , 且与原点的距离相等 .
请一位同学随便报一个数,然后点名叫另 一位同学说出它的相反数。
总结:a的相反数是-a。0的相反数是0
B
A
1、两只小狗从同一点O出发,在一条笔直的街上跑,一 只向右跑3米到达A点,另一只向左跑3米到达B点。若规 定向右为正,则A处记做_______,B处记做_______。 2、这两只小狗在跑的过程中,有没有共同的地方?在数 轴上的A、B两点有什么特征?
相反数呢?(小组讨论)
像+2与-2,+5与-5这样只有符号不同两 个数叫做互为相反数
???
0的相反数是??
0的相反数是0。
2.分别说出9,-7,0,-0.2的相反数.
(-9,7,0, 0.2 ) 3.指出-2.4, ,-1.7,1各是什么数的相反数?
( 2.4,1.7,-1)
4. a 的相反数是什么?
5
解: |1.6|1.6
| 8 | 8
55
| 0| 0
| 10|10
| 10|10
小小测试:
2.05 1000
7 9
0
7 -9
-1000 -2.05
相反数
-2.05
-1000

7 9
0
7 9
1000
2.05
绝对值
2.05
1000
7 9
0
7 9
1000
2.05
思考:通过刚才的练习,你有什么发现?
应用深化知识
哈哈!我 还是我!

相反数、绝对值ppt课件

相反数、绝对值ppt课件

数学史导入
符号类型,并且也载入了书本中,成为表达绝对值的一种方式,这种 表达方式为“| |”,既简单也很直接,并且在计算机中使用也很直观, 当然在使用的时候也是有相关规定的。
自主探究
1.请同学们阅读教材27页,思考下列问题:
3与-3有什么关系? 3与- 2
32,5与-5呢?你还能列举一组
这样的数吗?你发现了什么?由此你能得到什么结论
典例精讲
【题型一】求一个数的相反数或绝对值 例1:-2 024的相反数是 2 024 ,绝对值是 2 024 。 变式1:如果a与100互为相反数,那么a= -100 。 变式2:已知一个数的绝对值是4,那么这个数是 ±4 。
【题型二】对绝对值性质的理解
例2:若a≥0,则|a|等于( C )
A.0
和-5米来表示,这两个量除了符号不同,还有什么特点吗?
成语导入 “南辕北辙”这个成语讲的是古代某人要去南方,却向北走了起来, 有人预言他无法到达目的地,他却说“我的马很快,车的质量也很 好”,请问他能到达目的地吗?
数学史导入 绝对值这个概念是七年级接触的第一个最具代数特征的数学概念, 这个概念的确立距今已经一百多年。绝对值概念的产生是基于解析 几何的需要,也就是说目的是表达数轴或坐标系条件下的距离概念, 而这个概念的产生距离正负数的出现足足晚了1 400多年,绝对值的 概念是由德国著名数学家魏尔斯特拉斯首先引用的。绝对值符号来 源于计算机,在计算机中为了能更好的进行表达,研究出了不少的 符号,而这种符号的应用就成为一大关键。在1841年魏尔斯特拉斯 首次使用了这种符号,至此之后该符号不仅成为计算机专用的
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识讲解
知识点1:相反数(重点) 符号不同,数量相等的两个数,我们称其中一个数为另一个数的 相反数,也称这两个数互为相反数。特别地,0的相反数是0。

冀教版七年级数学上册 1.3 绝对值与相反数 PPT课件

冀教版七年级数学上册 1.3 绝对值与相反数 PPT课件

探究新知
(3)设a是一个正数,数轴上与原点距离等于a的点有几个? 这些点表示的数有什么关系?
在数轴上,与原点距离是a的点有__2__个,
分别表示 a 和 -a .
探究新知
例2:先说出下列各数表示的意义,再化简下列各数: -(-11),-(+2),-(-3.75),-(+183), -[-(-3)],-[+(-2.3)]
归纳总结: 一个正数的绝对值等于它本身,一个负数的绝对值 等于它的相反数,0的绝对值是0.
探究新知
如果有理数用a表示,则有: 当a是正数时,|a |=a; 当a=0时,|a |=0; 当a是负数时,|a |= -a。
探究新知
思考: 如果一个数的绝对值等于它本身,那么这个数是 非负数 ; 如果一个数的绝对值等于它的相反数,那么这个数 是 非正数 。 符号语言:若|a |=a,则a ≥0 ;若|a |= -a,则a ≤0 .
巩固练习
解:因为|-0.3|=0.3,|-0.2|=0.2, |+0.3|= | 0.3|, | +0.2|=0.2,|-0.4|=0.4, |-0.1|=0.1, 所以|-0.1|最小,即第6号零件更好些. 绝对值 越小 越接近零件的标准尺寸,也就是说这个零件 更好些.
回顾反思
本节课我们研究了相反数与绝对值,请同学们带着以下问 题进行总结: (1)如何求一个数的相反数?如何求一个数的绝对值? (2)在学习相反数与绝对值的过程中,你经历了什么?这个 过程中用到了哪些数学方法?积累了哪些活动经验?
解:(1)原式=24. (2)原式=150. (3)原式=-3.5. (4)原式=-45.
当堂训练
4.(1)数轴上的点A和点B之间的距离是3个单位长度,且这 两个点表示的数互为相反数,请你求出点A和点B表示的数.

2.3.2绝对值与相反数:相反数(同步课件)-七年级数学上册(苏科版2024)_1

2.3.2绝对值与相反数:相反数(同步课件)-七年级数学上册(苏科版2024)_1

若两个数的绝对值相等,则这两个数相等或互为相反数, 即若|a|=|b|,则a=±b。
03 典例精析
例1、填空: (1)a的相反数是__-a__,-a的相反数是__a__; (2)a+b的相反数是____-_(a_+_b_)_=_-_a_-_b___, a-b的相反数是____-(_a_-_b_)=_-_a_+_b____。 (3)正数的相反数都是_负_数__;负数的相反数都是_正__数_。
例2、在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3) 与-(-3),互为相反数的是___③__④___。(填序号)
【分析】先化简后判断: ①3与3,不互为相反数;②-3与-3,不互为相反数; ③3和-3,互为相反数;④-3和3,互为相反数。
03 典例精析
每组数符号不同,符号后的数值相同。
如图,以+250与-250为例: 数值相同
+250
-250
符号不同
02 知识精讲
相反数的概念
只有符号不同的两个数互为相反数(opposite number),其中一个 数叫做另一个数的相反数。
eg:250与-250互为相反数,也可以说250是-250的相反数, -250是250的相反数。
【分析】 -(-4)表示-4的相反数, 对于任意的数a都有-(-a)=a,即一个数 ∵-4的相反数是4, 的相反数的相反数就是这个数本身。 ∴-(-4)=4。
01 课堂引入 2.算一算,找规律: 1个“+”:+5=5; 2个“+”:+(+5)=____5____; “+”号的个数不影响化简的结果, 3个“+”:+[+(+5)]=____5____; 可以直接省略。 4个“+”:+{+[+(+5)]}=____5____。

相反数与绝对值ppt课件

相反数与绝对值ppt课件
(2)数轴上表示-4和-2.5的点到原点的距离分别是_______;
(3)数轴上表示0的点到原点的距离是_____.
0
概念(二)
绝对值:在数轴上,表示一个数a的点与原点的距离叫做这个数的绝对值,
记作|a|。
A
-6 -5 -4
B
-3
-2
B
-1
0
1
2
'
A
3
4
'
合作交流
根据绝对值的几何意义,填空:

8 ;| | =_____;|0|=_____;

1
3、一个数的相反数是最大的负整数,这个数是_______;
6
4、当a=-6时,-a=______,
a
5、-a的相反数是_______.
探究(二)
问题3:观察数轴,回答:
A
-6 -5 -4
B
-3
-2
B
-1
0
1
2
'
A
3
'
4
4,2.5
(1)数轴上表示4和2.5的点到原点的距离分别是_______;
4,2.5
1 或 -1
探究(三)
想一想:你会用数轴比较-4和-2.5的大小吗?
两个负数,绝对值大的负数反而小。
总结:比较两个负数大小的方法:(1)利用数轴(2)利用绝对值
【例1】 比较

解:|- |=



因为

<





|-|
的大小。

=




,也就是|- |<|- |,

2024年苏科版七年级数学上册 2.3 绝对值与相反数(课件)

2024年苏科版七年级数学上册 2.3 绝对值与相反数(课件)
解题秘方:求一个数的绝对值,就是求一个数对 应的点到原点的距离.
感悟新知
解:如图2.3-1所示.
知1-练
因为-3 对应的点到原点的距离是3,所以|-3|=3 ; 因为2 对应的点到原点的距离是2,所以|2|=2 ; 因为-14对应的点到原点的距离是14,所以|- 14|=14.
感悟新知
知1-练
方法点拨 求一个数的绝对值的方法:
(2)求一个字母或一个式子的相反数时,也只需在这
个字母或式子的整体前面加上“-”号.
感悟新知
知识点 3 绝对值的代数意义
知3-讲
1. 性质 正数的绝对值是它本身;负数的绝对值是它的相 反数;0 的绝对值是0 . 也可以表示为:当a>0 时,|a|=a;当a<0 时,|a|=- a;当a=0 时,|a|=0 .
感悟新知
知1-讲
3. 特别提醒 一个数对应的点离原点越近,它的绝对值越小,离原
点越远,它的绝对值越大,所以没有绝对值最大的数,只 有绝对值最小的数.
感悟新知
知1-讲
特别提醒 由于绝对值是两点间的距离,所以任意一个
数的绝对值都是非负数.
感悟新知
知1-练
例 1 在数轴上表示下列各数:-3,2,-14,并求出各数 的绝对值.
(2)若a=-b,则a与b互为相反数.
3. 相反数的求法 求一个数的相反数就是在这个数的前面
加上“-”号,即a的相反数是-a,其实质是改变这个
数的符号.
感悟新知
知2-练
例 4 分别写出下列各数的相反数. -3,2,4.5,0,-613,a,a-b. 解题秘方:紧扣相反数的求法,直接写出各个数 的相反数.
也是一种运算,绝对值运算的本质就是要把带有绝对值 符号的数化为不带绝对值符号的数(即去掉绝对值符号).

1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)

1.3 绝对值与相反数(课件)七年级数学上册(冀教版2024)
8
|-9|=9, |-3.2|=3.2,
5
2
5
2
7
8
7
8
= ,| |= ,
|-3.14|=3.14.
3.请分别写出下列各数的相反数:
-5, 13, 0,
1
3 ,-(+1.35).
2
-5的相反数是5,
13的相反数是-13,
0的相反数0,
1
2
1
2
3 的相反数- 3 ,
-(+1.35)的相反数是1.35.
分层练习-巩固
利用相反数的定义在数轴上表示相关的数
13.(1)写出下列各数的相反数,并将这些数连同它们的相反
数在数轴上表示出来:

+2,-3,0,-(-1),-3 ,-(+4).

【解】+2的相反数是-2,-3的相反数是3,0的相反数是0,-(-1)的相


反数是-1,-3 的相反数是3 ,-(+4)的相反数是4.如图.
小亮家
小明家
你有什么发现?
西



新知探究
1.绝对值的概念
请以学校为原点画一条数轴,并把小明家和小亮家的位置在数轴上表示出
来.你有什么发现?
小亮家
西
-1500

-1000
-500
小明家

0
500
1000
1500

做一做
请画一条数轴,在数轴上标出表示4,-2,0的点,并写出这些点到原点
的距离.
-6
)2(|-17|=
17
)3(|0|=


0



相反数与绝对值ppt课件

相反数与绝对值ppt课件

课后小结
1.和同桌说说你的收获(知识、 方法、思想)
2.你还有哪些疑问?
知识总结
1.相反数 只有符号不同的两个数,叫做互为相反数. 其中一个数是另一个数的相反数.0的相反数是0.
2.绝对值的几何意义
在数轴上,表示一个数的点到原点的距离叫做这个数的绝 对值. 通常把有理数a的绝对值记作| a |.
比较- 3 和- 4
- 3 = 3 = 15 , 4 4 20
4 5
的大小. 总结:比较两个负数的大 小的步骤:
第1步:求出两个数的__绝__对__值_____;
- 4 = 4 = 16 . 5 5 20
15 16 ,即 - 3 - 4 20 20 4 5
第2步:比较两个绝对值的
____大__小______;第3步:根据“两 个负数,绝对值大的负数反而小”
3.绝对值的代数意义
a(a 0) a 0(a 0)
a(a 0)
|a|=|-a|
拓展提升
1.(1)有没有绝对值最大的有理数?没有
有没有绝对值最小的有理数?

(2)一个数的相反数是最大1 的负整数,这个数是多少? 1
一个数的绝对值是最小的正整数,这个数是多少?
1
拓展提升
2. 已知 | x - 4 |+| y - 3 | = 0,求 x + y 的值.
思考: 在数轴上,表示4与-4的两个点与原点有怎样的位 置关系?与原点的距离各是多少?2.5和它的相反
数呢?
知识总结
对于任意数a,你能在数轴上画出它的相反数吗? a
01
在数轴上,表示互为相反数(0除外)的两个点,分 别位于原点的 两旁 , 并且它们与原点的距离 相等 .

相反数与绝对值_PPT优秀课件

相反数与绝对值_PPT优秀课件

变式2. 若|x|=3,那么x= 3或-3
两个负数比较大小
两个负数,绝对值大的负数反而小.
3 4 比较- 和- 的大小. 4 5
解:
3 3 15 - = = , 4 4 20
4 4 16 - = = . 5 5 20
15 16 3 4 因为 20 20 ,即 - 4 - 5
3 4 - >所以 4 5
只有符号不同的两个数,叫做互为相反数 其中一个数是另一个数的相反数 0的相反数是0
互为相反数的数在数轴上有什么特点? 在数轴上,表示互为相反数的两个点分别位于 原点的两旁,并且它们与原点的距离相等.
对点导练:
1.分别说出下列各数的相反数
-3.5, 7, -8, 2
3
2.填空:
(1)-3.2的相反数是3.2 ; 3.2 的相反数 是-3.2; 1 1 (2)- 和 3 互为相反数;0的相反数是 0 3 (3)若a=13,那么-a= -13
在数轴上,表示一个数a的点与原点的距离叫做这个 数的绝对值, 记作︱a︱.读作a的绝对值.
绝对值有负的吗?
2
1 2
5
2Байду номын сангаас
0
绝对值 的性质
即:|a|=|-a|
对点导练:
1.求下列各数的绝对值
1 (1) - 2 ; (2) 3.2; 3
(3) 0
2.在数轴上,距离原点3个单位长度的点表示的是什么数? 3或-3 变式1.一个数的绝对值是3,那么这个数是: 3或-3
1、你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 2、理想不是一只细磁碗,破碎了不有锔补;理想是朵花,谢落了可以重新开放。 3、人类的幸福和欢乐在于奋斗,而最有价值的是为理想而奋斗 4、世界上最快乐的事,莫过于为理想而奋斗 5、理想的实现只靠干,不靠空谈 6、天行健,君子以自强不息 7、心如明镜台,时时勤拂拭 8、理想即寻觅目标的思维。 9、理想是世界的主宰。 10、理想失去了,青春之花也便凋零了。因为理想是青春的光和热。 11、每个人都有一定的理想,这种理想决定着他的努力和判断的方向。 12、理想就在我们自身之中,同时,阴碍我们实现理想的各种障碍,也是在我们自身之中。 13、立志要如山,行道要如水。不如山,不能坚定,不如水,不能曲达。 14、理想是力量的泉源、智慧的摇篮、冲锋的战旗、斩棘的利剑。 15、人生的真正欢乐是致力于一个自己认为是伟大的目标。 16、人的理想志向往往和他的能力成正比。 17、大丈夫行事,论是非,不论利害;论顺逆,不论成败;论万世,不论一生。——(明)黄宗羲 18、生活的理想,就是为了理想的生活。 19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 23、把理想运用到真实的事物上,便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。

相反数与绝对值精选课件PPT

相反数与绝对值精选课件PPT

2021/3/2
19
2021/3/2
17
与大家共勉
在数学的天地里,重要的不是 我们知道什么,而是我们怎么知道 什么。
达哥拉斯
——毕
再见 !
2021/3/2
18
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
2021/3/2
7
2021/3/2
8
1
2
2
绝对值的 代数意义
2021/3/2
5
2
0
9
|5|= 5 |-5|= 5 |2.4|= 2.4 |-2.4|=2.4
|3|= 3 |-3|= 3 |0.5|= 0.5 |-0.5|=0.5
即:|a|=|-a|
2021/3/2
10
3或-3 1在数轴上,距离原点3个单位长度的点表示的是什么数?
(3)2
1 2

1互为相反数( ×
2
);
(4)-5是相反数( × ).
2021/3/2
6
2、下列说法正确的是( D )
A.正数是带“+”号的数,不带“+”号的数都是 负数
B. 一个数的相反数一定不等于这个数,符号不同的 两个数互为相反数
C.数轴上原点两旁的两个点所表示的两个数互为相 反数
D. 一个数的前边添上“-”号所得的数是这个数的 相反数
的绝对值。
3、会利用绝对值比较两个负数的大小。。
2021/3/2
3
2021/3/2

《绝对值与相反数》精品PPT课件

《绝对值与相反数》精品PPT课件
难道我穿男孩 衣服就是男孩 吗?嘻嘻!
思考:
设a表示一个数,-a一定是 负数吗? 试试写出-5的相反数.
创设情境,导入新课
B
O
A
-10
0
10
它们行驶的路线相同吗?
他们行驶的远近相同吗?
创设情境,导入新课
1、它们行驶的远近相同,即它们距离原点的距离
相同,由此自然而然地引出课题:绝对值 由于学 生是第一次接触绝对值这样比较深奥的数学名词, 所以我利用数轴直接给出绝对值的几何定义:一般 地,数轴上表示数a的点与原点的距离叫做数a的绝 对值,(absolute value)这个定义学生接受起来 比较容易. 2、在与学生一起理解了绝对值的定义后,我再次 提出问题:如何由文字语言向数学符号语言的转化, 即如何简单地标记绝对值,而不用汉字?在此不用 提问学生,我采取自问自答形式给出绝对值的记法. 记作┃a┃
解 (1) -(+3)表示+3的相反数 所以 -(+3)=-3
(2)-(-4)表示-4的相反数 所以-(-4)=4
例题尝试
例:说出下列各式的意义并化简符号.
(3)-[-(-2)] (4)+{-[-(+5)]} (5)-{-{-…-(-6)}}(共n个负号)
化简的规律是:一个正数前有偶数个 负号,结果为正;有奇数个负号,结 果为负.
课堂小结
(1) 只有符号不同的两个数叫做互为相反数;
(2) 相反数成对出现; (3) 数轴上表示相反数的两个对应点,分别位于原点
两侧,它们到原点距离相等; (4) 符号的化简.
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折

2.3 绝对值与相反数(第2课时 相反数)(课件)七年级数学上册(苏科版2024)

2.3 绝对值与相反数(第2课时 相反数)(课件)七年级数学上册(苏科版2024)
6.下列说法正确的有( B
)
①π的相反数是3.14;②符号相反的两个数互为相反数;
③一个数的相反数可能与它相等;④正数与负数互为
相反数.
A. 0个
B. 1个
C. 2个
D. 3个
分层练习-基础
-3.3
7.(1)+3.3的相反数是
(2)-5的相反数是
(3)
5.6



5
的相反数是-5.6;
(4)-(-8)是 -8
对于数字前面含有多个符号的数的化简,只
要观察“-”号的个数即可.如果有奇数个
“-”号,结果的符号就是“-”号;如果
有偶数个“-”号,结果的符号就是“+”
号.
课本练习
1.写出下列各数的相反数:
0,67,-5,-3.14,32.
答:各数的相反数依次为:0,-67,5,3.14,-32.
2.用数轴上的点表示下列各数以及它们的相反数:
0 的相反数是 0.
课本例题

4
3.写出3,-4.5, 的相反数,并在数轴上画出这些
7
数及其相反数对应的点.
﹣4.5
﹣5
﹣4

﹣3
﹣3
﹣2
﹣1




0
3
1
2
4
4
3,-4.5, 的相反数分别是-3,4.5,−
7
7
3
4.5
4
5
概念归纳
因为互为相反数的两个数只相差一个负
号,所以这两个数在数轴上的对应点到
理解为5与-2两数在数轴上所对应的两点之间的距离.
分层练习-拓展
(1)如图,点 A 表示的数为2.5,先在数轴上画出表示2.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级:七年级 科目:数学 版本:青岛版
2.3相反数与绝对值
(新授课)
2021/3/1
1
温故知新 1、什么是数轴? 数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、数轴的三要素
原点、正方向、单位长度来自2021/3/12
学习目标
1、借助数轴,了解相反数的意义,会求一个数的相反
数。 2、借助数轴,初步理解绝对值的意义,能求出一个数
问题二:你会比较-1和-3的大小吗?它们的绝对值 的大小呢?
你发现两个负数的大小与它们的绝 对值的大小有什么关系吗?小组讨论。
2021/3/1
12
1-3< -1 3-1> -1
42
2-0.5> -2 4-3> -5
22
2021/3/1
比 较 - 3 4和 - 5 4的 大 小 . 比应的较先大两比小个较负它数们的的大绝小对,值
2距离原点6个单位长度的点表示的是什么数? 6或-6
3.一个数的绝对值是3,那么这个数是:3或-3
4.一个数的绝对值是6,那么这个数是:6或-6
5. 若|x|=3,那么x= 3或-3
6. 若|x|=6,那么x= 6或-6
2021/3/1
11
设疑诱导,猜想验证
问题一:气温在零下2℃和零下20℃,哪个更冷?
①-3是相反数;②-3和3都是相反数;③-3是3 的相反数;④3是-3的相反数;⑤3与-3互为相 反数。
其中说法正确的个数为( ) A、1个 B、2个 C、3个 D、4个 2、在数轴上表示点A离原点的距离是5,则a= ____。 3.比较下列各组数的大小:
(1)0和-1 (2)0.25和0 (3)-0.125和-0.12
2021/3/1
17
与大家共勉
在数学的天地里,重要的不是 我们知道什么,而是我们怎么知道 什么。
达哥拉斯
——毕
再见 !
2021/3/1
18
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
的绝对值。
3、会利用绝对值比较两个负数的大小。。
2021/3/1
3
2021/3/1
4
想一想
数轴上表示相反数的两个点和原 点有什么关系?
在数轴上表示互为相反数的两个数的点, 分别位于原点的两旁,且与原点的距离 相等。
2021/3/1
5
概念的理解
1. 判断:(1)-5是5的相反数( √ );
(2)5是-5的相反数( √ );
- 3 = 3 = 15 , 4 4 20
- 4 = 4 = 16 . 5 5 20
1516,即-3-4 20 20 4 5
- 3 >- 4 45
13
24
157
3
6.5
4
2021/3/1
14
2021/3/1
15
若|x|=a,那么x=±a
即:|a|=|-a|
2021/3/1
16
课堂检测
1、有下列几种说法:
(3)2
1 2

1互为相反数( ×
2
);
(4)-5是相反数( × ).
2021/3/1
6
2、下列说法正确的是( D )
A.正数是带“+”号的数,不带“+”号的数都是 负数
B. 一个数的相反数一定不等于这个数,符号不同的 两个数互为相反数
C.数轴上原点两旁的两个点所表示的两个数互为相 反数
D. 一个数的前边添上“-”号所得的数是这个数的 相反数
2021/3/1
7
2021/3/1
8
1
2
2
绝对值的 代数意义
2021/3/1
5
2
0
9
|5|= 5 |-5|= 5 |2.4|= 2.4 |-2.4|=2.4
|3|= 3 |-3|= 3 |0.5|= 0.5 |-0.5|=0.5
即:|a|=|-a|
2021/3/1
10
3或-3 1在数轴上,距离原点3个单位长度的点表示的是什么数?
2021/3/1
19
相关文档
最新文档