煤层气水力压裂技术简介
煤层气藏特点及煤层气井压裂技术
煤层气藏特点及煤层气井压裂技术压裂酸化程技术中压裂酸化工程技术中心主要内容一、煤层气藏特点及压裂改造难点二、煤层气压裂工艺技术介绍三、煤层压裂施工分析及认识(以沁南区块为例)四、煤层压裂新思路一、煤层气藏特点及压裂改造难点分析煤层储气特点割理:主要的渗流通道,同时也是水的储集空间。
主要的煤层吸附气储集空间基岩微孔:主要的煤层吸附气储集空间。
一、煤层气藏特点及压裂改造难点分析煤层的解吸渗流特点降压解吸扩散渗流一、煤层气藏特点及压裂改造难点分析煤层开采特点¾煤层既是煤层气的生气源岩又是其储集层。
¾煤层气开采过程中存在一个临界解吸压力,当煤层压力高于解吸压力时,煤层气被吸附在煤层孔隙内表面,而非处于游离状态,这就要求在开采过程中井底气被吸附在煤层孔隙内表面而非处于游离状态这就要求在开采过程中井底流压必须低于其吸附压力。
¾煤层气的产出要经过解吸—扩散—渗流的过程。
煤层气含量越高,煤层气临界解吸压力越高,煤层气开始解吸产出时的地层弹性能量越高,临界解吸压力与原始煤层压力越接近,就越有利于煤层气的高产。
一、煤层气藏特点及压裂改造难点分析煤层具有较强的应力敏感性,压裂中易造成压敏伤害煤层具有较强的应力敏感性压裂中易造成压敏伤害基质岩体的软硬应力敏感性缝面支撑凸体分布岩石中裂缝抵抗闭合的过程,实际上是裂缝上下两面凹凸不平的接触变形过程,煤岩在所有岩体中最软,缝面最平整光滑,因此煤岩最软缝面最平整光滑因此煤岩应力敏感性最强。
一、煤层气藏特点及压裂改造难点分析围压增大后煤层气测渗透率急剧降低,当围压解除,渗透率只能恢复围压增大后煤层气测渗透率急剧降低当围压解除渗透率能恢复到原渗透率的45%左右,因此,压力敏感对煤层的伤害极大。
压裂过程应避免净压力的突然上升和下降,排采过程中应避免排采强度过大、避免流压上下波动,以减小压敏伤害。
一、煤层气藏特点及压裂改造难点分析煤岩具有易碎性,压裂过程中产生煤粉,对储层形成污染。
煤层气压裂技术及应用书
煤层气压裂技术及应用书煤层气是指埋藏在煤层中的天然气,是一种重要的清洁能源资源。
为了提高煤层气的采收率,保证煤层气井的稳产和有效开发,煤层气压裂技术应运而生。
本文将介绍煤层气压裂技术的原理、方法以及在实际应用中的关键问题。
煤层气压裂技术是指通过注入压裂液体,使其在含煤岩石中断裂,从而创造裂隙,增加天然气的流通面积和渗透率,提高煤层气的开采效果。
煤层气压裂技术主要包括水力压裂和气体压裂两种方法。
水力压裂是指通过注水泵将高压水注入煤层,增加煤层内的压力,使煤层裂开,从而促进煤层气与井筒的连接,提高煤层气的产量。
水力压裂的关键是选择合适的压裂液体,通常采用高浓度的水溶液和添加剂混合物,增加液体的黏度和稠度,提高水力压裂的效果。
水力压裂技术是煤层气开发中最常用的方法之一,广泛应用于大规模煤层气田的开发。
气体压裂是指通过注入压裂气体,利用气体的高压力将煤层断裂,创造裂隙,提高煤层气的渗透能力。
气体压裂主要包括液体氮压裂和临界点压裂两种方法。
液体氮压裂是指将低温液氮注入煤层中,通过氮气蒸发和煤层内部断裂,产生大量的裂隙和缝隙。
临界点压裂是指将临界点气体注入煤层,使煤层内的气体超过临界压力,从而引发煤层断裂,增加煤层气的产量。
气体压裂技术常用于较小规模的煤层气田开发中。
在煤层气压裂技术的应用中,存在一些关键问题需要解决。
首先是选井技术问题,包括选择合适的井位和井筒结构,以及合理布置井网,以提高压裂效果和采收率。
其次是压裂液体选择问题,包括选择适合的水质和添加剂,以及控制压裂液体的黏度和浓度,以提高煤层裂缝的渗透性和扩展性。
再次是压裂设计和施工问题,包括合理选择压裂参数,制定压裂方案,以及确保压裂工序的顺利进行。
最后是压裂后的油气开采问题,包括监测开采效果,调整开采方案,以及保证煤层气井稳定产量和长期运行。
总结起来,煤层气压裂技术是一种重要的煤层气开发方法,可以有效提高煤层气的产量和采收率。
通过水力压裂和气体压裂等方法,在煤层中创造裂隙和缝隙,增加煤层气的流通面积和渗透率。
煤层气井水力压裂技术
适用于低渗透煤层,能够提高煤 层的渗透性,增加天然气产量, 是煤层气开发中的关键技术之一 。
技术原理
01
02
03
高压水流注入
通过高压水泵将高压水流 注入煤层,利用水压将煤 层压裂。
支撑剂填充
在压裂过程中,向裂缝中 填充支撑剂,如砂石等, 以保持裂缝处于开启状态。
气体流动
压裂后,煤层中的天然气 通过裂缝和孔隙流动,被 开采出来。
智能化发展
利用人工智能、大数据和物联网技术,实现水力压裂过程 的实时监测、智能分析和自动控制,提高压裂效率和安全 性。
绿色环保
研发低污染或无污染的压裂液和支撑剂,降低压裂过程对 环境的影响,同时加强废弃物的处理和回收利用。
多层压裂和水平井压裂
发展多层压裂和水平井压裂技术,提高煤层气开采效率, 满足市场需求。
煤层孔隙度
孔隙度决定了煤层的储存空间和吸附能力,孔隙度高的煤层有利于 气体的吸附和扩散。
压裂液性能
பைடு நூலகம்
粘度
粘度是压裂液的重要参数,它决 定了压裂液在煤层中的流动阻力, 粘度越高,流动阻力越大。
稳定性
压裂液的稳定性决定了其在高压 和高剪切条件下保持稳定的能力, 稳定性好的压裂液能够保持较好 的流动性和携砂能力。
解决方案
为了降低水力压裂技术的成本,研究 人员和工程师们正在探索新型的压裂 液和支撑剂,以提高其性能并降低成 本。同时,优化压裂施工方案、提高 施工效率也是降低成本的有效途径。 此外,加强设备的维护和保养、提高 设备的利用率也是降低水力压裂成本 的重要措施之一。
06
水力压裂技术的前景展 望
技术发展方向
能力和导流能力。
裂缝网络设计
裂缝走向
煤层气井压裂技术
专题研讨
压裂
S1 S2
S3
6
图1 压裂过程示意
专题研讨
✓压裂材料:压 裂液和支撑剂
✓施工参数:排 量和压力
图2 压裂施工现场
✓压裂设备:泵 车(组)、液罐、
砂车、仪表车7来自三 压裂液专题研讨
3.1 种类
水基压裂液、泡沫压裂液、油基压裂液、乳化压裂液 清洁压裂液,纯气体压裂液(液化)。
3.2 发展
憋压 造逢
裂缝延伸 充填支撑剂
裂缝闭合
4
专题研讨
2.2 压裂的一般流程
原始煤层压裂井的施工主要经过3个阶段:完井阶段、储 层改造阶段(即射孔、压裂阶段)、排水采气阶段。 (1)压裂方案设计:(裂缝几何参数优选及设计;压裂液类
型、配方选择及注液程序;支撑剂选择及加砂方案设 计;压裂效果预测和经济分析等。 ) (2)压前准备:配制压裂液,压裂车组、设备调试完毕。 (3)施工过程: ①前期:注入前置液,降低滤失,破裂地层,造缝, 降温,压开裂缝后前期加入细砂。 ②中期:注入携砂液,携带支撑剂(先中砂后粗砂)、 充填裂缝、造缝。 ③后期:注入顶替液,中间顶替液:携砂液、防砂卡; 末尾顶替液:提高携砂液效率和防止井筒沉砂。 5
另一方面较小颗粒残渣,穿过滤饼随压裂液一道进入 地层深部,堵塞孔隙喉道。 (4) 粘土矿物膨胀,煤粉运移堵塞裂隙,引起压裂压力增 大,裂缝方向改变。 (5) 压裂液与储层不配伍造成的伤害,可能发生化学反应。
12
专题研讨
表1 国内外压裂液类型及使用现状
压裂 液类型
优点
缺点
适用范围
使用比例
国外 国内
水基 压裂液
9
专题研讨
前置液
携砂液
顶替液
煤层气井测试压裂解释及应用
煤层气井测试压裂解释及应用煤层气井测试压裂解释及应用煤层气是一种新型的能源,其开采与利用是当前我国能源领域的一项重要战略任务。
随着煤层气开采的深入,煤层气井开采压力逐步降低,致使煤层气的开采效率下降,这时需要采用压裂技术来提高采气效率,这就是煤层气井测试压裂技术。
一、煤层气井测试压裂技术概述煤层气井测试压裂技术是一种通过向煤层注入高压液体,使煤层产生裂缝,扩大煤层气通道,从而提高开采效率的技术。
该技术主要包括单硝酸甘油压裂、液压压裂、液体碎岩压裂、沙弹压裂等多种方法,其中以液压压裂最为常用。
液压压裂技术是一种将高压液体注入井内,通过井口充放口向井下送液强行将煤层撑起并裂开,煤层裂缝在拆除撑开压力后能够自行保持半永久性和可使煤层通气性和渗透性增加的技术。
针对不同的地质情况,液压压裂可分为水力压裂、气体压裂、泡沫压裂和混合压裂等,水力压裂是其中应用最为广泛的一种技术。
在进行煤层气井测试压裂前,需要进行试压并测定井下地质参数,根据实测参数进行压裂方案设计。
设计方案通常包括压裂液种类的选择、注入量、注入压力及持续时间等。
在进行压裂过程中,需要不断监测井下压力、压裂液注入量及煤层气产量等参数,及时进行控制和调整。
二、煤层气井测试压裂技术的应用煤层气井测试压裂技术在煤层气井的开采中具有重要的应用价值。
其应用主要包括以下几个方面:1. 提高煤层气井开采效率通过测试压裂技术可以扩大煤层裂缝,增加煤层渗透性,使煤层气开采效率得到提高。
2. 优化煤层气井的产能分布煤层气井测试压裂可以改善煤层裂缝的分布情况,促进煤层气的集中开采,提高整体产能。
3. 降低生产成本测试压裂技术可以提高开采效率和产能,降低生产成本,提高井产值。
4. 提高井下安全性煤层气井压裂需要对井下地质参数进行测量及压裂过程进行监测和控制,从而提高井下施工的安全性。
5. 推进煤层气井开采技术进步煤层气井测试压裂技术是一种新型的能源开采技术,其应用可以带动煤层气产业链的升级,推进煤层气井开采技术的进步。
水力压裂工艺技术
水力压裂工艺技术汇报人:目录•水力压裂工艺技术概述•水力压裂工艺技术流程•水力压裂工艺技术要点与注意事项•水力压裂工艺技术案例与实践•水力压裂工艺技术前景与展望01水力压裂工艺技术概述定义及工作原理水力压裂工艺技术是一种利用高压水流将岩石层压裂,以释放天然气或石油等资源的开采技术。
工作原理通过在地表钻井,将高压水流注入地下岩层,使岩层产生裂缝。
随后,将砂子或其他支撑剂注入裂缝,防止裂缝闭合,从而提高岩层渗透性,便于油气资源流向井口,实现开采。
技术革新随着技术的不断发展,20世纪中后期,水力压裂工艺技术逐渐成熟,并引入了水平钻井技术,提高了开采效率。
初始阶段水力压裂工艺技术在20世纪初开始应用于石油工业,当时技术尚未成熟,应用范围有限。
现代化阶段进入21世纪,水力压裂工艺技术进一步完善,开始采用更精确的定向钻井技术和高性能支撑剂,降低了环境污染,并提高了资源开采率。
技术发展历程水力压裂工艺技术是石油工业中最重要的开采技术之一,尤其适用于低渗透油藏的开采。
石油工业水力压裂工艺技术也广泛应用于天然气领域,通过压裂岩层提高天然气产能。
天然气工业随着非常规油气资源(如页岩气、致密油等)的开采价值日益凸显,水力压裂工艺技术成为实现这些资源商业化开采的关键技术。
非常规资源开采技术应用领域02水力压裂工艺技术流程在施工前,需要对目标地层进行详细的地质评估,包括地层厚度、岩性、孔隙度、渗透率等参数,以确定最佳的水力压裂方案。
地质评估准备水力压裂所需的设备,包括压裂泵、高压管线、喷嘴、砂子输送系统等,确保设备完好、可靠。
设备准备对井口进行清理,确保井口无杂物、无阻碍,为水力压裂施工提供安全的作业环境。
井口准备施工前准备通过压裂泵将大量清水注入地层,使地层压力升高,为后续的压裂创造条件。
注水当地层压力达到一定程度时,通过喷嘴将携带有砂子的高压水射入地层,使地层产生裂缝。
压裂随着高压水的不断注入,砂子被携带进入裂缝,支撑裂缝保持开启状态,提高地层的渗透性。
煤层气水力压裂技术简介-中国矿业大学讲解
16
专题研讨
图5 煤层压裂后电位(Vm)纯异常等值线图
17
图6 压前和压后的井温测量
弱面处造成一个低应力区(遮挡层)。压裂
裂缝垂向延伸至弱面时由于受到应力阻挡,
裂缝将沿弱面处的低应力区延伸,形成“T”
形缝或“工”形缝,对裂缝高度扩展影响较
大。
“T”、“工”型20 缝
专题研讨
4.3.2 地应力
地应力大小和方向控制煤层气井水力压裂裂缝起裂压力、 起裂位置及裂缝形态。(晋城西)
A、B处压力集中:
专题研讨
煤层气井压裂技术
汇报人:周龙刚
中国矿业大学资源学院
2011年12月3日
1
专题研讨
提 纲: 一 压裂的目的及意义
二 压裂机理及一般流程
三 压裂液
四 压裂裂缝
2
专题研讨
一 压裂的目的及意义
①压裂消除了井筒附近储层在钻井、固井、完井过程中 造成的伤害。
②压裂使井孔与煤储层的裂隙系统更有效的联通。 ③压裂可加速脱水,加大气体解析率,增加产量。 ④压裂可更广泛地分配井孔附近的压降,降低煤粉产量。
生物酶破胶剂 ) 杀菌剂:压裂液中的稠化剂多糖聚合物在细菌作用下会发
生降解,导致粘度下降。(甲醛液) PH调节剂:调节压裂液PH值 表面活性剂、降滤剂等
11
专题研讨
3.4 压裂液对储层的伤害
类型:吸附伤害、堵塞伤害、水化膨胀伤害和化学伤害
(1) 煤比表面积较大,容易吸附物质(特别是有机物)。 (2) 压裂液滤失、反排不彻底,滞留储层造成液堵。 (3) 压裂液残渣,返流堵塞填砂裂缝,降低裂缝导流能力;
煤层气井水力压裂技术
水平裂缝
单一垂直缝 单一水平缝 复杂缝
第一次停泵裂缝形态(近井)
第二次停泵裂缝形态(近井)
第三次停泵裂缝形态(远井)
一、煤层特征及压裂的特点
7、 裂缝形状与煤层埋深关系
3.5 3
y = 18.732x -0.4143
© ¨psi/ft£ È £ Ý ¶ ¹ Ì Æ Ñ
2.5 2 1.5 1 0.5 0 0 500 ® É ¾ î £ ¨m£ © 1000 1500
二、煤层水力压裂工艺技术
1、施工参数------携砂液量和顶替液量 (1)携砂液量在砂量(有时地质要求)确定后根据平均 砂比计算。或者给定改造范围, 通过软件模拟计算得出。
(2)顶替液量根据进液管柱结构考虑地面管线后计算得
出。
(注:上述内容与普通油气田水力压裂基本相同,同时应
该指出,合理的加砂程序非常重要,也是施工成功的关键)
煤层气井水力压裂技术
内
容
一、煤层特征及压裂的特点
二、煤层水力压裂工艺技术
1、施工参数 2、压裂材料 3、裂缝诊断 4、压后管理 三、影响煤层压裂效果的因素
一、煤层特征及压裂的特点
一、煤层特征及压裂的特点
1、煤岩的结构煤层气储存方式
面割理 微 孔 隙 吸 附 储 气 端割理 孔隙 油 气 储 存 空 间
实验结果
体积压缩系数 (1041/MPa) 1.26 / 1.65 5.27 2.12 抗压强 度 (MPa) 191 168 81 43 125
1 2 3 4 5
0.19 0.16 0.28 0.30 0.07 0. 17
一、煤层特征及压裂的特点
煤岩力学特征参数
杨氏模量低:煤岩的杨氏模量在1135~8800MPa之间,为常规
煤层水力压裂典型裂缝形态分析与基本尺寸确定
煤层水力压裂典型裂缝形态分析与基本尺寸确定煤层水力压裂是一种通过高压水将煤层破裂的方法,常用于煤层气开采。
在水力压裂过程中,裂缝形态及其尺寸的确定对于煤层气开采有着重要的影响。
下面将对煤层水力压裂典型裂缝形态分析与基本尺寸确定进行阐述。
典型裂缝形态分析:1.折曲型裂缝:在煤层水力压裂过程中,若煤层中存在节理或含有岩层,则容易出现折曲型裂缝。
这种裂缝多为弯曲、交叉,长度较短,裂缝宽度较窄。
2.平直型裂缝:若煤层中不含岩层或较少含有节理,则容易形成平直型裂缝。
这种裂缝多为直线状,裂缝宽度较宽,长度较长。
3.网状型裂缝:网状型裂缝是由多个交叉的裂缝组成的,这种裂缝一般出现在煤层中含有多个节理的情况下。
裂缝的宽度和长度不一定相同,形态较复杂。
基本尺寸确定:1.裂缝高度:裂缝高度是指水力压裂后形成的煤层裂缝的高度。
裂缝高度的确定主要受煤层性质和水力压裂参数的影响。
煤层的厚度和裂缝高度的比率应在合理的范围内。
2.裂缝宽度:裂缝宽度是指水力压裂后形成的煤层裂缝的宽度。
裂缝宽度的大小决定了裂缝的通透性,因此选择合适的水力压裂参数是保证裂缝宽度的关键。
3.裂缝长度:裂缝长度是指水力压裂后形成的煤层裂缝的长度。
裂缝长度主要受煤层性质、水力压裂参数和裂缝类型的影响。
选择合适的水力压裂参数以及了解裂缝类型,对裂缝长度的确定十分重要。
总之,在进行煤层水力压裂前,了解煤层的结构性质和地质构造,选择合适的水力压裂参数,以及合理地确定裂缝形态和基本尺寸是非常必要的。
只有经过科学合理的设计,才能通过水力压裂技术更好地实现煤层气开采的目标。
煤层气藏压裂技术
蒲1-9
蒲1-10
200-600
1000-1500
蒲南2-7
蒲2-4
1500-3500
500-2000
2.煤层活性水压裂技术 开发了具有煤粉悬浮功能的活性水压裂液体系
初步研制了煤粉悬浮剂——煤粉堵塞裂缝,改变裂缝的延伸方向,降低
裂缝有效支撑体积;煤粉堆积,返排过程中降低裂缝导流能力或卡泵
24小时后 加入 48%
经冻胶压裂液伤害后的煤粉
70%左右小于1md
1.冻胶压裂液体系超低温破胶技术 开发低温、超低温破胶技术——生物酶破胶剂的筛选与实验 破胶液残渣粒径分布实验结果对比
项目 常规瓜胶+低温酶 常规瓜胶 中值,μm 25.54 45.4 分选系数 1.51 2.18
井号 蒲1-2 蒲1-3 蒲1-4 蒲1-5 蒲1-6 蒲1-7 蒲1-8 日产气 m3 1000-2000 3000-3500 100-500 2000-3000 200-500 500-1000 500-2000 井号 蒲2-5 蒲2-6 蒲2-8 蒲2-9 蒲2-10 蒲南1-3 蒲南1-4 日产气 m3 500-1500(初期>3000) 450-600 1500-2000 1000-1500 200 2000-3500 1000-2000
煤层气藏压裂技术
煤层气藏特征及压裂难点:
天然割理裂缝发育,裂缝扩展规律复杂 杨氏模量低,支撑剂嵌入严重 煤层气藏压裂技术: 活性水压裂技术 超低温破胶技术
低温、低压、低渗,强吸附,伤害严重
低产低效,对低成本要求高
23个目标区块渗透率分布情况
5个区块渗透率 0.1md 7个区块渗透率 小于 22% 大于 1md 30%
停泵后压降速率大于0.5MPa/min即代表有
煤矿地面水力压裂增透技术研究及应用
煤矿地面水力压裂增透技术研究及应用随着煤矿深度的增加和采空区的扩大,煤层裂隙的连通性逐渐减弱,导致煤层透水性下降。
为了提高煤层透水性,一些煤矿企业通过地面水力压裂技术来实现增透,取得了很好的效果。
本文以某煤矿为例,介绍了其水力压裂增透技术的研究及应用情况。
地面水力压裂增透技术是一种通过喷射高压水流将水平煤层裂隙强制扩张的技术。
其原理基于以下三个方面:1.地应力效应。
煤层深度越深,地应力越大。
在高压水流的冲击下,煤层裂隙会逐渐扩大,破裂面积增大,导致煤层透水性增加。
2.水流冲刷效应。
高压水流在进入煤层裂隙后,会引起局部水流速度的剧烈变化。
这种水流速度变化会产生剪切力和摩擦力,使煤层裂隙周围的颗粒产生磨蚀和冲刷,促进煤层裂隙的扩大和连通。
3.压缩弹性效应。
在高压水流的作用下,煤层内的孔隙和裂隙会遭受水压力和应力的双重作用,从而产生弹性变形。
当水流停止喷射后,孔隙和裂隙会恢复原状,形成较大的空隙和缝隙,进而改善煤层透水性。
二、技术应用过程1.制定施工计划。
根据煤层地质条件和透水性要求,制定施工计划,明确水力压裂方案、施工工艺和设备配置等内容。
2.选择施工点位。
选取煤层透水性较差的地段,确定水力压裂的施工点位和井点位置,同时进行现场勘察和测量,明确煤层深度、倾角、孔隙度和裂隙特征等参数。
3.布设压裂管网。
根据地质条件和水平煤层裂隙的特点,选择合适的压裂管径和喷嘴数量、排列方式,在施工点位井筒内布设压裂管网,并将其与高压水泵和控制系统连接。
4.试压和压裂。
先进行试压,检测管道系统的密封性和耐压性,并根据煤层特点和地质结构参数调整水流压力和流量。
然后开始压裂作业,根据水力压裂方案逐级进行压裂,使煤层裂隙扩张,直到达到要求的透水性。
5.井筒修复和安全措施。
水力压裂后,需要对井筒进行修复和加固,确保井壁的完整性和稳定性。
同时,应选派专人进行安全监测和管道维护,以确保压裂作业的安全性和顺利性。
某煤矿应用地面水力压裂增透技术后,取得了以下几个明显的效果:1.煤层透水性显著提高。
浅谈煤层气压裂技术应用及压裂设备性能
浅谈煤层气压裂技术应用及压裂设备性能摘要:煤层气是煤的伴生矿产资源,其主要成分是甲烷,属于清洁型能源。
在美器材开采阶段,要确保各项工作的规范性,保障煤炭资源的经济效应。
深入分析煤层气压裂技术应用要点,针对压裂所使用的设备性能以及异常问题及时处理,为煤层气的压裂提供良好的技术支持条件。
关键词:煤层气;压裂技术;压裂设备;应用性能引言:煤层气是非常珍惜的资源,做好煤层气的开发与利用,能够治理瓦斯,并改善煤矿安全生产的条件,并补充常规的天然气的缺口,并优化我国的能源资源的结构,能够顺应我国的新能源产业的政策条件。
现如今煤层气的开采,可以对储层进行压裂与改造,完善压裂施工以及配套工艺技术手段。
这样便能更好地完成油气层开采的目标,对此本文结合实践具体分析如下:一、煤层气水力压裂技术的应用原理水力压裂技术,是石油天然气之中成熟应用,能够提升油气生产能力。
现如今水力压裂技术引入煤矿生产阶段,但是煤矿生产有其特殊性,其施工工艺对设备的要求,与一些常规的油气田开发技术有诸多的不同。
深埋地下的煤层承受着上覆岩层的重量,煤层内裂隙承受压力之后,会出现闭合或者半闭合的状态[1]。
煤层的原始透气层不足,水利压力通过高压柱塞泵泵送到高压水流进入井筒之中,水流大于底层虑失速率的排量以及压裂压力,就会让岩石破裂进而出现裂缝,而且在结构之中相互流通,形成一种流通的网络。
在水中加入石英砂作为支撑剂,送进煤层之中被撑开的裂缝之中,这样压裂结束,压裂用水反排之后,实质仍然会留在支撑开的裂缝之中,这样就为煤层瓦斯的流动奠定基础,这样储层与井筒的联通能力进一步提升,这样能加速游离瓦斯的运移,提升瓦斯采抽的效率。
二、煤层气压裂技术应用要点煤层气压裂技术,要明确其机理以及所用的试剂,这是最为基础的环节。
因此要足够的重视这项工作,并结合实际情况选择适合的试剂,这样能够提升煤层气压裂的质量以及工作效率。
分析煤层气的压裂机,明确压裂液与支撑剂合理应用,能有效推进压裂作业。
浅谈煤矿井下的水力压裂技术
浅谈煤矿井下的水力压裂技术随着我国煤矿开采深度逐步增加,瓦斯灾害日益突出,为保证煤矿安全生产,人们越来越重视瓦斯灾害的治理研究。
目前瓦斯抽放是瓦斯治理最有效的措施,但由于国内煤层具有低渗透率的特点,瓦斯抽放效果有限,如何提高煤层的渗透率,增大透气性系数,成为目前瓦斯治理工作研究的重点。
当前常用的方法主要有深孔松动爆破和煤层高压注水压裂两种,前者虽然能够提高煤层的渗透率,但在应用过程中易产生哑炮而留有安全隐患。
目前淮南矿业集团正大力推广水力压裂增透技术,提高钻孔抽采效果,减少钻孔施工数量,实现技术经济一体化。
1 水力压裂增透技术基本原理煤矿井下水力压裂是一种使低渗煤层增透的技术,其基本原理是借助高壓水通过钻孔以大于煤岩层滤失速率的排量向煤岩体注入,克服最小地应力和煤岩体的抗拉强度,在煤层各种原生弱面内对弱面两壁面产生的劈裂或支撑作用使弱面发生张开、扩展和延伸,从而对煤层形成内部分割,这种分割过程一方面通过原生弱面的张开和扩展,增大了裂隙等弱面的空间体积,增加了煤体孔隙率;另一方面原生孔裂隙等弱面的延伸增加了孔裂隙之间的连通,形成相互交织的多裂隙连通网络,增加了瓦斯的运移通道,正是由于这种裂隙连通网络的形成,致使煤层的渗透率大大提高,在负压抽采过程中,使得吸附瓦斯得以快速解吸,从而提高低渗煤层的抽采效果。
2 施工背景淮南潘一矿东井西一(13-1)盘区顶板回风上山揭13-1煤预计瓦斯压力达到5MPa左右,突出危险性较大,为提高揭煤消突钻孔的预抽效果,达到快速消突的目的,确保安全、高效地揭过13-1煤层。
选择对该处揭煤采取水力压裂增透技术。
3 钻孔施工3.1 水力压裂钻孔设计本次压裂试验压裂半径按30m进行设计,共设计5个压裂钻孔,分别为压1、压2、压3、压4与压5,其中压2与压5均穿过13-1煤层1m,即进入13-1煤层顶板1m。
5个压裂钻孔分两个地点进行压裂,其中压1、压2、压3孔在1252(3)底板巷施工,压4与压5在揭煤巷道施工至法距15m处施工。
煤层气压裂和排采技术
20世纪80年代,我国开始引进和消化吸收国外先进的煤层气压裂技术,经过多年的 研究和实践,逐步形成了具有自主知识产权的煤层气压裂技术体系。
02
煤层气压裂技术原理
高压气体在煤层中的作用
01
02
03
扩展煤层裂隙
高压气体在煤层中产生压 力,使煤层产生裂隙,增 加煤层的渗透性。
THANKS FOR WATCHING
感谢您的观看
某矿区煤层排采技术的应用
总结词
实现了煤层气的持续稳定生产
详细描述
在某矿区,通过应用煤层排采技术,实现了煤层气的持续 稳定生产。该技术通过建立排水系统,将煤层中的水排出 ,从而释放出被水封存的煤层气。通过持续稳定的排采, 确保了煤层气的持续供应。
总结词
降低了生产成本
详细描述
该技术的应用显著降低了煤层气的生产成本。由于排采技 术能够有效地将煤层中的水排出,减少了人工排水和相关 设备的投入,从而降低了生产成本。
某矿区煤层气压裂和排采技术的联合应用
总结词
提高了资源利用率
VS
详细描述
联合应用这两种技术提高了该矿区的资源 利用率。通过气压裂和排采的联合作用, 充分释放了煤层中的气体资源,提高了资 源的利用率,延长了矿区的开采寿命。
某矿区煤层气压裂和排采技术的联合应用
总结词
促进了矿区可持续发展
详细描述
该技术的应用促进了该矿区的可持续发展。通过优化煤层气开发效果和提高资源利用率, 矿区的经济效益得到提高。同时,降低生产风险和保护环境也有利于矿区的可持续发展。
总结词
有效缓解了矿区环境压力
详细描述
煤矿瓦斯治理中水力压裂技术的应用分析
煤矿瓦斯治理中水力压裂技术的应用分析摘要:本文通过阐述在煤矿瓦斯中使用水力压裂技术治理的优势,进一步分析如何在煤矿瓦斯治理中应用水力压裂技术,并通过技术应用原理、选定技术设备、布置压裂孔、制备压裂和封孔材料、实施注浆及封孔、检验压裂效果等方面对要点进行阐述,以期能为水力压裂技术在煤矿瓦斯治理中的应用,做以参考。
关键词:煤矿瓦斯;治理;水力压裂;技术前言:煤矿瓦斯又称煤层瓦斯和煤层气,是一种有害气体,其主要是由于在开采煤层时,煤体遭到破坏导致造成煤和围岩之中所产生的甲烷、二氧化碳以及氮产生混合气体,最终形成煤矿瓦斯,对开采人员的人身安全威胁极大,严重时还会造成爆炸。
因此,要通过水力压裂技术进行治理,并提高作业的安全性。
1煤矿瓦斯中使用水力压裂技术治理的优势第一,提升煤层透气性。
在进行开采作业时,由于受到环境以及条件的限制,开采区域的密封性较强,并且空气流动性较差,容易造成瓦斯等有毒气体的累积进而对作业人员产生危害。
使用水力压裂技术,可以将煤层之间的缝隙加大,这样就能够保证煤层中的透气性,有利于瓦斯等有害气体的顺利排放。
第二,消除瓦斯危险性。
水力压裂技术主要是依靠将大量的水和剂液注入到煤层之中,这样有利于将积块之中所存储的瓦斯进行密封,这种通过改变瓦斯传播状态结构的方式,能够降低瓦斯的流动性,也就避免了煤层中瓦斯所可能出现的突发性危险,因此采用水利压裂技术能够有效控制煤矿中的瓦斯。
第三,改善煤体的强度。
原状态结构下的煤体强度较高,这样不利于开采工作的顺利进行,而水利压裂技术主要是通过在煤层中形成裂缝并注入水力的方式控制瓦斯,在煤层之中能够通过孔洞以及裂缝,形成网格状,并进一步破坏煤层原有强度和结构,这种情况之下能够大幅度降低煤体抗拉强度并便于开采。
第四,平衡煤层地应力。
地应力主要存在于地壳之中,简单的来说就是岩石形变所引起介质内部单位面积上的作用力。
在煤矿开采时,煤体本身的重量就容易引起地应力,因此在瓦斯就可能出现形成不均匀的现象。
煤层气井压裂技术与应用研究
煤层气井压裂技术与应用研究煤层气开发是全球能源开发的新领域,其开采技术和方法也在不断的更新与完善。
在煤层气井的开采中,煤层气井压裂技术被广泛应用。
本文将详细探讨煤层气井压裂技术与应用研究。
一、煤层气井压裂技术的概述1.1 煤层气井压裂技术的定义煤层气井压裂技术是指通过注入压裂液体,在井孔中产生高压,从而使煤层发生断裂,并形成可开采的气体裂缝,从而提高煤层气井的产量和利用效益的技术方法。
1.2 煤层气井压裂技术的分类煤层气井压裂技术可以根据不同的分类标准进行分类。
从时间角度上,可以分为早期压裂技术和现代压裂技术。
早期压裂技术指的是上世纪八十年代以前,使用的人工振动或气体压力以及酸等简单方法进行煤层气井开采。
而现代压裂技术则是指目前普遍使用的高压水力压裂技术。
从压裂液体的分类则可以分为水性液压压裂和化学液压压裂。
目前,煤层气井压裂技术大多采用水性液压压裂,因为其具有资源丰富、低成本、环保等优点,而化学液压压裂技术则用于一些特殊情况下,如煤岩力学性质差异明显或煤层岩层结构复杂等。
1.3 煤层气井压裂技术的流程煤层气井压裂技术的主要流程包括注液准备、注液过程、压裂过程、停泵过程和产气测试过程。
首先是注液准备,即按照一定比例将各种化学试剂和水混合,形成压裂液体。
然后进行注液过程,将制备好的压裂液体注入油井中。
在注入压裂液体时,需要确保不断地加深井深度,直到到达设计的注入点。
接下来是压裂过程,即将压裂液体注入后通过水力压力产生断裂裂缝的过程。
在这个过程中,压力需要不断地被调整,以确保注入的压裂液体能够充分地压实煤层。
停泵过程是指当注入的压裂液体已经满足预定的数量,需要停止加压,并等待煤层裂缝缓慢地恢复压力的过程。
停泵时间通常在20-30分钟之间。
最后是产气测试过程,通过对产气量、储层压力和井底压力等参数的测量,来评估压裂效果并进行后续的开采过程。
二、煤层气井压裂技术的应用研究2.1 煤层气井压裂技术的技术难点煤层气开采具有地质条件差异大、地下环境恶劣等特点,因此,煤层气井压裂技术的应用也具有相应的技术难度。
中国煤层气压裂技术应用现状及发展方向
中国煤层气压裂技术应用现状及发展方向一、引言煤层气压裂技术是煤炭开采中的一项重要技术,其应用可以有效地提高煤层的渗透性,增加煤炭的产量,提高开采效率。
本文将就中国煤层气压裂技术的应用现状及发展方向进行探讨。
二、高效增产技术1.水力压裂技术水力压裂技术是一种常用的煤层气压裂技术,其基本原理是通过高压泵将压裂液注入煤层,利用压裂液的流动压力使煤层产生裂缝,再通过支撑剂的填充,提高煤层的渗透性。
在中国,此技术已广泛应用于煤炭开采,并取得了良好的增产效果。
2.气体压裂技术气体压裂技术是一种新型的煤层气压裂技术,其基本原理是通过注入气体(如二氧化碳、氮气等)在煤层中形成高压,从而产生裂缝。
此技术的优点是可以有效降低对地层的伤害,提高采收率。
目前,此技术在中国的应用尚处于试验阶段,但未来有望得到广泛应用。
三、排采技术1.自动排采技术自动排采技术是一种先进的煤层气压裂技术,其基本原理是通过自动化设备进行排采,实现连续、自动的开采。
此技术的优点是可以提高开采效率,降低人工成本。
目前,此技术在中国的应用尚处于探索阶段,但未来有望得到广泛应用。
2.智能排采技术智能排采技术是一种基于物联网技术的煤层气压裂技术,其基本原理是通过传感器对煤层进行实时监测,根据监测数据调整排采参数,实现高效、安全的排采。
此技术的优点是可以提高开采效率,减少人工干预,降低事故发生率。
目前,此技术在中国的应用尚处于起步阶段,但未来有望得到快速发展。
四、发展方向1.高效增产技术的进一步发展随着煤炭开采技术的不断提高,高效增产技术将成为未来煤层气压裂技术的重要发展方向。
对于水力压裂技术,需要进一步研究新型的压裂液和支撑剂,提高压裂效果和采收率;对于气体压裂技术,需要进一步研究气体的注入方式和压力控制,实现更好的裂缝诱导和采收率提高。
2.排采技术的智能化和自动化随着自动化和智能化技术的不断发展,排采技术的智能化和自动化将成为未来煤层气压裂技术的重要发展方向。
水力压裂工艺技术
调整方案制定
根据评估结果,制定调整 方案,包括重新注入支撑 剂、增加裂缝长度或改变 压裂液类型等。
04
水力压裂技术的关键技术及创新 发展
支撑剂的选择与性能评价
支撑剂的材质与性能
针对不同地层条件,选择合适的支撑剂材质,如陶粒、石英砂等 ,并评估其性能,如硬度、粒径分布等。
支撑剂的表面改性
通过物理或化学方法对支撑剂表面进行改性,提高其润湿性、渗透 性和抗破碎能力。
报, 2016, 37(3): 1-10.
[2] 李四. 水力压裂设计优化 及效果评价[J]. 岩石力学与工 程学报, 2018, 37(6): 1-15.
[3] 王五. 水力压裂技术在*油 田的应用研究[J]. 地球物理学
报, 2020, 63(7): 1-12.
THANK S感谢观看
井筒准备
清洗并准备井筒,包括通井、洗井等 操作,确保井筒内无杂质,为压裂作 业做好准备。
压裂液的配制与注入
01
02
03
压裂液选择
根据地质条件和目标需求 ,选择合适的压裂液,如 瓜胶、羟丙基瓜胶、石英 砂等。
压裂液配制
按照一定的比例和顺序将 压裂液的各成分混合在一 起,确保压裂液的各项性 能指标达到要求。
03
水力压裂技术的工艺流程
压裂前的准备
目标确定
明确压裂的目的和目标,如提高石油 或天然气的产量,改善井筒周围的应 力场等。
地质评估
收集并评估与目标区域相关的地质数 据,如岩石类型、地层厚度、地层破 裂压力等。
设备检查
确保压裂设备(如压裂车、混砂车等 )处于良好的工作状态,并准备好所 需的物资和器材。
02
水力压裂技术的基本原理
煤层水力压裂技术
2.42.4.1水力压裂技术的机理水力压裂是在石油天然气工业中成熟的,用以提高油、气井生产能力的技术。
在美国已经把它应用到好几个煤田的瓦斯排放工作中(杜尔,1989)。
它的基本原理是:选定压裂的煤层后在地面上用泵产生高压水流,从钻孔进入煤层,把煤层中原有的裂缝撑开,继续压入水流,使煤层中被撑开的裂缝向四周发展,与此同时,在水中加入筛过的沙子,把它当作支撑剂,送进煤层中被撑开的裂缝里,当压裂结束,压裂用水返排后沙子仍然留在煤层中支撑开的裂缝中。
水力压裂造成瓦斯流动的通道从钻孔底部向四周延伸到一百多米远的地方。
使煤层的钻孔排放瓦斯范围扩大,因而瓦斯涌出量也增加。
煤层内天然裂缝对水力压裂是有影响的。
主要的天然裂缝是垂直于煤层层面的。
井下实际观察资料表明,水力压裂所造成的裂缝多数是垂直于煤层层面,其方向与重要的天然裂缝平行,偏差不过10°。
它们常常与次裂缝的方向垂直。
但是在335.28m深的钻井内,压裂的压力超过地层的垂直覆盖的压力时,也可以在,煤层内造成平行于煤层层面的水平裂缝。
煤层与顶、底板岩层的接触面对压裂的裂缝也会有影响,对压裂孔作井下实地观测表明压裂形成的裂缝通常是在煤层内,或者是沿煤层与顶、底板接触面而发展,也不垂直进入岩层,这可能是因为接触面的机械强度比较弱,阻力比较小。
在美国依州六号煤层内,为了增加压裂液携带沙子的能力,使用轻型胶液作为压裂液在煤层形成的压裂裂缝最长达126.8m。
压裂使用泡沫做压裂液,携带沙子,也能得到比较长的压裂裂缝。
相距152m、305m的钻孔在压裂中沟通,证明泡沫压裂能造成比较长的裂缝。
压裂压力与煤层所受地压力之差值影响压裂裂缝的宽度,差值越大,宽度越大,反之则相反。
压裂液的流量与它的黏度对裂缝的宽度也有影响,用黏性较大的胶液,压裂流量为1.59m3/min时产生的裂缝有63.5mm宽;用黏性小的压裂液时,同样的压裂流量,产生的裂缝宽度只有3.2~9.5mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题研讨
4.3.3 其它因素
天力发生了改变,对压裂裂缝的启 裂和延伸产生影响。
控缝高压裂技术(油气) •控缝高压裂技术就是通过上浮式和下沉式导向剂在裂 缝的顶部和底部形成人工遮挡层,阻止裂缝中的压力 向上下传播,继而达到控制裂缝在高度方向上进一步 延伸的目的。
钻井以后,井筒周围压力重分布,使最大水平主应 力沿井筒周向呈环状分布,最小水平主应力沿井筒呈放射 状分布。应力集中的影响范围约为井筒半径的10倍。 水力裂缝起裂方位不但与水平主地应力方位有关,而 且与水平主应力差的大小有关。高水平主应力差条件下, 水力裂缝易于在井壁处沿垂直最小水平主应力的方位起 裂并延伸,产生较为平直的水力主缝。低水平主应力差条 件下,水力裂缝容易沟通各种成因的天然裂缝,并沿天然 裂缝扩展,产生网状裂缝。 传统经验方法从煤岩本身性质出发来判定压裂裂缝 的临界转化深度,在地质构造未发生明显扭转和剪切运动 情况下,具有一定的普适性。
8
专题研讨
3.3 要求
滤失少、悬浮能力强、摩阻低、热稳定性及剪切稳定性 能好、低残渣、配伍性好、破胶迅速彻底、货源广,便于配 制,经济合理。
3.4 按阶段划分
按照在压裂施工中的不同工艺作用,压裂液可以分为: 前置液、携砂液和顶替液。 前置液:是压开地层并造成一定几何尺寸的裂缝,以备后面 的携砂液的进入。在温度较高的地层里,它还可以 起到一定的降温作用。 携砂液:将支撑剂带入裂缝,继续扩张裂缝,冷却地层。 顶替液:将携砂液顶替进裂缝,防治余砂沉积井底形成砂卡。
18
专题研讨
4.3 压裂裂缝形成的控制因素
1 煤岩本身的岩石力学性质 2 地应力,不同构造部位煤层与褶皱中和面的 位置关系 (局部构造地应力) 3 割理、孔隙系统,先存裂隙 4 煤层埋深 5 温度,在深井中,也会对破裂压力造成影响 6 压裂施工作业参数,如施工规模和施工排量 等,也可以在一定程度上改变裂缝形状。
专题研讨
煤层气井压裂技术
汇报人: 汇报人:周龙刚
中国矿业大学资源学院 2011年12月3日
1
专题研讨
提 纲: 一 压裂的目的及意义
二
压裂机理及一般流程
三
压裂液
四
压裂裂缝
2
专题研讨
一
压裂的目的及意义
①压裂消除了井筒附近储层在钻井、固井、完井过程中 造成的伤害。 ②压裂使井孔与煤储层的裂隙系统更有效的联通。 ③压裂可加速脱水,加大气体解析率,增加产量。 ④压裂可更广泛地分配井孔附近的压降,降低煤粉产量。
9
专题研讨
前置液
携砂液
顶替液
图3 SH133 压裂施工曲线图
10
专题研讨
3.3 添加剂
稠化剂:植物胶,瓜尔胶 、香豆胶 、田菁胶等 交联剂:交联冻胶压裂液,交联剂是必不可少的添加剂 (硼砂) 防膨剂:粘土稳定剂,氯化钾 助排剂:促使压裂后破胶压裂液迅速返排 ,活性水、线 性胶和交联冻胶压 裂液中都需要加入助排剂 破胶剂:线性胶,特别是交联冻胶压裂液 (过硫酸铵 , 生物酶破胶剂 ) 杀菌剂:压裂液中的稠化剂多糖聚合物在细菌作用下会发 生降解,导致粘度下降。(甲醛液) PH调节剂:调节压裂液PH值 表面活性剂、降滤剂等
12
专题研讨
表1 国内外压裂液类型及使用现状
压裂 液类型
使用比例
优点
廉价、安全、 可操作性强、 综合性能好 配伍性好、密 度低、易返排 伤害小 残渣少、滤失 低、伤害较小 密度低、易返 排,伤害小、 携砂性好 不会引入任何 流体,对地层 无伤害,有利 于压后投产
缺点
适用范围
国外 国内 60~ 60~ 65
3
专题研讨
二 2.1
压裂机理及一般流程 机理
利用地面高压泵组,将高粘度压裂液在大排量条件下注入井中,在
井底憋起高压;当此压力大于井壁附近的地应力和地层岩石抗张强度时 ,在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前 延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层 内形成具有一定几何尺寸和导流能力的填砂裂缝,沟通煤层裂隙,最后 通过煤层气排水-降压-解吸的过程,达到正常排气的目的。
水基 压裂液
深度高,残渣、 除强水敏性储 伤害高 层外均可用
≥95
油基 压裂液 乳化 压裂液 泡沫 压裂液
成本高,安全 性差,耐温较 低 摩阻较高,油 水比较难控制 施工压力高, 需特殊设备
强水敏,低压 储层
≤5.0
≤3.0
水敏,低压储 层、低中温井 低压、水敏领 导
≤5.0
≤2.0
25~ 25~ 30
11
专题研讨
3.4 压裂液对储层的伤害
类型:吸附伤害、堵塞伤害、水化膨胀伤害和化学伤害 (1) 煤比表面积较大,容易吸附物质(特别是有机物)。 (2) 压裂液滤失、反排不彻底,滞留储层造成液堵。 (3) 压裂液残渣,返流堵塞填砂裂缝,降低裂缝导流能力; 另一方面较小颗粒残渣,穿过滤饼随压裂液一道进入 地层深部,堵塞孔隙喉道。 (4) 粘土矿物膨胀,煤粉运移堵塞裂隙,引起压裂压力增 大,裂缝方向改变。 (5) 压裂液与储层不配伍造成的伤害,可能发生化学反应。
23
专题研讨
24
图4 裂缝延伸形态
14
专题研讨
4.1 裂缝形态及扩展规律
一般首先在井筒附近产生不规则水平缝,然后随着裂 缝的进一步延伸,有的井产生水平缝,有的井产生垂直缝。
表2 沁水盆地煤层气井压裂裂缝高度测试结果表
裂缝的高度超过压裂层厚度的4倍 最高达到 倍 一般在2~4倍 裂缝的高度超过压裂层厚度的 倍,最高达到6倍,一般在 倍
15
专题研讨
4.2 裂缝监测方法
包括裂缝高度测量和裂缝方位及长度的监测 走向:井眼三维地震、地震声波井下电视、井下电视照相 高度、宽度:水力阻抗监测、伽玛射线测井、井温测井、 超声波成像测井 沁水盆地: 方位、长度:大地电位法或微地震法 高度:井温测试法或放射性同位素示踪剂(伽马测井法)
16
专题研讨
专题研讨
4.3.2 地应力
地应力大小和方向控制煤层气井水力压裂裂缝起裂压力、 起裂位置及裂缝形态。(晋城西)
A、B处压力集中:
σA = 3σh − 3σH σB = 3σH − 3σh
起裂压力:
Pc = 3σh − σH + T
水平主应力差系数Kh:
K
h
=
σ
H
− σ
h
σ
h
21
专题研讨
4.3.2 地应力
图5 煤层压裂后电位(Vm)纯异常等值线图
17
图6 压前和压后的井温测量
专题研讨
4.3 裂缝扩展模型
现在采用较普遍的裂缝扩展模型有二维的PKN模 型、KGD模型、RADIAL模型,以及三维的全三维模型 和拟三维模型。 主要差别是裂缝的扩展和裂缝内的流体流动方式 不同: 二维模型假设裂缝高度是常数,即流体仅沿缝长 方向流动。裂缝内仍是一维流动(缝长)。 拟三维模型和真三维模型缝高沿缝长方向是变化 的,在缝长、缝高方向均有流动(即存在压力降)。
裂缝延伸 憋压 造逢 裂缝闭合
4
充填支撑剂
专题研讨
2.2 压裂的一般流程
原始煤层压裂井的施工主要经过3个阶段:完井阶段、储 层改造阶段(即射孔、压裂阶段)、排水采气阶段。 (1)压裂方案设计:(裂缝几何参数优选及设计;压裂液类 型、配方选择及注液程序;支撑剂选择及加砂方案设 计;压裂效果预测和经济分析等。 ) (2)压前准备:配制压裂液,压裂车组、设备调试完毕。 (3)施工过程: ①前期:注入前置液,降低滤失,破裂地层,造缝, 降温,压开裂缝后前期加入细砂。 ②中期:注入携砂液,携带支撑剂(先中砂后粗砂)、 充填裂缝、造缝。 ③后期:注入顶替液,中间顶替液:携砂液、防砂卡; 末尾顶替液:提高携砂液效率和防止井筒沉砂。 5
19
专题研讨
4.3.1 煤岩本身的岩石力学性质
煤岩弹性模量E较低,泊松比u较高,决 定煤岩压裂时易形成短而宽的裂缝;煤岩不 均质性,造成了压裂裂缝形态复杂。 根据兰姆方程,岩石中压裂裂缝的宽度 与其弹性模量成反比。因此,同常规砂岩压 裂结果相比,煤岩更易形成短宽裂缝;随裂 缝宽度增加,裂缝长度将受到限制。 煤层与顶底板的交界处存在一个弱面,在 弱面处造成一个低应力区(遮挡层)。压裂 裂缝垂向延伸至弱面时由于受到应力阻挡, 裂缝将沿弱面处的低应力区延伸,形成“T” 形缝或“工”形缝,对裂缝高度扩展影响较 20 “T”、“工”型 大。 缝
――
液态CO2 压裂液
施工设备特殊, 干气气藏,低 成本远高于其 压油藏 它体系,施工 规模较小
--
0
13
四 压裂裂缝 4.1 裂缝形态及扩展规律
裂缝形态主要包括裂缝的长度、宽度和高度及走向 长度:随着裂缝宽度的增加,裂缝长度将受到限制。 宽度:压裂裂缝的宽度与其弹性模量成反比。 方位:同一盆地没有明显的方向性,但是存在着在某一方向 裂缝出现机率相对较大的现象。 裂缝形态4种类型:水平缝、垂直缝、先水平缝后垂直缝、两 冀不对称缝 (一冀为垂直缝,一冀为水平缝)。形态复杂的例 如“T”、“工”,‘爪’ 型裂缝。
专题研讨
压裂
S1 S2
S3
6
图1 压裂过程示意
专题研讨
压裂材料:压 裂液和支撑剂 施工参数:排 量和压力 压裂设备:泵 车(组)、液罐、 砂车、仪表车
图2 压裂施工现场
7
专题研讨
三
压裂液
3.1 种类
水基压裂液、泡沫压裂液、油基压裂液、乳化压裂液 清洁压裂液,纯气体压裂液(液化)。
3.2 发展
40、50年代,矿场原油、凝胶油、粘性乳化液; 60年代瓜尔胶稠化剂的问世——现代压裂液化学的诞生; 70年代,水基压裂液迅速发展,占主导作用; 80年代泡沫压裂液技术取代了部分水基压裂液 。 目前,泡沫压裂液、液体CO2压裂液、液氮压裂液也开始应用。