上海房价影响因素多元线性回归分析

上海房价影响因素多元线性回归分析
上海房价影响因素多元线性回归分析

计量经济学课程论文

论文题目:

上海房价影响因素多元线性回归分析

班级: 07国贸

姓名:至上励合

指导教师:佟继英

时间:2009-2010学年第一学期

上海房价影响因素多元线性回归分析

【内容摘要】近几年,随着经济的不断发展尤其是上海等大城市的飞速发展,房价也一路飘升,为了研究1998~2008年的上海市房屋销售价格指数,本文引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素,并根据模型结论给出政策建议。

【关键词】城市人口密度城市居民人均可支配收入年贷款利率房屋空置率

一、影响上海房价的主要因素

作为全国的金融中心和经济中心,上海的经济在飞速发展,随着经济的发展,地价在不断上涨,房价也随之攀升。许多上海的精装房动辄一万多甚至两万多一平米,令普通百姓咋舌,望房兴叹。上海的房价为何会如此之高,理论上说受城市人口密度,城市居民人均可支配收入,贷款利率和房屋空置率的影响。因为人口密度直接影响房屋的供给状况,而人均可支配收入和年贷款利率的高低又对需求状况有很大影响,房屋的空置率则是综合供给和需求状况进行分析的。

二、变量选取

为了研究1998~2008年的上海市房屋销售价格指数,引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量。

三、数据搜集

根据上海市统计年鉴整理得到下面数据:

年份商品房平均

售价(元每

平方米

城市人口密度

(人/平方公里)

城市居民人均

可支配收入

(元)

五年以上平均

年贷款利率(%)

房屋空置率

(%)

1998 3401.00 1654.00 8773 8.64 9.37 1999 3422.00 1672.00 10932 6.69 15.68 2000 3565.00 1757.00 11718 6.2123.83 2001 3866.00 1950.00 12883 6.2144.24 2002 4134.00 1959.00 13250 5.7657.71 2003 5118.00 1971.00 14867 5.7664.38 2004 5855.00 1970.00 16683 5.82 55.28 2005 6842.00 2718.20 18645 6.1240.45

2006 7196.00 2774.20 20668 6.45 34.82 2007 8361.00 2931.00 23623 7.48 39.31 2008 8362.00 2640.00 26675 6.89 36.92

四、模型建立及处理

Y=α+β1X1+β2X2+β3X3+β4X4+μ

其中Y表示商品房平均售价,X1表示城市人口密度,X2表示城市居民人均可支配收入,

X3表示五年以上年贷款利率,X4表示房屋空置率(空置率=成交面积/竣工面积)。

利用EVIEWS回归

利用EVIEWS5.0软件,进行OLS回归估计,可以得到:

Dependent Variable: Y

Method: Least Squares

Date: 12/12/09 Time: 18:02

Sample: 1998 2008

Included observations: 11

Variable Coefficient Std. Error t-Statistic Prob.

C -3242.851 1662.869 -1.950154 0.0990

X1 1.213216 0.570409 2.126925 0.0775

X2 0.237942 0.050003 4.758521 0.0031

X3 268.7713 204.4948 1.314319 0.2367

X4 11.36692 10.78998 1.053470 0.3327

R-squared 0.978541 Mean dependent var 5465.636

Adjusted R-squared 0.964236 S.D. dependent var 1957.466

S.E. of regression 370.1856 Akaike info criterion 14.96884

Sum squared resid 822224.2 Schwarz criterion 15.14970

Log likelihood -77.32863 F-statistic 68.40197

Durbin-Watson stat 0.997978 Prob(F-statistic) 0.000039

(一)多重共线的检验和修正

由回归结果可见,该模型R2=0.978541,R2=0.964236可决系数较高,F=68.40197,给定

显著性水平α=0.05,查F分布表可得F

α(4,6)=4.53< F,则说明回归方程显著,即各个

解释变量联合起来对被解释变量有显著影响。但是当α=0.05时,t

α/2(n-k)= t0.025(6)

=2.447,X

1、X

3

、X

4

系数的t检验值不显著,表明很可能存在严重的多重共线性。

计算各解释变量的相关系数,得到:

X1 X2 X3 X4

X1 1.000000 0.902892 0.025890 0.209591

X2 0.902892 1.000000 -0.032927 0.287857

X3 0.025890 -0.032927 1.000000 -0.729265

X4 0.209591 0.287857 -0.729265 1.000000

由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,证实确实存在严重多

重共线性。

修正:

采取逐步回归法修正模型,分别做Y对X1,X2,X3,X4的一元回归,结果如下:

变量X1 X2 X3 X4 参数估计值 3.815170 0.340559 71.79361 30.93860 t统计量8.197073 13.79805 0.095816 0.847435 R20.881877 0.954861 0.001019 0.073897

R20.868753 0.949846 0 0 其中,加入X2的方程R2最大,以X2为基础,顺次加入其他变量逐步回归,结果如下:

变量 R2

X2,X1 0.965404

X2,X3 0.948718

X2,X4 0.943698

经比较,新加入X1后的方程R2=0.965404,改进最大,而且t检验显著,选择保留X1,再加入其他新变量逐步回归,结果如下:

变量 R2

X2,X1,X3 0.963675

X2,X1,X4 0.960519

加入X3、X4后,方程R2不但没有增大,反而减小,而且各个参数的t检验都不显著,这说明X3、X4引起严重多重共线性,应予剔除。

所以修正严重多重共线性影响的回归结果为:

Dependent Variable: Y

Method: Least Squares

Date: 12/12/09 Time: 18:34

Sample: 1998 2008

Included observations: 11

Variable Coefficient Std. Error t-Statistic Prob.

C -1220.247 621.5122 -1.963351 0.0852

X1 1.248876 0.555891 2.246622 0.0549

X2 0.243828 0.047687 5.113063 0.0009

R-squared 0.972323 Mean dependent var 5465.636

Adjusted R-squared 0.965404 S.D. dependent var 1957.466

S.E. of regression 364.0888 Akaike info criterion 14.85967

Sum squared resid 1060485. Schwarz criterion 14.96819

Log likelihood -78.72820 F-statistic 140.5253

Durbin-Watson stat 1.159448 Prob(F-statistic) 0.000001

Y = -1220.246883 + 1.248875882*X1 + 0.2438278982*X2

(二)异方差的检验和修正

a.辅助函数为:σ2t=α0+α1 x1t+α2 x1t2+α3 x2t+α4 x2t2+α5 x1t x2t+υt

b.由White检验可得:

White Heteroskedasticity Test:

F-statistic 0.580576 Probability 0.717400

Obs*R-squared 4.040513 Probability 0.543598

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Date: 12/12/09 Time: 18:54

Sample: 1998 2008

Included observations: 11

Variable Coefficient Std. Error t-Statistic Prob.

C -1141304. 2507738. -0.455113 0.6681

X1 1334.546 3522.151 0.378901 0.7203

X1^2 -0.408505 1.397830 -0.292243 0.7818

X1*X2 0.023132 0.186821 0.123818 0.9063

X2 -13.02877 198.9384 -0.065491 0.9503

X2^2 -0.001035 0.007122 -0.145332 0.8901

R-squared 0.367319 Mean dependent var 96407.74 Adjusted R-squared -0.265361 S.D. dependent var 99300.72 S.E. of regression 111701.7 Akaike info criterion 26.38750 Sum squared resid 6.24E+10 Schwarz criterion 26.60454 Log likelihood -139.1313 F-statistic 0.580576 Durbin-Watson stat 2.715809 Prob(F-statistic) 0.717400

c. 在H

0:α

1

2

3

3

5

=0,H

1

:α

1

、α

2

、α

3

、α

4

、α

5

至少有一个不为0的假设

条件下,从上表可以看出,n R2=4.040513,由 White 检验知,在α=0.05下,查χ2分布表,得到临界值χ2

0.05

(5)=11.0705,比较χ2统计量与临界值,因为n R2=4.040513<χ20.05(5)=11.0705,所以接受原假设,表明模型不存在异方差。

三)自相关的检验和修正

在给定显著性水平0.05时,查n=11,k=2的DW分布值,得d L=0.658,,d U=1.604,而模型中d L

由图示,表明模型中存在自相关。

修正:

为解决自相关问题,采用科可伦-奥克特迭代法。生成命名为e t的残差序列,使用e t 进行滞后一期的自回归,在命令窗口中输入:ls y c x1 x2 Ar(1),得到如下结果:

Dependent Variable: Y

Method: Least Squares

Date: 12/12/09 Time: 19:44

Sample (adjusted): 1999 2008

Included observations: 10 after adjustments

Convergence achieved after 6 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C -1440.385 772.7312 -1.864018 0.1116

X1 1.181302 0.533114 2.215850 0.0686

X2 0.260916 0.048099 5.424563 0.0016

AR(1) 0.308722 0.365278 0.845172 0.4304

R-squared 0.978267 Mean dependent var 5672.100

Adjusted R-squared 0.967401 S.D. dependent var 1932.981

S.E. of regression 349.0043 Akaike info criterion 14.83722

Sum squared resid 730824.0 Schwarz criterion 14.95825

Log likelihood -70.18610 F-statistic 90.02690

Durbin-Watson stat 1.291496 Prob(F-statistic) 0.000022

Inverted AR Roots .31

由于使用了广义差分数据,样本容量减少了1个,为10个。在给定显著性水平0.05

时,查n=10,k=2的DW分布值,得d

L =0.697,,d

U

=1.641,而模型中d

L

U

,DW

值也落在不能确定的区域。

再使用e

t

进行滞后两期的自回归,在命令窗口中输入:ls y c x1 x2 Ar(2),得到如下结果:

Dependent Variable: Y

Method: Least Squares

Date: 12/12/09 Time: 19:55

Sample (adjusted): 2000 2008

Included observations: 9 after adjustments

Convergence achieved after 5 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C -1746.939 722.7027 -2.417231 0.0603

X1 1.560271 0.767333 2.033368 0.0977

X2 0.232504 0.066928 3.473924 0.0178

AR(2) -0.390257 0.431292 -0.904857 0.4070 R-squared 0.974440 Mean dependent var 5922.111

Adjusted R-squared 0.959104 S.D. dependent var 1870.903

S.E. of regression 378.3473 Akaike info criterion 15.01060

Sum squared resid 715733.5 Schwarz criterion 15.09826

Log likelihood -63.54772 F-statistic 63.53970

Durbin-Watson stat 1.249495 Prob(F-statistic) 0.000211 由于使用了广义差分数据,样本容量减少了2个,为9个。在给定显著性水平0.05时,

查n=9,k=2的DW分布值,得d

L =0.629,,d

U

=1.699,而模型中d

L

U

,DW值

仍然落在不能确定的区域。

再使用e t进行滞后三期的自回归,在命令窗口中输入:ls y c x1 x2 Ar(3),得

到如下结果:

由于使用了广义差分数据,样本容量减少了3个,为8个。在给定显著性水平0.05时,查n=8,k=2的DW 分布值,得d L =0.559,,d U =1.777,而模型中d U

、t 、F 统计量也均达到理想水平。 所以修正自相关后的模型结果为:

Y = -1318.248661 + 1.042955613*X1 + 0.2775700787*X2 + [AR(3)=-0.638754612]

五、结论与政策建议 (一)经济意义检验

模型估计结果说明,上海市商品房平均售价的确受城市人口密度和城市居民人均可支配收入的影响,而且商品房平均售价与两者呈同向变动关系。在假定其他解释变量不变的情况

Dependent Variable: Y Method: Least Squares Date: 12/12/09 Time: 19:59 Sample (adjusted): 2001 2008

Included observations: 8 after adjustments Convergence achieved after 16 iterations

Variable

Coefficient

Std. Error

t-Statistic

Prob.

C -1318.249 693.8615 -1.899873 0.1303 X1 1.042956 0.670842 1.554695 0.1950 X2 0.277570 0.055015 5.045377 0.0073 AR(3)

-0.638755

0.365644

-1.746930

0.1556 R-squared

0.979627 Mean dependent var 6216.750 Adjusted R-squared 0.964348 S.D. dependent var 1762.780 S.E. of regression 332.8443 Akaike info criterion 14.76008 Sum squared resid 443141.4 Schwarz criterion 14.79980 Log likelihood -55.04032 F-statistic 64.11384 Durbin-Watson stat 2.209993 Prob(F-statistic) 0.000773

Inverted AR Roots

.43+.75i

.43-.75i

-.86

下,城市人口每平方公里增加1人,上海市商品房平均售价每平方米就增加1.042955613

元;在假定其他解释变量不变的情况下,城市居民人均可支配收入每增加1元,上海市商品

房平均售价每平方米就增加0.2775700787元。这与理论分析和经验判断相一致。

所以,本研究模型估计的最终结果为:

Y = -1318.248661 + 1.042955613*X1 + 0.2775700787*X2 +

[AR(3)=-0.638754612]

se=(693.8615)(0.670842)(0.055015)(0.365644)

t= (-1.899873)( 1.554695)(5.045377) (-1.746930)

R2=0.979627 R2=0.964348 F=64.11384 DW=2.209993

(二)模型的不足

1、变量选取不够准确

2、由于数据不易搜集,样本容量太小,从而导致模型估计误差较大

(三)政策建议

上海房产市场发展的主要驱动因素,同时也是中国房产市场发展的驱动因素,是政府

决定为经济注入流动资金,这造成了现金充足的投资者,包括国有企业的资金大规模涌入。

如果要抑制高房价就要限制资金大规模流入房地产行业。

我国将完善住房消费和调控政策,增加中低价位和限价商品房的供应,抑制投机性购

房。中央经济工作会议也提出,要增加普通商品住房供给,继续支持自住型和改善型住房

需求。

为调节二手房市场的价格,国家决定转让营业税优惠政策终止,征免时限由2年恢复

到5年。此举将遏制投机性购房行为和需求。优惠政策的调整将导致二手房市场交易量下

降,包括投机性交易。对于市场来说,需求减少,投机性的需求也减少,供求关系将有一

定的平衡,有利于降低房价。

参考文献

1.施灿彬:我国房地产价格波动行为分析及对策研究[J]. 价格理论与实践2004(9)

2.《计量经济学基础》(上下册)(第四版)甘扎拉蒂,人民大学出版社

3.《计量经济学基础》(第二版)张晓峒,机械工业出版社

4.《Eview使用指南与案例》张晓峒,机械工业出版社

英文论文 房价线性回归分析

The distribution of educational resources in Beijing city and the housing prices Abstract:House price is not only affected by national macroeconomic policy, but also affected by the public facilities and the environment around. The equilibrium distribution of education resource result in house price fluctuation. That is not equity and widen the gap between the rich and the poor. We research the factors affecting the house price of Bei jing’ key schools, r esult point that school district house price is 13.8% higher than that of non-school district house having similar conditions. By controlling other public resources, like subway station, park and kindergarten, and itself property, like house age, greening rate, plot ratio, result suggest that school district house in Haidian and Chaoyang have premium of 31%. Meanwhile, they have premium of 23% totally. The result is, different house price reflect inequality of Beijing’s education resources, and most part of high quality resources distribute in central area. These spatial pattern is unreasonable, reducing the utilization of high quality public resources, and resulting in sharp rise of house price in the central area, lastly, expanding wealth gap. So the government should enhance quality of education and improve traffic efficiency. Through these measures, we can reach these goals: the suburbs improving its attractiveness, population density of Beijing decreasing, and more importantly, public resources distributing equality. Keywords: house price; public resource; factors; inequality; population density 1.Introduction Real estate is one of the most important parts of the economy in our country, the price rise is the result of multiple factors. The quality of public resources is an important factor to affect the price of housing, which is especially important in the teaching quality of residential buildings. The education resources has always been an important impact on housing prices, for example, according to the study, in 2004, in the transition process from a poor school in London to a top school, house prices have an increase of 61000 pounds. Early studies such as Oates (1969) on the cost of real estate prices and public schools spending on each students, he found that they have a significant positive correlation, and the negative effect of house property tax on housing prices can be offset if they spend the money to the school, the study shows that residents tend to pay higher prices to better public services. And Fullerton Rosen (1977) believes that the use of each student's spending in public schools as a variable is not very appropriate, because the cost of education,and other factors are not easy and accurate, so they use the average performance of students on behalf of the school quality, the results show that the data and prices are significantly positive correlation. However, it is not very good to solve the problem, in order to better quantification the quality of school teaching, Lucas Figlio (2004) introduced the school quality rating reportthe state government issued as a supplement to the students' average test score, the study shows that when

农民收入影响因素的多元回归分析

农民收入影响因素的多元回归分析 自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。其中,农民收入增长是核心,也是解决“三农”问题的关键。本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。 一、回归模型的建立 (1)数据的收集 根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。即:X2-财政用于农业的支出的比重, X3-乡村从业人员占农村人口的比重, X4-农作物播种面积

(1)回归模型的构建 Y i=1+2X2+3X3+4X4+u i 二、回归模型的分析 (1)多重共线性检验 系数a 模型非标准化系数标准系数 t Sig. 共线性统计量 B 标准误差试用版容差VIF 1 (常量) -2983.479 803.141 -3.715 .003 X2 -14.221 15.007 -.141 -.948 .361 .579 1.726 X3 5.201 3.760 .258 1.383 .190 .368 2.717 X4 .021 .006 .614 3.677 .003 .459 2.177 a. 因变量: y 表1 多重共线性是指解释变量之间存在相关关系,判断解释变量之间的多重共线性一般可看方差膨胀因子VIF和容忍度这两个指标,如果解释变量之间存在多重共线性,一般采用逐步剔除VIF最大的解释变量来消除解释变量之间多重共线性的问题。从表1可知,解释变量,X1,X2,X3三者的方差膨胀因子VIF分别为1.726,2.717和2.177,均小于10。且三者的容忍度均大于0.1。所以可以判断解释变量X1,X2,X3三者之间不存在多重共线性。 (2)模型异方差的检验 异方差产生的原因有:数据质量原因、模型设定原因。由异方差 引起的后果一般会导致回归系数估计结果误差较大、有关统计检验失 去意义、模型的预测失效等危害,所以在建立模型的过程中必须要检 验模型之间是否存在异方差。若存在异方差解决办法——加权最小二 乘法。

eviews多元线性回归案例分析

中国税收增长的分析 一、研究的目的要求 改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。 影响中国税收收入增长的因素很多,但据分析主要的因素可能有:(1)从宏观经济看,经济整体增长是税收增长的基本源泉。(2)公共财政的需求,税收收入是财政的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。(3)物价水平。我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。(4)税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984—1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收会产生影响,特别是1985年税收陡增215.42%。但是第二次税制改革对税收的增长速度的影响不是非常大。因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 二、模型设定 为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收”(简称“税收收入”)作为被解释变量,以放映国家税收的增长;选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数” 从《中国统计年鉴》收集到以下数据 财政收入(亿元) Y 国内生产总值(亿 元) X2 财政支出(亿 元) X3 商品零售价格指 数(%) X4 1978519.283624.11122.09100.7 1979537.824038.21281.79102 1980571.74517.81228.83106

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 组样本,“N截止,代表有P个自变量,如果有x2, xp上图中的x1, 分别代表“自变量”Xp 那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 不可解释的误和其中随机误差分为:可解释的误差其中:代表随机误差, 差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) :服成正太分布,即指:随机误差1必须是服成正太分别的随机变量。0 2:无偏性假设,即指:期望值为3:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 多元线性回归的具体操作过程,下面以教程教程数据今天跟大家一起讨论一下,SPSS---为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

————”——“点击分析回归线性进入如下图所示的界面: 个自变10车长,车宽,耗油率,车净重等将“作为“销售量”“因变量”拖入因变量框内,将,当然,你也可以选择其它”“逐步”量拖入自变量框内,如上图所示,在“方法旁边,选择默认的方式,在分析结果中,将会得到如下图所示的结果:进入“”的方式,如果你选择(所有的自变量,都会强行进入)

统计”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F逐步如果你选择“关系最为密切,贡””自变量应该是跟“因变量“量的概率值进行筛选,最先进入回归方程的跟因变量关系最为密切,符合判断条件的概献最大的,如下图可以看出,车的价格和车轴 时将会被剔除)0.1,当概率值大于等于0.05率值必须小于 进行条件筛选,可以自变量”选择变量(E) 框内,我并没有输入数据,如果你需要对某个““内,有一个前提就是:该变量从未在另一个目标列表中”将那个自变量,移入“选择变量框即可,如下图所示:””规则设定相应的“筛选条件“出现!,再点击 弹出如下所示的框,如下所示:”统计量“点击

城市化对房价的影响_线性还是非线性_基于四种面板数据回归模型的实证分析

第37卷第4期 财经研究 V o l 37N o 4 2011年4月Journal of Finance and Eco no mics A pr 2011 城市化对房价的影响:线性还是非线性? 基于四种面板数据回归模型的实证分析 骆永民 (安徽工业大学经济学院,安徽马鞍山243032) 摘 要:文章从线性和非线性两个角度分析了中国城市化进程对房价的影响。通过对各省历年房价和城市化的核密度估计空间分布分析,发现城市化和房价之间存在明显的正相关性,并且各省份的城市化和房价水平存在 双峰 分布特征和空间相关性。这说明在分析城市化对房价的影响时应考虑可能的门限效应和空间溢出效应这两种非线性关系。据此,文章基于中国30个省份1998-2009年的面板数据,使用普通面板回归、空间面板回归、门限面板回归和平滑门限面板回归这四种模型进行分析发现,城市化水平对本地区和相邻地区的房价均具有显著的促进作用,且在经济增长水平较高、人力资本集聚的地区,城市化对房价的促进作用更加显著。 关键词:城市化;房价;线性;非线性;面板数据回归模型 中图分类号:F293 3 文献标识码:A 文章编号:1001 9952(2011)04 0135 10 收稿日期:2010 12 08 基金项目:教育部人文社会科学研究青年基金项目(10YJ C790186) 作者简介:骆永民(1981-),男,安徽蚌埠人,安徽工业大学经济学院副教授。 一、引 言 2011年新年伊始,政府相继出台了一系列抑制房价快速上涨的政策。其中影响较大的有以下几条:(1)二套房贷款首付比例不得低于60%,同时贷款利率不得低于基准利率的1 1倍;(2)上海和重庆从1月28日起开征个人住房房产税,与此同时财政部、国税总局、住建部相关负责人表示,条件成熟时将在全国范围内对个人拥有的住房征收房产税;(3)各直辖市、计划单列市、省会城市和房价过高、上涨过快的城市,在一定时期内要从严制定和执行住房限购措施;(4)各地要增加土地有效供应,落实保障性住房、棚户区改造住房和中小套型普通商品住房用地不低于住房建设用地供应总量70%的要求。总结上述政策,政府旨在通过提高利率、开征住房房产税、限购以及增加土地和保障性住房供应等政策抑制房价的快速上涨。从相关实证研究看,提高利率(黄忠华等,2008;况伟大,2010)、增加土地和保障房供应(况伟大,2005;温海珍等, 135

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

我国国内旅游收入影响因素的多元回归分析

我国国内旅游收入影响因素的多元分析 班级:统计学129 姓名: 杨芳 学号:200712918 2010年3月3日

问题背景: 我国的旅游业一直保持较高的发展速度,旅游作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。我国的旅游业分为国际旅游和国内旅游两大市场,虽然国际旅游外汇收入的年均增长率高于国内旅游收入,但国内旅游收入在中国旅游收入中占50%以上的比例,因此,有必要对影响我国国内旅游业快速发展的因素进行分析。数据的选择及处理: 影响国内旅游收入的因素有很多,本文选择了影响国内旅游收入因素(y)的因素有人均收入(x1)、国内旅游人数(x2)、城镇人均旅游支出(x3)、农村人均旅游支出(x4)、公路里程(x5)、铁路里程(x6)。 国内旅游收入数据资料 年份国内旅游收 入(亿元) 人均收 入(元) 国内旅游 人数(百 万人次) 城镇人均 旅游支出 (元) 农村人 均旅游 支出 (元) 公路里程 (万公 里) 铁路里 程(万公 里) 1994 1023.51 4044 524 414.67 54.88 111.78 5.9 1995 1375.7 5046 629 464.02 61.47 115.7 6.2389 1996 1638.38 5846 640 534.1 70.45 118.58 6.49 1997 2112.7 6420 644 599.8 145.68 122.64 6.6 1998 2391.18 6796 695 607 197 127.85 6.64 1999 2831.92 7159 719 614.8 249.5 135.17 6.74 2000 3175.54 7858 744 678.6 226.6 140.27 6.87 2001 3522.4 8622 784 708.3 212.7 169.8 7.0058 2002 3878.36 9398 878 739.7 209.1 176.52 7.19 2003 3442.27 10542 870 684.9 200 180.98 7.3 2004 4710.7 12336 1102 731.8 210.2 187.07 7.44 2005 5285.9 14053 1212 737.1 227.6 334.52 7.54376 2006 6229.74 16165 1394 766.4 221.9 345.6999 7.70838 2007 7770.6 19524 1610 906.9 222.5 358.3715 7.79659 数据来自《中国统计年鉴2008》 国内旅游收入(亿元):指国内游客在国内旅行、游览过程中用于交

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

二手房房价影响因素的多元线性回归分析及其应用

二手房房价影响因素的多元线性 回归分析及其应用 摘要:在房价居高不下的情况下,二手房市场悄然兴起。目前新品房数量已经不足以满足居民的住房需求,房地产市场供需愈加不平衡。因此,为了平衡住房的供给和需求,二手房市场的存在就有了意义。在二手房市场上,出售者和购买者以双方都能接受的价格达成协议,完成住房的出售,对房源进行了再分配。本文在居民消费水平提高、重庆二手房市场十分活跃的背景下,对重庆市二手房价格进行了统计,分析了影响二手房房价的因素,例如居住条件、周边环境、经济增长等因素,并结合二手房市场所遇困难和政府对策,对适用于二手房市场的政策进行了阐述。 关键词:二手房房价;数据统计;影响因素 Abstract:In the case of high housing prices, the secondary housing market quietly emerged. At present, the number of new arrivals is insufficient to meet the housing demand of the residents, and the supply and demand of the real estate market are increasingly unbalanced. Therefore, in order to balance the supply and demand of housing, the existing housing market has a meaning. In the second-hand housing market, the seller and the buyer agree on a price acceptable to both parties, complete the sale of the house and redistribute the house source. Based on the residents' consumption level, chongqing under the background of the secondary market is very active, chongqing second-hand housing prices for the statistics, analyzes the factors influencing the second-hand house prices, for example, living conditions, surrounding environment, factors such as economic growth, and combining with the secondary market encountered difficulties and countermeasures of government, the policy applicable to the secondary market are expounded. Key words:S econd-hand house price;Data statistics;Influence factor

多元线性回归分析范例

国际旅游外汇收入是国民经济发展的重要组成部分,影响一个国家或地区旅游收入的因素包括自然、文化、社会、经济、交通等多方面的因素,本例研究第三产业对旅游外汇收入的影响。《中国统计年鉴》把第三产业划分为12个组成部分,分别为x1农林牧渔服务业,x2地质勘查水利管理业,x3交通运输仓储和邮电通信业,x4批发零售贸易和餐饮业,x5金融保险业,x6房地产业,x7社会服务业,x8卫生体育和社会福利业,x9教育文化艺术和广播,x10科学研究和综合艺术,x11党政机关,x12其他行业。采用1998年我国31 个省、市、自治区的数据,以国际旅游外汇收入(百万美元)为因变量y,以如上12 个行业为自变量做多元线性回归,其中自变量单位为亿元人民币。即样本量n=31,变量p=12。 利用SPSS软件对数据进行处理,输出: 图1 输入/移除变量 图1即输入了所有模型中的变量,分别为 x1:农林牧渔服务业 x2:地质勘查水利管理业 x3:交通运输仓储和邮电通信业 x4:批发零售贸易和餐饮业 x5:金融保险业 x6:房地产业 x7:社会服务业 x8:卫生体育和社会福利业 x9:教育文化艺术和广播 x10:科学研究和综合艺术 x11:党政机关 x12:其他行业

图2 模型概述 即回归方程对样本观测值的拟合程度,复相关系数R=0.875,决定系数R 2=0.935。由决定系数接近1,得出回归拟合的效果较好,但是并不能作为严格的显著性检验。由R 2决定模型优劣时需慎重,尤其是样本量与自变量个数接近时。 图3 回归方程显著性的F 检验 F=10.482,F α(n,n-p-1)=F α(30,18)=2.11(α=0.05),P 值=0.000,表明回归方程高度显著,即12个自变量整体对因变量y 产生显著线性影响。但是并不能说明回归方程中所有自变量都对因变量y 有显著影响,因此还要对回归系数进行检验。 图4 回归系数的显著性t 检验(t 0.05(20)=1.725) y 对12个自变量的线性回归方程为: 1234 5678 9101112y 205.388 1.438 2.622 3.2970.9465.521 4.068 4.16215.40417.3389.15510.536 1.37x x x x x x x x x x x x =--++--++-++-+

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

基于多元线性回归模型的影响居民消费水平相关因素分析

计量分析软件课程论文 论文题目:基于多元线性回归模型的影响居民消费 水平相关因素分析 姓名:学号: 学院:专业: 联系电话: 年月日 基于多元线性回归模型的影响居民消费 水平相关因素分析 一、研究背景 中国GDP总量超越日本,成为仅次于美国的第二大经济体,但我国人均GDP 依然很低,全球排名87位,这很大程度上制约了居民消费水平的提高。到2020年实现全面建成小康社会的目标,十八大明确提出提高居民人均收入和人均消费水平,共享改革开放成果。我国居民消费水平在改革开放后有了很大提高,但消费水平依然很低,消费量占GDP比重依然很小。为此,本文旨在根据全国经济宏观政策、国内生产总值、职工平均工资指数、城镇居民消费价格指数、普通中学及高等学校在校生数、卫生机构数和基本设施铁路公路货运量等因素的变化情况,来分析如何提高居民消费水平,以判断是否能使居民消费水平有很大的提高。本文通过对1978-2010年影响居民消费水平因素数据的分析,找到影响居民消费水平的主要原因,通过计量经济分析方法来建立合理的模型,探讨影响居民消费增长的长期趋势规律,并给政府提出合理的建议,以提高居民消费水平。 二、影响居民消费水平的因素 宏观经济模型) + GDP- + + =,经济发展应该紧紧抓住消费这一 I (M C X G 驾马车,而居民消费水平的高低受制于多种因素。凯恩斯消费理论认为居民消费主要受收入影响,我国居民消费一直很低,消费意愿不强,本文通过计量分析找

到影响我国居民消费水平的主要因素,从根本上改善消费不足,促进我国经济的持续稳定健康发展。 消费分为居民消费和,居民消费包括农村居民消费和城镇居民消费。本文结合居民消费水平的影响因素,列出了国内生产总值、职工平均工资指数、城镇居民消费价格指数、普通中学及高等学校在校生数、卫生机构数和基本设施铁路公路货运量等相关因素,进行计量分析,得到回归模型。 三、居民消费水平模型的总体分析框架 (1)多元线性回归法OLS 概述[1] 回归分析是计量经济分析中使用最多的方法,在现实问题研究中,因变量往往受制于多个经济变量的影响,通过统计资料,根据多个解释变量的最优组合来建立回归方程预测被解释变量的回归分析称为多元线性回归法。其模型基本形式为: 其中0β、1β、2β、3β…k β是1+k 个未知参数,称为多元回归系数。Y 称为被解释变量,t X 1、t X 2、t X 3…kt X 是k 个可以精确测量和可控的一般解释变量, t μ是随机误差项。当2≥k 时,上式为多元线性回归模型。 (2)多元回归模型的建立 定义被解释变量和解释变量,被解释变量为居民消费水平(Y 元),解释变量为国内生产总值(1X 亿元)、职工平均工资指数(2X )、城镇居民消费价格指数(3X )、普通中学及高等学校在校生数(4X 万人)、卫生机构数(5X 个)和基本设施铁路公路货运量(6X 万吨)。 (3)统计数据选取 本文所有数据均来自中国统计局和中国统计局外网中国统计年鉴。[2] 1978 184 21261 169732 195301 1979 208 175142 382929 1980 238 180553 493327 1981 264 190126 471336 1982 288 193438 492737 1983 316 196017 520197

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用

————————————————————————————————作者: ————————————————————————————————日期: ?

多元回归分析法的介绍及具体应用 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。这里主要讲的是多元线性回归分析法。 1. 多元线性回归的定义 说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。 因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。 研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。 多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。 2. 多元回归线性分析的运用 具体地说,多元线性回归分析主要解决以下几方面的问题。 (1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

相关文档
最新文档