10kv 配电系统中性点经小电阻接地方式初探
10kV发电机组中性点经电阻接地方式
中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与之间电气连接的方式,称为电网中性点接地方式。
中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。
中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。
在选择电网中性点接地方式时必须进行具体分析、全面考虑。
我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。
这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。
配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。
近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。
在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在、试用、推广,并很快推广到其他城市(如、、、、、天津、、、工业园区、、讪头、、、等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。
中性点经小电阻接地系统应用及保护配置研探
中性点经小电阻接地系统应用及保护配置研探摘要:阐述在城市10KV配电网中性点经小电阻接地系统中,对中性点小电阻值的选择以及单相接地故障电流对继电保护装置配置的影响进行具体分析,验证中性点经小电阻接地系统采用零序保护投入使用的必要性和可行性。
关键词:中性点小电阻;继电保护配置;零序保护引言:由于城市电网规模不断地扩建和延伸,而且受城区规划、环保和场地等条件制约,城市配电网开始采用以电缆出线为主、架空出线为辅的电网结构模式,这样一来,lOkV系统单相对地电容电流就大幅度地增加了。
当系统发生单相接地时,接地相的接地电流是非故障相对地电容电流之和,当电容电流超过1OA,此时接地电弧不能可靠熄灭,就会产生弧光接地过电压,而且持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路等严重后果。
因此,为了增强配网系统安全性,使用中性点经小电阻接地系统,当发生单相接地故障后,由零序保护动作,切断故障,保护电缆线路处理对策是十分必要的。
1.中性点小电阻值的选择在中性点小电阻接地系统中,通过在回路中串联小电阻形成通路,能够泄放熄弧后半波的能量,使中性点电位降低,故障相的恢复电压上升速度也减慢,减少电弧重燃的可能性,抑制电网过电压的幅值,保证了电网的安全。
中性点电阻阻值的合理选取涉及到系统的过电压水平、继电保护的整定、中性点电阻的热容量、对通讯的干扰以及人身安全等许多问题,是一个需要综合考虑的问题[1]。
目前在对城市lOkV配电系统的中性点经小电阻接地方式的确定上,有采用传统方法进行,即从系统发生单相接地故障的情况入手,不断改变中性点接地电阻值,对系统的稳态和暂态两方面进行计算,比较随之改变的单相接地故障电流值、单相接地故障健全相电压值及弧光接地过电压值、铁磁谐振过电压值等等,然后按照规程规定值和继电保护等方面的约束值进行综合比较,最终得出较合适的接地电阻值;还有根据将系统单相短路电流限制在一定值以下,同时考虑到满足继电保护的选择性和灵敏度的要求来确定(关于接地电阻的阻值,上海供电公司规定,将接地电流的值控制在 1 000 ~ 2 000 A 来选择;而北京供电公司规定,阻值为10Ω , 接地电流在 400 ~ 500 A 之间). 虽然这种中性点运行方式在发生单相接地时将跳闸, 但是,由于绝缘要求低, 减少了投资,因此,逐渐被广泛采用。
10kv 配电系统中性点经小电阻接地方式
10kv 配电系统中性点经小电阻接地方式初探摘要: 10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。
本文主要介绍10kv 配电系统中性点经小电阻接地方式的构成、保护方式和计量方式。
关键词: 10kv 配电网中性点接地方式小电阻接地1引言10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。
由于选择接地方式是一个涉及线路和设备的绝缘水平、通讯干扰、继电保护和供电网络安全可靠等因素的综合性问题, 所以我国配电网和大型工矿企业的供电系统做法各异。
以前, 10kv 架空电力线路大都采用中性点不接地和经消弧线圈接地的运行方式。
近年来随着10kv 系统规模的扩大和电缆应用的普及, 一些城市电网大力推广电阻接地的运行方式, 使得10kv 系统的中性点接地方式、中性点选择、计量方式、继电保护配置与10kv绝缘系统有了很大区别。
2配电网中性点接地方式运用现状一般架空线路的小电网, 网络电容电流小, 可选用中性点不接地系统。
架空线路的大电网, 网络电容电流较大, 可选用中性点经消弧线圈接地系统。
城市电缆配电网, 网络结构较好, 可选用中性点经中值或低值电阻器接地系统。
若要求补偿网络电容电流限制接地故障入地电流, 还可选用中性点经中值电阻器与消弧线圈并联的接地方式。
3中性点经电阻接地方式定义及阻值选择( 1) 定义: 电力系统中性点通过一电阻接地, 其单相接地时的电阻电流被限制到等于或略大于系统总电容充电电流值。
此种接线方式属于中性点有效接地系统,即大电流接地系统。
和消弧线圈接地方式相比, 改变了接地电流相位, 加速泄放回路中的残余负荷, 促使接地电弧自熄, 降低弧光过电压, 同时提供足够的零序电流和零序电压, 加速切除故障线路。
( 2) 中性点电阻值的选择根据有关文献资料, 从降低内部过电压考虑, 根据计算机模拟计算, 选择原则为rn ≦1/ ( 3c) 。
关于10kv配电系统中性点经小电阻接地方式的探讨
入 地 电流 , 可选 用 中性 点 经 中值 电阻器 与 消弧 线 圈 还
并联 的接 地方 式 。
3 中性点经电阻接地方式定义及阻值选择
() 义: 1定 电力 系统 中性 点通 过 一 电阻 接 地 , 单 其
电保护 和供 电网络 安全 可 靠等 因素 的综 合性 问题 , 所 以我 国配 电 网和 大 型工 矿 企业 的供 电系 统 做法 各 异 。
以前 , 0 V 架 空 电力 线路 大 都 采 用 中性 点 不 接 地 和 1k
相 接地 时 的 电阻 电流 被限 制到 等于或 略大 于系统 总 电
容 充 电 电流值 , 图 1所示 。 如
经消 弧线 圈接 地 的运行 方 式 。近年 来 随着 1k 系 统 0V 规模 的 扩大和 电缆 应用 的普 及 , 些城 市 电 网大 力 推 一
般架 空线 路 的小 电网 , 网络 电容 电流 小 , 选用 可
中性 点不接 地系统 。 空线路 的大 电网 , 架 网络 电容 电流
电弧 自熄 , 降低弧 光过 电压 , 同时提供 足够 的零序 电流 和零 序 电压 , 加速 切除 故障 线路 。
() 2 中性 点 电阻值 的选 择 根据 有关 文献 资料 , 降低 内部过 电压考 虑 , 从 根据
广 电阻接 地 的运行 方式 , 使得 1 , O 、系统 的 中性 点接 地 k 方式 、 中性 点 选 择 、 量 方 式 、 电保 护 配 置 与 1 k 计 继 O V 绝 缘系统 有 了很大 区别 。下面就 此 系统 的有关 问题 予 以总结 归纳并 分析讨 论 。
图 1
维普资讯
《 气开 关  ̄ 2 0 . . ) 电 ( 0 7 No 3
10kV配网小电阻接地运行研究
10kV配网小电阻接地运行研究随着经济建设和国家电网建设的快速发展,中、大型城市配电网主要以电缆网为主,在运行过程中,各回路的电容电流较大,约在100~1000A之间,现状变电站中性点采用不接地或经消弧线圈接地等方式已满足不了供电可靠性的要求。
10kV配电线路在我国配电系统中使用范围相当广泛,其在生产、生活中发挥的作用也举足轻重,但是目前我国多数的10kV配电线路还存在着许多的问题。
所以对10kV配网小电阻接地运行的研究就显得很重要。
标签:10kv配电;接地运行;措施配电系统是把最合适的电压按照用户需要的等级输送到用户端,因此配电系统是国家电力系统的重要组成部分。
对于我国主要城市中使用的10kV配电网必须满足用户的需求,并同时满足电网规划的合理性和经济性。
但是现如今配电系统普遍存在的问题是设备不够先进,配电网架构不太合理的问题,这必定对10kV 配电网的稳定性造成了影响,这也是我们对其稳定性分析的必要性。
关键在于正确找出10kV配电网存在的问题并采用合适的方法进行解决,才能实现其供电的可靠性。
本文将对10kV配网小电阻接地运行问题进行分析探讨。
1、概述1.1、小电阻接地系统的构成小电阻接地系统主要由接地变和小电阻组成。
其接线原理是通过接地变为主变10kV接线提供系统中性点。
对于接地变压器容量的选择,要求其与系统中性点电阻的选择相配套。
接地变常采用Z型接法,即将三相铁芯各个芯柱上的绕组分为长度相等、极性相反的两段,三相绕组则采用Z型接法构成星型接线。
其特点表现为:对正、负序电流呈现高阻抗,在绕组中流过的激磁电流很小;对零序电流呈现低阻抗,在绕组上只有很小的压降。
1.2、10kV配电网的典型接线模式1.2.1、单回路放射式接线模式主要是进行串联,这种接线模式是最基本也是最常见的接线模式,但是这种模式在现今社会有着很打的弊端,首先随着时代的进步串联的电气元件数量不断增多,而且功率也不断增加图。
随着这种情况的发生,供电线路失效的可能性会越来越人,因此,使用单回路放射式接线模式的供电可靠性会显著降低。
10kV系统中性点接地方式
10kV系统的接地方式10kV系统中性点接地可分为:中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统)。
1.10kV系统中性点不接地系统(1) 接地故障特点配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流I CL1、I CL2、I CL3相等,分别超前相电压90°,I CL1=I CL2=I CL3=UΦωC,其I CL1+I CL2+I CL3=0,系统中性点与地有相同电位。
如L1相发生接地故障,忽略接地过渡电阻,视为金属性接地,10kV系统各支路的电容电流的流向如下图所示:图14.2-1 10kV系统接地故障示意从10kV系统接地故障示意图可以得出结论:a)全系统所有非故障的各支路,故障相的电容电流均为零,非故障相均有电容电流;b)在故障支路,故障相流过所有各支路的电容电流的总和;c)故障支路的电容电流其方向由负载流向电源,非故障各支路的电容电流其方向由电源流向负载;d)故障支路检测的零序电流为各非故障支路电容电流总和;e)接地故障电流大小与接地故障点的位置无关,只与接地故障点的过渡电阻有关。
10kV系统接地故障,电压与电流矢量关系如下图所示:图14.2-210kV系统接地故障矢量图L1相发生接地故障,相当于在L1相上加上U0=-U L1,L2相L3相也加上U0=-U L1,非故障相对地电压升高3倍,其夹角由120°变成60°,合成的电容电流增大3倍,接地故障电流为单相电容电流的3倍,I d=3UΦωC。
(2) 优缺点a)接地故障引起系统内部过电压可达3.5倍相电压,易使设备和线路绝缘被击穿。
b)油浸纸绝缘电力电缆达20A,聚乙烯绝缘电力电缆达15A,交联聚乙烯绝缘电力电缆达10A,接地故障电流引燃电弧则不能自熄,引起间歇性电弧,产生过电压易产生相间短路或火灾;c)非故障相对地电压升高3倍。
10kV配电网小电阻接地系统运行方式探讨
10kV配电网小电阻接地系统运行方式探讨摘要:目前,在10 kV配电系统中,电缆线所占比例很高,而城市中的架空线又存在着很大的容量和容量问题。
10 kV配电网的小阻抗接地体系更适用于城市10 kV配电网,与以往采用的中性点经消弧线圈接地、中性点绝缘接地等方法相比,该体系可以有效地改善系统的稳定性、安全性,为人民群众提供一个安全可靠的用电环境。
关键词:10kV配电网;小电阻接地;系统运行1.110kV配电网小电阻接地系统概述在城市供电系统中,110(35)kV变电站的主变二次侧10kV绕组通常为三角形联结结构,没有中心点,为实现接地需在主变二次侧安装一个Z型接地变压器引出中性点。
10kV配电网小电阻接地系统通常由接地变和小电阻两部分组成,通过接地变为主变10kV接线提供系统中性点,接地变压器容量要和系统中性点电阻相匹配。
接地变广泛采用Z型接法,即把三相铁芯各个芯柱上的绕组划分成长度基本相同、极性不同的两段,使三相绕组通过Z型接法形成星形接线。
小电阻接地系统对正、负序电流展现出高阻抗,在绕组中流过的激磁电流较小;小电阻接地系统对零序电流展现出低阻抗,绕组中的电压比较小。
2.10kV配电网小电阻接地系统的优势2.1.降低过电压电阻既是耗能元件,又是阻尼元件,可以对谐振过电压、间歇性电弧过电压产生一定影响。
应用小电阻接地系统,使中性点和线路形成回路,可以更好地释放电容电荷。
在线路单相接地故障中,中性点经过小电阻接地,中性点电位小于相电压,可以抑制非故障部分的工频电压升高。
在接地电弧熄弧后,经过中性点电阻通路,零序残荷能够及时释放,在下一次燃弧过程中,过电压赋值和日常单相接地电压相同,不会发生中性点不接地的状况,过电压幅值能够得到有效控制。
2.2.快速切除故障在系统单相接地后,接地点和曲折变中性点会产生电流通路,继电保护装置会根据零序电流精准判断和及时处理故障问题,单相故障发生概率比较小,能够减少拉路查找中由于操作不规范而造成的过电压问题。
关于中性点经小电阻接地的方式在10kV配网中应用的几点思考
高 值 电 阻 系 统 中值 电阻 系 统 低 值 电 阻 系统
消 ,一方 面减 少 了接地 点 电流 ,使得 电弧 易 低 值 电阻接 地方 式 曾在某 些城 市配 电 网中使 于熄 灭 ,从而 提高 了供 电的可靠 性 ;另一 方 用 。另外 ,在上 世纪 8年 代初 ,美 国为 我 国 O 面 , 由于 消弧 线 圈一 地 变系 统 对地 阻抗 远 设计 的首 批 3 0W 组火 力 发 电厂 的厂 用 电 接 0M机 小于 电压 互感 器 的零序 阻抗 ,在 抑制铁 磁 式 系 统 中性 点亦采 用此 种接地 方式 。这 种 中性 电压互 感器 磁 饱和 引发 的铁磁 谐振 亦有 重 要 点是采 用小 于 1 0 Q电阻接地 方式 ,其 特 点是 作 用 。对于 过 去 以架空 线为 主 、线 路对 地 电 获 得一 个大 的阻 性 电流叠加 在故 障 点上 ,能 容 较小 的情 况 下 ,以上 两种接 地方 式均 取得 正 确 、迅速 切除接 地 故障线 路 。因此 ,鉴 于 较 好 的效果 ,在 保 证供 电可靠 性 同时 ,配 网 此情 况 ,在 下文对 于 1k配 网采 用 中性 点经 0V 系 统 的安 全 性 及 经 济 性也 能得 到足 够 的保 小 电阻 接地 的方 式进行 分析 说 明,进 一步使 证 。 读 者 了解 中性点 经小 电 阻接 地方 式 ,即在 中
大 停 电 范 围 。 同时 , 由于 线 路 载 流 量 的限 制 ,不 利于 系统 的运 行稳 定 。因此 这种运 行
方 式 只能作 为短 暂 临时运 行 。
参考文献 【 冯 新年. 1 ] 内桥接 线变压器差 动保护接 线方式 的讨论 [. I ] 变压器, 0 ( : — . 2 6 ]44 0 24 7 『P T 2 O 2 s 1O 系列数 字式变压器保 护装置说 明书. ] 国电南 京 自动化股份有 限公 司
10kV配网中性点小电阻接地技术与应用
10kV配网中性点小电阻接地技术与应用摘要:10kV配网是我国配网供电的重要组成部分,10kV配网运行稳定性与可靠性对于用户用电来说有着非常重要的意义。
对于10kV配网而言,其运行过程中常常出现各种各样的故障,特别是断电故障,难于解决并影响着用户的正常用电,不利于10kV配网应用及发展。
为了切实确保用户的正常用电,提高供电的可靠性,很多电力企业选择应用10kV配网中性点小电阻接地技术,有效改善断电状况,促进配网的应用与发展。
基于此,本文就10kV配网中性点小电阻接地技术与应用进行深入分析,以供参考。
关键词:10kV配网;中性点;小电阻接地技术;应用1.10kV配网中性点小电阻接地技术简析10kV配网中性点小电阻接地技术是一项系统性的技术,以下从接地系统构成、接地方式特点、接地方式适用范围等方面出发,对于10kV配网中性点小电阻接地技术进行了分析。
1.1接地系统构成配网中性点小电阻接地主要由小电阻、接地变等组成。
在10kV配网中,主变压器在10kV侧的接线方式为三角接线,因此,需要利用接地变提供相应的系统中性点,确保小电阻接地技术的有效应用。
接地变压器容量的选择应与中性点电阻的选择相配套,其接线见图1。
中性点接地电阻接入接地变压器中性点。
图1原理接线图接地变一般采用Z型接地变,即将三相铁心每个芯柱上的绕组平均分为两段,两段绕组极性相反,三相绕组按Z形连接法接成星型接线。
其最大的特点在于,首先对正序、负序电流呈现高阻抗(相当于激磁阻抗),绕组中只流过很小的激磁电流。
其次,由于每个铁心柱上两段绕组绕向相反,同芯柱上两绕组流过相等的零序电流时,两绕组产生的磁通互相抵消,所以对零序电流呈现低阻抗(相当于漏抗),零序电流在绕组上的压降很小。
变电站中性点接地电阻系统由接地变、接地电阻、零序互感器(有的配有中性点接地电阻器监测装置)等组成。
1.2接地方式特点(1)提高系统防止过电压水平配电网在整个接地电容电流中含有一定成分的5次谐波电流,其比例高达5%~15%,即使将工频接地电流计算得十分精确,但是消弧线圈工作在电网工频50Hz下,对于5%~15%接地电容电流中的谐波电流值还是无法补偿的,不能消除弧光接地过电压。
10kV配电网中性点接地方式的研究
10kV配电网中性点接地方式的研究摘要:配电网中性点接地方式的选择对供电的正常运行起着重大的作用,因此对10kV配电网中性点接地方式的研究是至关重要的。
本文介绍了中性点三种不同接地方式,对经消弧线圈接地系统和经小电阻接地系统存在的问题进行分析,并探讨了联络密切的配电网系统接地方式、配电自动化系统接地故障研判功能和智能多模接地方式的思路。
关键词: 10kV;中性点接地;经消弧线圈接地;主要问题引言10kV配电网中性点接地方式是一个涉及电力系统各个方面的综合性问题,与整个电力系统的供电可靠性、人身安全、设备安全、继电保护、绝缘水平、过电压保护、电磁兼容、经济性等问题有密切关系,对电力系统的设计与运行有着重大的影响。
随着我国电力系统的发展和完善,10kV配电网安全可靠供电要求提高,其采用的电缆线路越来越多,电缆线路的增加导致系统电容电流急剧增加,因此,这就需要我们对配电网中性点接地方式进一步进行研究,以寻求适合电网特点的安全可靠、经济合理的中性点接地方式,以保持电网系统的稳定性和安全性。
1 中性点不同接地方式我国目前采用的中性点接地方式有:中性点不接地、经消弧线圈接地和经小电阻接地三种方式。
以下对这三种方式进行分析比较。
1.1 中性点不接地方式中性点不接地方式的主要特点是结构简单,投资较少。
发生单相接地故障时,故障相电压降为零,非故障相电压升高1.732倍,流经故障点的电流是全系统对地电容电流。
系统对地电容较小时,故障电流较小,系统可继续运行1~2h。
中性点不接地系统的根本弱点在于中性点绝缘,电网对地电容储存的能量没有释放通道,弧光接地时易产生间歇性电弧过电压,对绝缘危害很大,同时容易引发铁磁谐振。
因此该方式不能适应配电网发展,已逐渐被经消弧线圈接地和经小电阻接地方式取代。
1.2 中性点经消弧线圈接地方式经消弧线圈接地方式需要通过接地变压器提供中性点。
为避免出现谐振过电压,消弧线圈一般运行在过补偿状态。
变电站10kV中性点经小电阻接地运行方式的分析
变电站10kV中性点经小电阻接地运行方式的分析摘要:单相接地占配网故障的 80%,而中性点接地方式决定了单相接地故障的处理流程,对供电可靠性有决定性影响。
文章针对中性点经小电阻接地方式的架空线路网络与电缆网络,分析了这种接地方式运行特性、优缺点以及需要考虑的零序CT配置问题。
0 引言10kV、35kV等小电流接地系统中性点接地方式与供电可靠性、过电压与绝缘配合、继电保护等密切相关,是保障人身和设备安全及系统可靠、稳定运行的重要条件。
小电阻接地方式在配网管理水平不断提高、人身安全越来越重要的情况下具有较大优势,应作为首选方式。
1 中性点经小电阻接地方式的技术特点1.1 运行特性中性点经小电阻接地方式中电阻值一般在20?以下,单相接地故障电流限制在400A~1000A。
依靠线路零序电流保护将单相接地故障迅速切除,同时非故障相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。
1.2 适用范围1.2.1 中性点经小电阻接地方式的主要优点:(1)限制过电压水平。
系统单相接地时,健全相电压升高持续时间短,可降低单相接地各种过电压(如工频、弧光接地、PT谐振、断线谐振过电压),对设备安全有利。
(2)快速检出并隔离接地故障线路,可减小接地故障时间,防止事故扩大。
使一些瞬间故障不致发展扩大成为绝缘损坏事故,特别降低同沟敷设紧凑布置的电缆发生故障时对邻近电缆的影响。
(3)发生人身高压触电时,切断电源,有利于保护触电者的人身安全。
(4)系统单相接地时,健全相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。
(5)接地时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可以比较容易检除接地线路。
但因为零序保护有一定的整定值,在发生高阻接地的情况下,有可能达不到保护动作值而不动作。
(6)中性点经小电阻接地方式除保护测控装置外,无增加控制元件,原理简单,设备缺陷率低,运维简单,出现异常情况判断处理迅速,无须依赖接地装置厂家技术支持。
关于10kv配网中性点经小电阻接地的分析
电力系统26丨电力系统装备 2019.22Electric System2019年第22期2019 No.22电力系统装备Electric Power System Equipment电网的安全性、经济性、可靠性与电网中性点的接地方式有关,并且其对系统装置绝缘水平的通讯干扰、选择、继电保护方式、过电压水平等都有着决定性的影响。
1 中性点接地方式的不同类型与特性电网中性点接地方式在我国有很多不同类型,主要可以分为以下几种:非有效接地(小电流接地)、电阻接地、谐振接地、有效接地,在这些接地方式中,一般来讲,中性点直接接地方式都是针对大于等于110 kV 电压等级而设定的;中性点不接地方式与经消弧线圈接地方式都是针对6 kV 至35 kV 电压等级设定的,不同的电压等级有不同的接地方式。
在当前,按照我国10 kV 配网的中性点接地方式来说,中性点不接地设备与经消弧线圈接地设备比,中性点直接接地方式要大一些。
1.1 中性点不接地方式的优点运行过程中,10 kV 配网设备可能存在单相接地的故障,其出现故障的电流为线路对地电容电流,如果发生问题时电流处于10 A 之下,接地电弧是可以做到自动熄灭的,如果电流处于10 A 以上,偶尔会形成单相金属性接地,那么其电压会比平时高。
不过,一些地方出现单相接地是因为断线问题而发生的,这样会对人身安全造成较大影响。
那么,如果存在或者发现单相接地的状况,断开连接是非常有必要的。
1.2 中性点经消弧线圈接地方式的优点当设备中安装了消弧线圈,感性电流在接地电流中当然存在,而且接地点的容性电流还可以与其相互抵消,这样一来,就可以降低接地点电流,让电弧熄灭的难度下降,以增强供电的可靠性;与电压互感器的零序阻抗相比,经消弧线圈接地变系统对地阻抗要远远小于电压互感器的零序阻抗,那么对抵制铁磁式电压互感器饱和而引发的铁磁谐振是有很大作用的。
根据之前线路对地电容较小、以架空线为主的情况来说,这两种接地方式的效果都非常好,既能保障供电的可靠性,又可以保障配网系统的经济性和安全性。
10kV配电网中性点接地方式
10kV配电网中性点的接地方式本文简要评价了10kV配电网中性点的接地方式,提出中性点经小电阻接地方式,应用于现代化城市和经济发达地区是必要的、可行的和有益的。
中性点接地是一个涉及电力系统各个方面的综合性问题,它对电力系统的设计与运行有着重大的影响,确定电网的中性点接地方式,必须考虑:①供电安全可靠性和连续性;②配电网和线路结构;③过电压保护和绝缘配合;④继电保护构成和跳闸方式;⑤设备安全和人身保安;⑥对通信和电子设备的电磁干扰;⑦对电力系统稳定影响等诸多因素.我国35kV以下电压等级目前采用的中性点接地方式有:中性点不接地、经消弧线圈接地及经小电阻接地三种方式。
三种中性点接地方式的评价:(一)中性点不接地中性点不接地方式的主要特点是简单,不需任何附加设备,投资省,运行方便,特别适用于以架空线为主的电容电流比较小的、结构简单的辐射形配电网。
在发生单相接地故障时,流过故障点的电流仅为电网的对地电容电流。
由于电流较小,一般能自动息弧。
又由于中性点绝缘在单相接地时并不破坏系统的对称性,可带故障连续供电2小时,相对提高了供电的可靠性。
中性点不接地系统最根本的弱点就是其中性点是绝缘的,电网对地电容中储存的能量没有释放通道,在发生弧光接地时,电弧反复熄灭与重燃的过程,也是反复向电网电容充电的过程。
由于电容中能量不能释放,每个循环使电容电压升高一个阶梯,所以中性点不接地系统在弧光接地过电压中达很高的倍数,对系统设备绝缘危害很大。
同时系统存在电容和电感元件,在一定的条件下,由于倒闸操作或故障,很容易引发线性谐振或铁磁谐振。
一般说,对于馈线较短的电网会激发起高频谐振,引起较高的谐振过电压,特别容易引起电压互感器绝缘击穿,而对于馈线较长的电网却容易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,通过电压互感器的电流成倍增加,引起熔丝熔断或使电压互感器过热烧毁。
(二)中性点经消弧线圈接地当电网单相接地电流比较大的时候,如果中性点不接地,发生接地故障时,产生的电弧往往不能自熄,造成弧光接地过电压的概率增大,不利于电网的安全运行。
10kV配电网小电阻接地方式探讨
10kV配电网小电阻接地方式探讨摘要:本文对城市10kV配电网接地运行方式分析,比较了中性点不同接地方式的特点,阐述了小电阻接地方式的优点及合理性,并提出在其应用中需要注意的问题,指出中性点经电阻接地方式已逐步成为行业接地方式的一种趋势。
关键词:配电网;中性点;小电阻;接地方式随着城市经济的发展及市政建设要求,配电房架空线供电逐步被电缆所取代,配电网的电容电流不断增大,城市10kV配电网曾广泛采用的中性点经消弧线圈接地方式己不再适合发展需要。
目前,合肥市10kV配电网中配置的消弧线圈最大容量为1000kVA,且随着电缆线路的增加,通常需要配置两组及以上的消弧线圈,造成消弧线圈的投资增加、消弧线圈分接头调整频繁、设备绝缘水平居高不下等问题。
一般而言,电缆故障大多为永久性故障,不允许带故障运行,由此借助于消弧线圈实现电缆故障的灭弧、选线将非常困难。
国内外众多研究运用已表明中性点经小电阻接地方式更适合以电缆线路为主的城市10kV配电网,采用小电阻接地有利于继电保护装置迅速可靠的切除故障回路,降低接地故障时的内部过电压,大大减少发生人身安全事故的机会。
同时,城市配电网大多数环网布置开环运行,大多都满足N-1原则,若发生单相接地故障时可及时切除故障。
可见,在不影响供电可靠性的前提下,将10kV配电网中性点接地方式逐步调整为小电阻接地方式是可行的,小电阻取代消弧线圈已成为城市10kV配电网中性点运行方式的发展趋势。
一.中性点的接地方式中性点的运行方式主要分两类:直接接地和不接地。
1.直接接地中性点直接接地(包括经小电阻接地)的系统为大接地电流系统,大接地系统中一相接地时,出现除中性点以外的另一个接地点,构成了短路回路,接地故障相电流很大,为了防止设备损坏,必须迅速切断电源,因而供电可靠性相对较低。
但这种系统上发生单相接地故障时,由于系统中性点的钳位作用,使非故障相的对地电压不会有明显的上升,非故障相电压不升高,设备和线路对地电压可以按照相电压设计,从而降低了造价,减少了投资。
10kV配电网中性点经小电阻接地系统的研究
科技与创新┃Science and Technology & Innovation ·72·文章编号:2095-6835(2015)20-0072-0210 kV配电网中性点经小电阻接地系统的研究梁树棠(广州番电电力建设集团有限公司,广东广州 511400)摘 要:电力系统中性点接地方式是一个综合技术问题。
通过分析中性点经小电阻接地方式下的线路单相接地时电流流向和保护的整定方式,分析了10 kV配电网中性点经小电阻的接地方式,并对线路和接地变零序电流整定值的配合方式提出建议。
关键词:电力系统;中性点;接地方式;单相短路故障中图分类号:TM862 文献标识码:A DOI:10.15913/ki.kjycx.2015.20.072通过分析小电阻接地系统线路单相接地时的电流流向和小电阻接地系统继电保护的整定方式,指出了小电阻接地系统继电保护整定方式中存在的问题。
下面将分析一起因线路保护和接地变总后备整定值的配合问题而造成的线路高阻接地时接地变总后备误动的案例。
1 线路单相接地时电流流向分析小电阻接地系统线路单相接地时的故障电流和电容电流流向分布合成图如图1所示。
线路单相接地时故障电流(图1中的实线箭头)的流向:3I0从线路接地相的母线(A相)处分成三路,一路进入接地变A相;一路Iob经主变压器的低压侧AB绕组,再流入接地变B 相;一路Ioc经主变压器的低压侧AC绕组,再流入接地变C 相。
三路电流合成3I0流入接地变中性点O,再流经接地变Rg,由接地变接地点流入大地。
经大地流入线路A相故障点,进入A相线路后直接流向A相母线。
线路单相接地时电容电流(图1中的虚线箭头)的流向:电容电流从母线的非接地相(B相、C相)处分成若干路,分别流入各条线路的非故障相,并从各条线路的非故障相经对地电容流入大地;还有几路经大地流入线路A相故障点,再流入A相母线,最后流入主变压器的低压侧A相,分成两路,分别经主变压器的低压侧AB绕组和AC绕组,流向母线的非接地相(B相、C相)。
10kV配电网中性点经消弧线圈并联电阻接地方式探究
10kV配电网中性点经消弧线圈并联电阻接地方式探究中性点经消弧线圈并联电阻接地是一种全新的配网故障排查方法,其中消弧线圈能够用来补偿电容,促进单相接地故障自动化回归常态,同时,其并联电阻也能发挥电压控制功能,并能实现单相接地故障选线。
本文首先分析了消弧线圈并联电阻接地方式的构造、运行原理,以及该接地方式的具体应用。
标签:10kV配网;消弧线圈;并联电阻;接地方式0 引言10kV配网是低压配网的典型代表,使用范围较广、数量较多,其中性点接地模式关系到整个配网运行质量。
如果对中性点的接地做特殊处理,例如:经消弧线圈接地,则能够有效控制故障电流,也能使得故障线路及时回归常态。
然而,这其中存在电压超高问题,会影响故障的安全监测,对于这一问题可以通过并联电阻来解决,从而辅助故障检测,然而,这其中最关键是要把握好电阻值的大小,应该根据故障电流的大小对电阻值做出科学选择。
1 消弧线圈并联电阻接地方式的结构其主体结构为:自动调谐消弧线圈,控制器、检测元件、接地变压器等,不同部件的功能和作用主要体现在:Z型接地变压器,主要负责供应系统中性点;消弧线圈,发挥电容电流补偿作用;可调电容器组,发挥电感调节作用;可调电阻器,防止电压过大功能;中性点电压互感器,能够得到中性点位移电压;母线电压互感器,主要收到母线电压。
2 消弧线圈并联电阻接地方式的运行原理当配网处于常规运转状态下,控制器则发挥着动态、实时测量功效,主要能够测出中性点位移的电压,同时,也能测得消弧线圈中通过的电流大小。
当测量所得量发生变化,可以对消弧线圈电感加以调整,再通过回路方程最终求得配网的电容电流,当出现单相接地故障,同时配网零序电压不在标准值范围,控制器此时则能发挥消弧线圈调节作用,根据前期所设的脱谐度使其达到补偿状态。
故障最初发生时,为了使消弧线圈补偿功能得以有效发挥,不需要立即连接并联电阻,这样也能控制故障相电压的回升速度,通过这种方式来确保瞬间故障自动恢复。
10kV配网中性点小电阻接地系统的研究与设计
10kV配网中性点小电阻接地系统的研究与设计【摘要】配电网当中中性点的接地方式属于涉及到多方面影响因素的技术性问题,一直以来都是国内电力行业的研究热点话题。
传统的小电阻接地系统在高阻接地或间歇性接地故障发生时接地电流相对较小,其无法满足零序电流保护的基础需求,这一种现象在长时间持续时会导致电阻器被烧毁。
按照这一现象,基于小电阻接地系统的改进,同时分析10KV配电网中性点小电阻接地技术的结构与特征的同时,采用新型小电阻接地系统进行仿真模拟验证,从而为我国配电网的自动化运行发展提供支持。
【关键词】10kv配网;中性点小电阻接地系统;研究与设计引言伴随着近些年电力行业的持续性发展,人们生活中对于电能的依赖性明显提升,同时电力安全性与稳定性也成为了人们高度关注的话题。
在我国电力系统当中,10kv中压配电网在配电系统方面的运行具备非常重要的作用,其供电可靠性以及质量水平对于国民经济、群众日常生活有着相当直接的影响,正确的选择中性点接地属于提升配电网运行可靠性以及安全性最为直接的方式,中性点接地属于电力系统安全与经济运行的基础。
但是目前在中性点接地方面的仍然存在许多的问题,特别是跳闸率较高并且供电质量较差。
对此,探讨10kV配网中性点小电阻接地系统的研究与设计具备显著实践性价值。
1、小电阻接地系统的构成中性点小电阻接地系统主要是通过接地变与小电阻构成,借助小电阻进行接地时只需要将小电阻连接到变电站10kv母线的中性点即可。
在正常操作时小电阻不会发挥作用,但是在配电网系统出现单相接地故障时,中性点的小电阻便会在线路与接地点之间形成回路,从而连接位置呈现出较大零序电流,10kv配电网线路的零序保护并切除故障线路[1]。
接地变一般是基于Z型方式进行接地,也就是基于三相铁芯柱,其中每一个芯柱上涉及到两个绕组,三相绕组可以基于Z型连接成为星型,其特征在于正序、负序列电流表现为高阻抗,只有很小的励磁电流会绕过绕组,因为每一个铁芯柱上的两个绕组会以相反的方向进行缠绕,在同一个铁芯柱的两个绕组流过相同电流时,两个绕组会形成相互抵消的磁通。
浅谈10KV配电网中性点接地方式(一)
浅谈10KV配电网中性点接地方式(一)1.三种不同接地方式在我国的10kV配电系统中,中性点的接地方式基本上有三种:中性点绝缘接地方式、中性点经小电阻接地方式和中性点经消弧线圈接地方式。
这三种接地方式各有优缺点,特别对于小电阻接地和消弧线圈接地方式孰优孰劣问题,一直存在不同的观点。
1.1中性点不接地中性点不接地方式是我国10KV配电网采用得比较多的一种方式。
这种接地方式在运行当中如发生了单相接地故障,由于流过故障点的电流仅为电网对地的电容电流,当10kV配电系统Ijd限制在10A以下时,接地电弧一般能够自动熄灭,此时虽然健全相电压升高,但系统还是对称的,故可允许带故障连续供电一段时间(规程规定为2小时),相对地提高了供电可靠性。
这种接地方式不需任何附加设备,只要装设绝缘监察装置,以便发现单相接地故障后能迅速处理,避免单相故障长期存在发展为相间短路故障。
由于中性点不接地方式中性点对地是绝缘的,当发生弧光接地时,由于对地电容中的能量不能释放,因此会产生弧光接地过电压或谐振过电压,其值一般可达2—3.5Uxg,会对设备绝缘造成威胁。
另一方面,由于目前普遍使用的小电流接地系统选线装置的选线准确率比较低,还未能够准确地检测出发生接地故障的线路。
发生单相接地故障后,一般采用人工试拉的方法寻找接地点,因此会造成非故障线路的不必要停电。
1.2中性点经小电阻接地中性点经小电阻接地方式,即在中性点与大地之间接入一定阻值的电阻,该方式可认为是介于中性点不接地和中性点直接接地之间的一种接地方式,世界上以美国为主的部分国家采用中性点经小电阻接地方式。
采用此种方式,用以泄放线路上的过剩电荷,来限制弧光接地过电压。
中性点经小电阻接地方式中,一般选择电阻的值较小(工程上一般选取10~20Ω)。
在系统单相接地时,控制流过接地点的电流在10A~500A之间,通过流过接地点的电流来启动零序保护动作,因此可快速切除线路单相故障。
中性点经小电阻接地的特点有:1.2.1中性点经小电阻接地系统可以配置零序过流或限流速断保护。
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。