固体物理第一章-资料.ppt

合集下载

第一章固体物理课件U

第一章固体物理课件U
激光产生
通过受激辐射使光子在固体中放大并产生相干光。
光电子学的基本原理
光电效应
光子与固体中的电子相互作用,使电子获得能量并从固体表面逸 出。
光子吸收
固体吸收光子后,电子从低能级跃迁到高能级。
光子发射
固体中的电子从高能级跃迁到低能级时释放出光子。
光电子学的应用与发展
太阳能电池
利用光电效应将太阳能 转换为电能。
能带理论的计算方法
01
02
03
04
近自由电子近似
假设电子在固体中的运动接近 于自由电子,通过微扰理论计
算能带结构。
紧束缚近似
假设电子被束缚在原子附近, 通过原子轨道线性组合方法计
算能带结构。
正交化平面波方法
将电子波函数表示为平面波和 周期函数的乘积,通过求解薛
定谔方程计算能带结构。
赝势方法
用有效势代替真实的原子势, 简化能带结构的计算过程。
04
固体的光学性质与光电子学
固体的光学常数
折射率
描述光在固体中传播速 度相对于真空中的速度 的比值。
消光系数
表示光在固体中传播时 的衰减程度。
反射相移
光从一种介质反射到另 一种介质时发生的相位 变化。
固体的发光与激光
发光现象
固体受到激发后,电子从高能级跃迁到低能级时释放出的光子。
发光类型
包括荧光、磷光和化学发光等。
磁随机存取存储器(MRAM)
MRAM是一种基于自旋电子学的非易失性存储器件,具有高速读写、无限次擦写、低功 耗等优点,被广泛应用于嵌入式系统、数据中心等领域。
自旋逻辑器件
利用自旋极化电流实现逻辑运算,可以构建出全新的自旋逻辑器件,为未来的量子计算和 光计算提供技术支持。

《固体物理一绪论》PPT课件

《固体物理一绪论》PPT课件

绪论:三、固体物理学及其发展史
与此同时,* Heisenberg, *Wigner, *Mott, *朗道, 夫伦克尔,佩尔斯,*肖特基,*范弗莱克等当时一流 的理论物理学家都曾投入到固体理论的研究中并取得 了丰富的成果。
赛兹1940年出版的《现代固体理论》一书, 标志着固体物理的成熟并形成了固体物理理论 的第一个范式。(建立在对晶体认识的基础上)
5. 光学材料非线性研究 励强华教授
绪论:
四、我院在凝聚态物理领域的研究工作
6. 热电材料研究 胡建民教授、曲秀荣老师 7. 非晶和液体性质的研究 孙民华教授 8. 半导体光电子材料;光催化研究 李林、徐玲玲老师 9. 半导体材料电子结构、输运性质的第一性原理计算
尹海涛教授、牛丽老师
绪论:五、本课程的主要内容
Seitz F, Modern Theory of Solids, McGraw-Hill 1940
绪论:三、固体物理学及其发展史
晶格结构
晶格理论
晶格动力学 晶格热力学
理想晶格
固 体 物
电子理论
实际晶格理论 能带理论 金属中的自由电子气

功函数、接触电势等
输运理论 :电子与晶格的相互作用
固体物理分论 半导体、磁学、超导、非线性光学
绪论:
四、我院在凝聚态物理领域的研究工作
1. 磁性超晶格及多层膜的物理性质研究;光子晶体的磁性研究
王选章教授、付淑芳、李华、周胜老师
2. 半导体纳米材料及其应用;
复合氧化锌超晶格纳米线制备及 TFT研制
张喜田教授、高红教授
3. 光电子技术应用 孙文军教授
4. 量子光学;固体发光
吕树臣教授、孟庆裕、孙江亭老师
第一章 晶体结构与X射线衍射 第二章 晶体的结合 第三章 晶格振动和固体的热学性质 第五章 金属的自由电子理论 第六章 能带理论

(完整PPT)固体物理学

(完整PPT)固体物理学

(a)理想石英晶体(b)人造石英晶体
属于同一品种的晶体,两个对应晶面之间的夹角 恒定不变,这一规律称为晶面角守恒定律。
显然,晶面之间的相对方位是晶体的特征因素, 因而常用晶面法线的取向来表征晶面的方位,而以 法线间夹角来表征晶面间的夹角(两个晶面法线间 的夹角是这两个晶面夹角的补角)。
二、晶体的基本性质
显然,WS 原胞也只包含一个格点,因此它与固 体物理学原胞的体积一样,也是最小周期性重复单 元。
3.晶格的周期性
* 一维布喇菲格子
一维布喇菲格子是由一种
原子组成的、无限周期性的 点列,所有相邻原子间的距
a
离均为周期为a,如图所示。
在一维情况下,原胞取原子及周围长度为 a 的区 域。重复单元的长度矢量称为基矢,通常用以某原 子为起点,相邻原子为终点的有向线段 a 表示。
1
2
3
原胞的体积为
a3
简立方体格子的原胞和基矢 选取,如图所示。
a3 ai a2 aj a2 ai a2
尽管由于生长条件的不同,会使同一晶体外型产 生一定的差异。但是对同一种晶体,相应两个晶面 之间的夹角却总是恒定的。即:每一种晶体不论其 外形如何,总具有一套特征性的夹角。
例如,对于石英晶体,在下图中所示的 mm 两面 间的夹角总是60º0' , mR 两面间的夹角总是38º13' , mr 两面间的夹角总是38º13' 。
点之间的距离。
三个基矢不要求相互正交, 且大小一般也不相同。并且, 对于同一个晶格,基矢的选择 也不是唯一的。
* 晶格平移矢量
若选择某一格点为坐标原点,则晶体中任一格点 的位置可以表示为
Rn n1a1 n2a2 n3a3 (ni 0,1,2,......)

固体物理-第一章

固体物理-第一章



ai
aj
ak




顶角8个格点→8×1/8=1个原 子;→平均包含1个原子
原胞的体积 V a1 (a2 a3 ) a3
➢晶体的周期性
面心立方晶胞



ABC ABC 排列(立方密堆)


a1

a 2
jk
顶角8个格点→8×1/8=1个原子;面心6个原 子→6×½=3个原子;→平均包含4个原子
1.1 晶体的周期性
1.1.1 常见的晶体
沸石晶体
方沸石
化学式:RR[Alx+2ySin-(x+2y)O2n]·mH2O含水架状结 构铝硅酸盐矿物,单斜和正交(斜方)晶系为主。 式中R代表碱金属离子,基本上为K+或Na+。
菱沸石
纯净的各种沸石均为无色或白色,但可因混入杂质而呈各种浅色。玻璃光泽。解 理随晶体结构而异。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中 有各种大小不同的空穴和通道,具有很大的开放性。碱或碱土金属子和水分子均分布 在空穴和通道中,与格架的联系较弱。不同的离子交换对沸石结构影响很小,但使沸 石的性质发生变化。晶格中存在的大小不同空腔,可以吸取或过滤大小不同的其他物 质的分子。工业上常将其作为分子筛,以净化或分离混合成分的物质 ,如气体分离、 石油净化、处理工业污染等。此外沸石还具有独特的吸附性、催化性、离子交换性, 离子的选择性、耐酸性、热稳定性、多成份性、及很高的生物活性和抗毒性等。
1.1.3 基本概念
晶体的特点:晶体具有规则 的几何外形,固定的熔 点,某些晶体具有一定 的解理性。
周期性:晶体中 微粒的排列按照 一定的方式不断 的做周期性重复 的性质,称为晶 体结构的周期性。

固体物理学 ppt课件

固体物理学  ppt课件
第1章 晶体的结构
阐明晶体中原子排列的几何规律性
PPT课件
1
内 容
1.1 晶体的特征 1.2 空间点阵 1.3 晶格的周期性、基矢 1.4 密勒指数 1.5 倒格子 1.6 晶体的特殊对称性、对称操作 1.7 晶系、布喇菲原胞 1.8 密堆积、配位数 1.9 X射线衍射方程、反射球
PPT课件 2
1.1 晶体的特征
问题一 体心立方晶胞中含有几个原子? 原子引基矢。 问题二 体心立方原胞如何选取? 问题三 问题四
8 1 2 个原子 以体心原子为顶 8 点,分别向三个顶角
1 3 a1 a 2 a 3 a 原胞的基矢形式? 2
a1
k
a a 1 ( i j k ) 原胞体积? 2 a a 2 (i j k ) 2 a a 3 (i j k ) 2
1.3.3 三维情况
布喇菲格子:最小重复单元(原胞)只含有一个原子的晶格 复式格子:原胞中含有两个或两个以上原子的晶格
(1)三维布喇菲晶格原胞:是三边长等于各方向基矢, 结点为顶点的平行六面体。基矢(a1,a2 ,a3 )
a3 a2 a1
PPT课件
20

晶格周期性:设r为重复单元中任意一处的位矢
简立方(SC)
体心立方(BCC) 面心立方(FCC)
PPT课件
22
简立方(Simple Cubic,简称 SC )

三个基矢等长并且互相垂直。
a3
a a2

原胞与晶胞相同。
a1
a 1 ai a 2 aj a 3 ak
PPT课件
23
体心立方(Body Centered Cubic, 1 BCC)

固体物理第一讲 绪论PPT课件

固体物理第一讲 绪论PPT课件

70年代出现了高分辨电子显微镜点阵成像技术,
在于晶体结构的观察方面有所进步。近年来发展
的扫描隧道显微镜,可以相当高的分辨率探测表
面的原子结构。
• 晶体的结构以及它的物理、化学性质 同晶体结合的基本形式有密切关系。通常 晶体结合的基本形式可分成:离子键合、 金属键合、共价键合、分子键合(范德瓦耳 斯键合)和氢键合。根据X射线衍射强度分 析晶体的物理、化学性质,或者依据晶体 价电子的局域密度分布的自洽理论计算, 人们可以准确地判定该晶体具有何种键合 形式。
(二)、固体物理的发展史
几百万年前的石器时代,或者几万年前人类开
始冶炼金属、制造农具和刀箭的时代。通过炼金术, 人们了解了一些材料的颜色、硬度、熔化等性质, 并用之于绘画、装饰等。
1611年,开普勒就开始思考雪花为什么呈六角 形;
1843年法拉第曾惊奇地发现硫化银的电阻随着 温度的升高而下降;
阿拉克西曼德:万物是由无数的原始物质构成的。 阿拉克西美尼:万物的本质是空气。 赫拉克里特:万物的本质是火,火与其他物类的混合物,一
般都以我们可以感知气味的其他物类来命名,但是火本身 是不变的因素。 埃姆毕多克拉斯:万物是由水、气、火、土组成。
• 巴门尼德: 宇宙中只有一个永恒的存在,像一个充实的
固体物理学
第一讲 绪论
• 一:固体物理学 • 二:发展史 • 三:当前研究的热点和前沿 • 四:本课程的主要讲解内容 • 五、参考书籍
一:固体物理学
固体物理学是研究固体物质的物理 性质、微观结构、构成物质的各种粒 子的运动形态,及其相互关系的科学。 它是物理学中内容极丰富、应用极广 泛的分支学科。
融汇了力学、热力学与统计物理学、 电动力学、量子力学和晶体学等多学 科的知识。

《固体物理基础教程》课件第1章

《固体物理基础教程》课件第1章
下面我们重点来理解一下“化学成分相同但周围环境不 同”的情况。以金刚石结构为例,其中立方体八个顶角和六 个面心上的原子正好组成一个FCC,这些原子的周围环境显 然是完全相同的,另外所有体内原子的周围环境也完全相同, 但这两者之间却是不同的,比如,体内原子和顶角原子
之间的距离虽然相同,但方向却正好相反,因此应被视为两 种原子,即金刚石晶体的一个基元中应该同时包含两个C原 子。再比如,由Zn组成的六方密堆积结构中,六方棱柱顶 角和表面的原子应归为一类,而体内的原子则应归为另一类, 于是Zn晶体的一个基元中也应同时包含两个Zn原子。再来 看看钙钛矿结构,BaTiO3晶体的一个基元中同时应该包含 Ba、Ti和O原子是比较容易理解的,但为什么会是3个O原子? 显然,对于6个面心上的O原子,尽管Ba原子和Ti原子在其 周围分布的距离都是确定相同的,但方向却是不同的,因此 必然被分为3类,于是BaTiO3晶体的一个基元中就同时包含 了1个Ba、1个Ti和3个O原子总共5
在1.1节所讨论的几种晶体结构中,SC、BCC和FCC结 构的晶体的基元中只有一个原子,因此它们对应的B格子分 别就是SC、BCC和FCC。金刚石结构、闪锌矿结构和NaCl 结构的基元中均包含两个原子,抽象得到的B格子都是FCC, 即它们都是由FCC格子套构而成的:金刚石结构和闪锌矿结 构都是由两个FCC格子沿体对角线方向1/4套构而成,而 NaCl结构则是由两个FCC沿棱边1/2套构而成。类似地, CsCl结构是由两个SC格子体心套构而成,而钙钛矿结构则 是由5个SC格子套构而成,其套构的方式不太好用语言描述, 不妨通过图示的方法给出它的套构规则(如图1.12所示)。
图1.11 闪锌矿结构的重复单元
1.1.8 钙钛矿结构 自然界中很多ABO3型化合物材料,如钛酸钡(BaTiO3)、

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。

《固体物理教案》课件

《固体物理教案》课件

《固体物理教案》课件第一章:固体物理概述1.1 固体物理简介介绍固体物理的基本概念和研究内容强调固体物理在材料科学和工程领域的重要性1.2 固体的基本性质介绍固体的分类和晶体结构讲解固体的弹性、塑性、硬度和导电性等基本性质1.3 固体材料的制备和characterization介绍固体材料的制备方法,如熔融、蒸发、溅射等讲解固体材料的表征技术,如X射线衍射、电子显微镜等第二章:晶体结构与晶体缺陷2.1 晶体结构的基本概念介绍晶体的定义和特征讲解晶体的点阵结构和空间群理论2.2 常见晶体结构介绍金属晶体、离子晶体、共价晶体和分子晶体的结构特点举例讲解不同晶体结构的代表性材料2.3 晶体缺陷介绍晶体缺陷的类型和性质讲解晶体缺陷对材料性能的影响第三章:固体的电子性质3.1 电子分布与能带理论介绍电子分布的基本概念讲解能带理论的基本原理和应用3.2 半导体的电子性质介绍半导体的能带结构和导电机制讲解半导体的掺杂和器件应用3.3 金属的电子性质介绍金属的能带结构和导电机制讲解金属的电子迁移率和电子束效应等性质第四章:固体的热性质4.1 热传导的基本概念介绍热传导的定义和方式讲解热传导的微观机制4.2 热膨胀和热容介绍热膨胀和热容的概念讲解热膨胀系数和热容的计算方法4.3 超导现象介绍超导现象的发现和基本原理讲解超导体的特性和应用第五章:固体材料的力学性质5.1 弹性和塑性介绍弹性和塑性的定义和区别讲解弹性模量和塑性变形的微观机制5.2 硬度和磨损介绍硬度的概念和测量方法讲解磨损的机制和防止方法5.3 断裂和强度介绍断裂的类型和强度概念讲解断裂韧性和疲劳强度的计算方法第六章:固体的磁性质6.1 磁性的基本概念介绍磁性的定义和分类讲解磁化强度、磁化率和磁化曲线等基本概念6.2 晶体磁性介绍顺磁性、抗磁性和铁磁性等晶体磁性的基本特性讲解磁晶场的概念和磁畴结构的形成6.3 磁性材料及其应用介绍软磁性材料和硬磁性材料的特点和应用讲解磁性材料在电机、传感器和存储器等领域的应用第七章:固体的光学性质7.1 光的传播与折射介绍光的传播原理和折射定律讲解光在不同介质中的传播特性7.2 光的吸收与发射介绍光的吸收和发射现象讲解能级跃迁和量子亏损等基本概念7.3 固体的发光性质介绍固体的发光机制和分类讲解LED和激光器等固体发光器件的原理和应用第八章:固体的电性质8.1 电导率和电阻率介绍电导率和电阻率的定义和计算方法讲解电子散射和载流子浓度的关系8.2 半导体器件介绍半导体器件的基本原理和分类讲解晶体管、二极管和光电器件等半导体器件的结构和特性8.3 介电材料介绍介电材料的分类和介电常数的概念讲解介电材料的电容和绝缘性能等特性第九章:固体的声性质9.1 声波的基本概念介绍声波的定义和传播原理讲解声速和声波的衰减等基本特性9.2 固体的声学性质介绍固体的声速和声波的传播特性讲解声波在固体中的散射和衰减现象9.3 声波的应用介绍声波在通信、医学和材料检测等领域的应用讲解声波传感器和声波换能器等器件的原理和应用第十章:固体物理实验技术10.1 固体物理实验基本方法介绍固体物理实验的基本技术和设备讲解样品制备、表征和测量等实验方法10.2 实验数据分析方法介绍实验数据的误差分析和信号处理方法讲解数据拟合和参数估计等数据分析技术10.3 固体物理实验案例分析分析固体物理实验的实际案例讲解实验结果的物理意义和应用价值重点和难点解析1. 固体物理的基本概念和研究内容,以及其在材料科学和工程领域的重要性。

(完整版)固体物理课件ppt完全版

(完整版)固体物理课件ppt完全版

布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子中取格点为原点,它至其

他格点的矢量 Rl 称为格矢量。可表示为
Rl

l1a1

l2a2

l3a3

a1,
a2 ,
a3为
一组基矢
注意事项:
1)一个布拉伐格子基矢的取法不是唯一的
2
4x
·
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
2·堆积方式:AB AB AB……,上、下两个底面为A
层,中间的三个原子为 B 层
3·原胞:
a, 1
a 2
在密排面内,互成1200角,a3
沿垂直
密排面的方向构成的菱形柱体 → 原胞
B A
六角密排晶格的堆积方式
A
a
B c
六角密排晶格结构的典型单元
a3
a1
a2
六角密排晶格结构的原胞
4·注意: A 层中的原子≠ B 层中的原子 → 复式晶格
bγ a
b a
b a
b a
简六体心底正简单三面心正单方底心单心交 立斜交斜 方 简单立方体心正交面立方简四体心四方简单正交简单菱方简单单斜单方
二 、原胞
所有晶格的共同特点 — 具有周期性(平移对称性)

用原胞和基矢来描述


位置坐标描述

1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
a1, a2 , a3 为晶格基矢
复式晶格:
l1, l2 , l3 为一组整数
每个原子的位置坐标:r l1a1 l2a2 l3a3

《固体物理基础教学课件》第一章

《固体物理基础教学课件》第一章

半导体的电子状态
半导体中的电子能级结构
半导体中的电子能级结构与金属不同,存在一个带隙,使得半导 体在一定温度下只能部分电子成为自由电子。
半导体的导电性
半导转变为导体。
半导体的光电效应
当光照射在半导体上时,半导体吸收光子后,价带上的电子跃迁到 导带,产生光电流。
晶体结构
80%
晶体结构的特点
晶体结构是指固体物质内部的原 子或分子的排列方式,具有周期 性、对称性和空间群特征。
100%
常见的晶体结构
常见的晶体结构有金刚石型、氯 化钠型、闪锌矿型等,它们在外 观和性质上都有所不同。
80%
晶体结构的分类
晶体结构可以根据原子或分子的 排列方式和空间群进行分类,有 助于理解其物理和化学性质。
核聚变能源
在核聚变能源领域,固体物理中的 高温高压等极端条件下的物理性质 研究为实验设计和设备制造提供了 重要依据。
在信息技术领域的应用
集成电路
集成电路的制造依赖于固体物理 中的半导体理论和热力学原理, 从芯片设计到制造工艺的每一个 环节都离不开固体物理的理论支
持。
存储技术
随着信息技术的快速发展,存储 技术也在不断进步。固体物理中 的磁学和光学理论在磁存储和光
推动高新技术产业的进步
固体物理学在信息技术、新能源等领域中有着广泛 的应用,如半导体技术、太阳能电池等,为高新技 术产业的进步提供了重要支撑。
对其他学科的交叉促进作用
固体物理学与化学、生物学、地球科学等学科有着 密切的联系,通过与其他学科的交叉融合,可以促 进相关领域的发展和创新。
02
固体物质的结构
复合材料
通过研究复合材料的微观结构和物理性质,可以设计和制备具有优异 性能的复合材料,广泛应用于航空航天、汽车、体育器材等领域。

《固体物理基础教学课件》第一章

《固体物理基础教学课件》第一章
精选ppt 2
课程特点
理解基本的物理概念 弄清基本的物理图像 以上课所讲PPT内容为主 不管公式的推导,强调物理的逻辑 考试:
期末70%+作业20%+考勤10%
精选ppt 3
授课安排
绪论及晶体结构(3次课) 固体的结合 (1次课) 晶格振动 (2次课) 能带论(1次课) 半导体电子论(4次课) 固体的磁性和超导电性(2次课) 量子霍尔效应专题(1次课) 固体物理前沿热点研究讲座(1次课) 复习答疑(1次课)
明集成电路
11.
2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在碱金属原子稀薄气体的玻色-爱因斯坦凝聚态以及凝聚态物质性质早期基本性质
研究方面的成就
12.
2003年:阿列克谢·阿布里科索夫、安东尼·莱格特(美国)、维塔利·金茨堡(俄罗斯)在超导体和超流体领域中做出的开创性贡献
13.
2007年:艾尔伯·费尔(法国)和皮特·克鲁伯格(德国)发现巨磁电阻效应
精选ppt 5
第一讲 绪论
精选ppt 6
前言-固体物理的伟大成就
固体物理领域获得诺贝尔奖的工作
1.
1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究
2.
1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论
3.
1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论
研究固体的结构及其组成粒子(离子、电子)之间的 相互作用与运动规律,以阐明其宏观性能和用途。
固体的物理性质和规律由什么决定?
* 由组成固体的原子成分?比如,金刚石、石墨、C60固体都由 碳原子组成,但它们物理性质完全不同! * 金刚石、石墨、C60固体究竟有何不同?(原子排布结构)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体:原子排列具有周期性(长程有序)

体 材
非晶体:原子排列不具有长程的周期性

准晶体:1984年从实验中观察到,既区别于晶体又 区别于非晶体的固体材料
固体中原子排列的形式是研究固体材料的宏观性质和各 种微观过程的基础。
1.1 晶体的共性
一、长程有序
长程有序是晶体最突出的特点。晶体中的原子都是按一定规则排 列的,这种至少在微米数量级范围的有序排列,称为长程有序。 晶体分为单晶体和多晶体,多晶体是由许许多多小单晶(晶粒) 构成。对于单晶体,在整个范围内原子都是规则排列的;对于多 晶体,在各晶粒范围内,原子是有序排列的。
六方密排晶格:AB AB AB 立方密若第三层的原子球心落在第二层的空隙上,且与第一层平行对应, 就构成 了六角密堆积。
A
B A
六角密排晶格的典型单元 AB AB AB
Be、Mg、Zn、Cd等具有六角密排晶格结构
六、立方密堆积
若第三层的原子球心落在第二层的空隙上,且该空隙也与第一层 原子空隙重合,而第四层又恢复成第一层的排列,这就构成 了立 方密堆积。 每个原子和最近邻的原子之间都是相切的。
ABC立方密堆积
面心立方晶格的典型单元
ABC ABC ABC
Cu、Ag、Au、Al等具有面心立方晶格结构
1.3 配位数和致密度
➢ 晶体中一个原子的最近邻原子数目称为配位数。
(1)体心立方点阵:每一个阵点的最近邻阵点有8个,配位数是8; (2)面心立方点阵:每一个阵点的最近邻阵点有12个,配位数是12。
任一个球与同一平面内的四个最近邻相 切。
原子球的正方堆积
二、简单立方堆积
正方排列层层重合堆积起来,就构成了简单立方结构
原子球的正方排列
简立方结构单元
没有实际的晶体具有简单立方晶格的结构,但是一些 复杂的晶格可以在简单立方晶格的基础上加以分析
三、体心立方堆积
把简单立方堆积的原子球均匀地散开一些, 而恰好在原子球空隙内能放入一个全同的原 子球,使空隙内的原子球与最近邻的八个原 子球相切,这就构成了体心立方堆积。
二、自限性
晶体具有自发地形成封闭几何多面体的特 性,称之为晶体的自限性。这一特性是晶 体内部原子的规则排列在晶体宏观形态上 的反映。
由于生长条件的不同,同一种晶体的外形 会有差异。在某条件下生长的晶体的晶面 数目和相对大小,与另一条件下生长的同 一种晶体的晶面情况会有很大的差别。
尽管同一种晶体其外形可能不同,但相应 的两晶面之间的夹角总是不变的,这一规 律称为晶面夹角守恒定律。
固体物理
陈之战
2019年9月19日
固体物理学发展概况
最早发展的是矿物学,为了鉴别矿石,产生了晶体学,在 黄昆 19世纪发展到相当完善的地步。此外,由于冶金的发展,产生 1919-2019 了金属学,对固体的电学、磁学、光学的性质也进行 了细致的
研究。不仅如此,对晶体的微观结构也有研究,如将晶体外形 的规则性与内部原子的规则排列联系起来。
第一章 晶体结构 第二章 晶体结构测定 第三章 晶格振动 第四章 金属(I):自由电子 第五章 金属(II):能带论
第一章(1) 晶体结构
1.1 晶体的共性 1.2 一些晶格的实例 1.3 配位数和致密度 1.4 原子的周期性阵列 1.5 晶格的基本类型 1.6 再总结:布喇菲格子
固体的结构:固体材料是由大量的原子(或离子)组成的,原 子以一定方式排列,原子排列的方式称为固体的 结构。
a
r0
0.31r0
A
r02r0r023a2
B
典型单元
堆积方式:AB AB…
相当多的金属如Li、Na、K、Rb、Cs、Fe等具有体心立方晶格结构
四、密堆积
密排面:原子球若要构成最紧密的堆 积方式,原子球必须与同一 平面内相邻的6个原子球相 切。如此排列的一层原子面 称为密排面。
密堆积:要达到最紧密堆积,相邻原 子层也必须是密排面,而且 原子球心必须与相邻原子层 的空隙相重合,就会产生两 种密排结构:
1.2 一些晶格的实例
晶格:晶体中原子排列的具体形式称为晶体格子,简称晶格。 (1)晶体原子规则排列形式不同,则有不同的晶格结构; (2)晶体原子规则排列形式相同,只是原子间的距离不同, 则它们具有相同的晶格结构。
处理方法:把晶格设想成为原子球的规则堆积
一、正方堆积
把原子视为刚性小球,在二维平面内最 简单的规则堆积便是正方堆积;
➢ 配位是的大小描述晶体中粒子排列的紧密程度:粒子排列越紧密,配位数越大。
一、BCC堆积的致密度
设晶格常数为a,粒子半径为r,则:
a2 2a2 4r2
a 4r 3
晶胞中含有2个粒子,则BCC结构的致密度:
2 4r3
Db
3 a3
0.68
二、FCC堆积的致密度
设晶格常数为a,粒子半径为r,则:
3a2 4r2 a2
理想石英晶体
一种人造晶体
mm两面夹角:600' mR两面夹角:3813' mr两面夹角:3813'
三、各向异性
晶体的物理性质是各向异性的:
1、平行石英的c轴入射单色光,不产生双折射;而沿其它方向入射产生单色光; 2、晶体沿某些确定方位的晶面发生解理的现象:方解石、云母。
由于晶体的物理性质是各向异性的,因此有些物理常数一般不能用一 个数值来表示。例如弹性常数、压电常数、介电常数、电导率等一般 需要用张量来描述。 晶体的各向异性是晶体区别于非晶体的重要特征。
20世纪开始,电子论有很大的发展,对固体的电学、磁性、 光学性质发展了理论,然而是较简单的。由于X射线的发现, 对原子结构有了很好的了解,并且用X射线研究了原子排列, 使得对原子如何结合成为晶体的认识大大深入了一步。量子力 学提高了经典的电子论,使得更深刻地理解固体的电学、磁学、 光学性质。此外,技术的发展大大利用了固体的性质。
a 4r 2
晶胞中含有4个粒子,则面心立方结
构的致密度为:
4 4r3
Db
3 a3
0.74
三、HCP堆积的致密度
对于六角密堆积结构,任一个原子有12个最近邻。若原子以刚性球堆积,中心在1 的原子与中心在2、3、4的原子相切,中心在5的原子与中心在6、7、8的原子相切, 晶胞内的原子O与中心在1、3、4、5、7、8处的原子相切,即O点与中心在5、7、 8处的原子分布在正四面体的四个顶上。因为四面体的高:
相关文档
最新文档