陶瓷基复合材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南农业大学机电工程学院《非金属材料》课程论文
陶瓷基复合材料
姓名:
学号:
专业班级:
论文方向:
任课教师:
陶瓷基复合材料
摘要:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
正文:
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
连续纤维补强陶瓷基复合材料(简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强
陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性。
随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。
复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。
近年来,人们对玻璃陶瓷增强增韧技术的研究进行了新的探讨,目前公认的有效办法是对玻璃陶瓷进行纤维补强。纤维增强陶瓷基复合材料不仅有利于提高基体材料的强度,也有利于提高材料的裂纹扩展抗力,可有效降低材料发生灾害性断裂的可能性,增强材料的抗疲劳强度,使玻璃陶瓷复合材料的力学性能可与Si3N4 等结构陶瓷媲美,甚至更优。纤维玻璃陶瓷复合材料在力学性能、耐高温能力和化学稳定性方面都具有其独特的优点,在高技术领域有广阔的应用前景。
20世纪60年代末70年代初,科学家已经制备了碳纤维增强玻璃陶瓷复合材料,该材料的抗弯强度和韧度可以与同时期的碳纤维增强树脂基复合材料媲美,而使用温度比树脂基复合材料高得多。一些科学家采用流延法制备单向预浸片和叠层热压方法制备了短纤维增强玻璃陶瓷基复合材料,研究了在不同介质中复合材料的静疲劳行为。结果表明,复合材料的疲劳指数和疲劳强度均高于陶瓷基体,分析认为纤维的加入降低了复合材料在静疲劳中的裂纹扩展阻力,静疲劳应力腐蚀促进了基体裂纹尖端扩展,同时通过对纤维基体界面的作用影响材料的裂纹扩展阻力,随着应力腐蚀作用的加强,含有硅氧键的较强纤维基体界面的弱化有利于改善复合材料的静疲劳行为。由于晶须具有高强度、高模量及高熔点等优异性能,利用晶须增强玻璃陶瓷是强韧化技术研究和应用的热点之一。
生物材料作为一种新型的功能材料具有许多特殊的性能要求,目前的各种生物材料虽然在一定程度上满足了其性能上的要求,并且有的已进入临床应用的试验阶段,但均有明显的不足。例如金属材料的生物惰性难以保持其长久有效性;
生物陶瓷材料的脆性使其难以满足强度等性能的要求;作为牙科材料更具有特殊的性能要求,不仅需要合适的强度和硬度,还应具有再现自然牙齿色调的功能。ZrO2 具有优良的力学性能和相变特性,且本身呈现淡黄色,与人体牙本质颜色基本一致,将其与其它陶瓷材料进行复合,可以获得保证强度同时韧性大幅提高的美容牙科修复材料。钙铝硅系玻璃陶瓷是指基体玻璃为钙铝硅系玻璃的一类玻璃陶瓷,其主晶相是β2硅灰石(CaSiO3 )。β2硅灰石晶体属链状结构硅酸盐,在玻璃基体内以针状形式交叉排列呈网状,使材料具有耐磨、耐腐蚀、硬度高和抗冲击等特性。
玻璃陶瓷作为牙科修复材料,其自然的美感和光泽使其在此领域独占鳌头。但是陶瓷类材料加工困难,而修复体的外形因个体的不同差异很大,阻碍了其在修复学领域中的应用。1972 年,一些科学家研制成功了可切削玻璃陶瓷,可用普通金属加工车床进行机械加工,从而使玻璃陶瓷在修复学领域得到更广泛的应用。其加工性能主要来源于主晶相为可切削的云母晶体以及与其它晶体的相互交错的结构。云母玻璃陶瓷除了具有优良的机械加工性能和外观色泽外,还具有良好的力学性能、热学性能及化学稳定性。最近,一些科研工作者以玻璃陶瓷为基础,与不同量的四方氧化锆多晶体粉体进行复合,制备出了用于牙科修复的新型材料。借助于DTA、XRD、SEM等手段研究了该材料的主晶相种类和显微结构,并测试了材料的抗折强度、体积密度、维氏硬度、热膨胀系数和耐酸、碱性等理化性能。结果表明:复合材料的主晶相为氟金云母、t2ZrO2和少量的m2ZrO2,具有优于天然牙齿和牙釉质的力学性能,化学性能稳定,审美效果良好,适用于制作前牙冠、贴面、嵌体等口腔修复体。
玻璃陶瓷金属复合材料既具有装饰材料的优势,又具有金属易加工成型、韧性好等优良性能,有很好的发展前景。它将对装饰材料的发展和提高人们生活水平有很大的意义,因此对这种材料的研究也势在必行。玻璃陶瓷与金属复合的工艺参数包括热处理温度和时间、金属表面氧化程度、保护气氛的控制等因素,这些因素决定了玻璃陶瓷与金属的结合强度、耐冲击等性能,玻璃陶瓷的组成对其晶相的种类和含量、热处理制度、热膨胀系数有很大的影响,进而影响玻璃陶瓷的性能、玻璃陶瓷与基体金属复合的效果,因此有必要对玻璃陶瓷的组成进行深入研究。一些科研工作者在玻璃陶瓷与金属基体复合过程中发现基体玻璃组分的