数学分析第十三章函数列与数项级数的复习题
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
数学分析课本(华师大三版)-习题及答案第十三章

第十三章 函数列与函数项级数一、证明题1.讨论下列函数列或函数项级数在所示区间D 上是否一致收敛,并说明理由:(1) f n (x)=22n 1x +,n=1,2,…,D=(-1,1); (2) f n (x)=22xn 1x +,n=1,2,…D=(-∞,+∞); (3) f n (x)=⎪⎪⎩⎪⎪⎨⎧≤<++≤≤++-1x 1n 1 0,1n 1x 0 1,1)x (n (n=1,2……); (4) f n (x)=nx , n=1,2,…, (i) D=[0,+∞]; (ii) D=[0,1000]; (5) f n (x)=sin n x , n=1,2,…, (i) D=[-L,L]; (ii) D=[-∞,+∞]; (6) ∑+--nx 1)(21n , D=[-∞,+∞]; (7) ∑-+1n 22)x (1x , (i) D=[-∞,+∞]; (ii) D=⎥⎦⎤⎢⎣⎡10,101. 2. 证明:设f(x)→f(x),x ∈D; a n →0(n →∞),(a n >0),若对每一个自然数n.有|f n (x)-f(x)|≤a n , x ∈D,则{f n }在D 上一致收敛于f.3. 设{f n }为定义在[a,b]上的函数列,且对每一个n,f n 在点a 右连续,但{f n (a n )}是发散的,证明在任何开区间(a,a+δ)这里(a+δ<b)内{f n }都不一致收敛.4. 设函数项级数∑n u (x)在D 上一致收敛于S(x),函数g(x)在D 上有界,证明级数∑(x)g(x)u n 在D 上一致收敛于g(x)S(x). 5. 若在区间I 上,对任何自然数n, |u n (x)|≤V n (x), 证明当∑n v (x)在I 上一致收敛时,级数∑n u (x)在I 也一致收敛.6. 设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑n u (a)与∑n u (b)都绝对收敛,则级数∑n u (x)在[a,b]上绝对并一致收敛.7. 在[0,1]上定义函数列1,2n n 1x 0,n 1 x ,n 1(x)u n =⎪⎪⎩⎪⎪⎨⎧≠==证明: 级数∑n u (x)在[0,1]上一致收敛,但它不存在优级数.8. 证明:级数∑∞=0n n n x )-(1x (-1)在[0,1]上绝对并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛.9. 设f 为定义在区间(a,b)内的任一函数,记f n (x)=n [nf(x)],n=1,2,……,证明函数列{f n }在(a,b)内一致收敛于f.10. 设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数.则级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上一致收敛.11. 证明: 若函数列{f n }在[a,b]上满足定理13.10的条件,则{f n }在[a,b]上一致收敛.12. 证明: 函数f(x)=∑3n sinnx 在(-∞,+∞)上连续,且有连续的导函数.13. 证明: 定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.12条件,且 ∑⎰∞==0n n2πcosnx dx r 02π 14. 讨论下列函数列在所定义区间上的一致收敛性及其极限函数的连续性,可积性和可微性.(1) f n (x)=2nx x e -(n=1,2,…)x ∈[-L,L];(2) f n (x)=nx1nx +,n=1,2,…, (i) x ∈[)+∞,0, (ii) x ∈[)+∞a, (a>0); 15. 证明函数ξ(x)=∑x n 1在(1,+∞)内连续,且有连续的各阶导数.16. 证明:若函数列{f n }在x 0的某δ邻域U(x 0,δ)内一致收敛于f,且)1,2,(n a (x)f lim n n x x 0 ==→,则n n a lim ∞→与f(x)lim 0x x →存在且相等,即∞→n lim (x)f lim n x x 0→=(x)f lim lim n n x x 0∞→→ 17. 设f 在(-∞,+∞)上有任何阶导数,记F n =f (n),且在任何有限区间内,F n →ϕ(n →∞),试证 ϕ(x)=ce x (c 为常数).二、计算题1. 判别下列函数项级数在所示区间上的一致收敛性. (1) ∑-∈-r]r,[x ,1)!(n x n; (2) ∑+∞-∞∈+],[x ,)x (1x (-1)n 221-n ; (3) ∑>≥0r |x |,x n n ;(4) ∑∈[0,1]x ,nx 2n.2. 讨论下列函数列或函数英级数在所示区间D 上的敛散性: (1) (0,1]D ,1,2,n ,nx11(x)f n ==+=(2) ∑=][0,2D ,n sinnx π; (3) ∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1]; (4) ∑n n 3xsin 2, D=(0,+∞) (5) ∑+-+)nx ](11)x (n [1x 222, D=(0,+∞) (6) ∑nx n, D=[-1,0]; (7) ∑+-+12n x 1)(12n n D=[-1,1] 3. 设S(x)=∑-21n nx ,x ∈[-1,1],计算积分S(t)dt 0x ⎰. 4. 设S(x)=∑⋅n n cosnx ,x ∈(-∞,+∞),计算积分S(t)dt 0x ⎰.5. 设S(x)=∑-nx ne (x>0),计算积分S(t)dt ln2ln3⎰ 三、考研复习题1. 试问K 为何值时,下列函数列{f n }一致收敛:(1) f n (x)=xn k e -nx ,0≤x<+∞; (2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<⎪⎭⎫ ⎝⎛-≤≤=1x n 2 0,,n 2x n 1 ,n x n2n 1x 0 ,xn (x)f k k n 2. 证明:(1)若f n (x)→f(x)(n →∞)(x ∈I),且f 在I 上有界,则{f n }至多除有限项外,在I 上是一致有界的;(2) 若f n (x)⇒f(x) (n →∞)(x ∈I),且对每一个自然数n,f n 在I 上有界,则{f n }在I 上一致有界.3. 设f 为⎥⎦⎤⎢⎣⎡1,21上的连续函数,证明: (1) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上收敛; (2) {x n f(x)}在⎥⎦⎤⎢⎣⎡1,21上一致收敛的充要条件是f 在⎥⎦⎤⎢⎣⎡1,21上有界且f(1)=04. 若把定理13.9中一致收敛函数列{f n }的每一项在[a,b]上连续改为在[a,b]上可积,试证{f n }在[a,b]上的极限函数在[a,b]上也可积.5. 证明: 由二重极限∞→m lim (∞→n lim cos 2n (m!πx)) 所确定的极限函数是狄利克雷函数.6. 设级数∑n a 收敛,证明∞→n lim ∑x n n a =∑n a . 7. 设可微函数列{f n }在[a,b]上收敛,{f 'n }在[a,b]上一致有界,证明:{f n }在[a,b]上一致收敛.。
数学分析第十三章函数列与数项级数的复习题

第十三章函数列与函数项级数的复习题一、 判断题。
1. 函数项级数∑u n ()x 在数集D 上一致收敛的充分必要条件是函数列{u n()x }在D 上一致收敛于零。
( )2. 函数列{f (X )}在数集D 上一致收敛的充要条件是:对任给正数ε,总存在正数N ,使得当n ,m ﹥N 时,对一切X ∈D ,都有|f n(X )﹣f m(X )|﹤ε。
( )3. 若函数列{ f n }在区间Ⅰ上一致收敛,且每一项都连续,则其极限函数f在Ⅰ上也连续。
( )4. 若函数项级数∑u n (X )在区间[a,b]上一致收敛,且每一项不都连续,则其和函数在[a,b]上是连续的。
( )5. 若函数列{ f n }在区间[a,b]上一致收敛, 且每一项都连续,则⎰∞→ban lim f n(X )dx =⎰∞→ban lim f n(X )dx 。
( ) 二、 填空题。
6.默写M 判别法: 。
7. 设{s n ()x }是函数项级数∑u n ()x 的部分和函数列。
若{s n ()x }在数集D 上一致收敛于函数S ()x ,则称函数项级数∑u n ()x在D 上于函数S ()x ,或称∑u n()x 在D 上。
8. 若函数项级数∑nns2sin 在(∞+,)∞-上一致收敛,则∑nnx2cos 在(∞+,)∞-上 。
9. 若函数项级数∑u n ()x 在[a,b]上一致收敛,且每一项u n ()x 都连续,则()x ba n u ∑⎰dx = 。
三、 判别下列函数项级数在所示区间上的一致收敛性。
10.∑+xnx 241,x ∈[1,10]11. ∑n x n2,x ∈[0,1]12. ∑!2n x ,x∈[-a,a]13.()x f n =nx 221+,n =1,2,3…,D=(-1,1)四、 设s ()x =∑∞=-121n n nx ,x ∈[-1,1],计算积分⎰xs 0()t dt.五、 证明:设f n()x f →()x ,x ∈D ,→an0(→n ∞)(a n >0)。
华东师大数学分析13章_函数项级数

都落在曲线 y f ( x ) 与
y f ( x) y fn ( x)
y f ( x)
y f ( x ) 所夹的带状区域内.
O
a
b
x
定理1 (函数列的柯西一致收敛准则) 函数列{ f n ( x )}
n
Sn ( x ) uk ( x ),
k 1
n
x E , n 1,2,
(10)
为函数项级数(9)的部分和函数列.
若 x0 E , 数项级数
u1 ( x0 ) u2 ( x0 ) un ( x0 )
n k 1
(11)
收敛, 即部分和 S n ( x0 ) uk ( x0 ) 当 n 时极限 存在, 则称级数(9)在点 x0 收敛, x0 称为级数(9)的收 敛点. 若级数(11)发散, 则称级数(9)在点 x0 发散. 若 级数(9)在 E 的某个子集 D 上每点都收敛, 则称级数 (9)在 D 上收敛. 若 D 为级数全体收敛点的集合, 就称 D为函数项级数的收敛域. 级数在 D上每一
解:x [0,1], 有 lim nx(1 x ) n 0 即极限函数 f ( x ) 0. n
设 ( x) | f n ( x) f ( x) | nx(1 x)n ,
x [0,1]
( x )在[0,1]连续, 必有最大值
( x) n(1 x)n1 (1 x nx)
1
1 n0
1 n0 n0 1 | f n0 ( x0 ) f ( x0 ) | [( ) ] 0 . 2 2 即函数列 {x n }在区间 [0,1)不一致收敛 .
数学分析-第十三章函数列与函数项级数3-精品文档

故 幂 级 数 anxn在 [a,b]上 适 合 定 理3条 件 , 从 n1
而 可 以 逐 项 求 导 . 由 [a ,b ]在 ( R ,R )内 的 任 意 性 ,
即 得 幂 级 数 a n x n 在 ( R ,R )内 可 逐 项 求 导 . n 1
设 幂 级 数 n n x n a 1 的 收 敛 半 径 为 R . RR, n 1
将 此 幂 级 数 nna xn1在 [0,x](xR)上 n1
逐 项 积 分 即 得anxn, n1
因 逐 项 积 分 所 得 级 数 的 收 敛 半 径 不 会 缩 小 ,
所R 以 R, 于R 是 R.
有
rn(x)
. ba
于 是 , 当 n N 时 有
x x 0s(x)d xx x 0sn(x)dx xx0 rn(x)dx
bq(xx0). 根据极限定义,有
x
x
nx
x 0s (x )d x ln ix m 0s n (x )d x ln ii m 1x 0u n (x )dx
s n ( x ) 是 有 限 项 连 续 函 数 之 和 ,
故sn(x)(nN)在点x0连续,
0 当 x x 0时 总 有 s n (x ) s n (x 0 ) 3(3) 由(1)、(2)、(3)可见, 对 任 给 0 , 必 有 0 ,
当xx0 时,有s(x)s(x0).
即nnaxn1与anxn的 收 敛 半 径 相 同 .
n1
n1
再见
n2
在任何区间[a,b]上都是一致收敛的.
逐项求导后得级数
c x c o 2 2 x o s c s n 2 x o ,s 因其一般项 ,所不 以趋 对于 于 x零 都 任是 意值 发散 . 的
《数学分析》知识点整理.pdf

《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.。
数学分析之函数列与函数项级数

n
xD
或
f n ( x ) f ( x ) ( n ) , x D.
函数列极限的 N 定义: 对每一固定的 x D , 任 给正数 , 总存在正数N(注意: 一般说来N值与 和
x 的值都有关, 所以有时也用N( , x)表示三者之间
的依赖关系), 使当 n N 时, 总有
| f n ( x ) f ( x ) | .
使函数列 { f n } 收敛的全体收敛点集合, 称为函数列
{ f n } 的收敛域.
例1 设 f n ( x ) x n , n 1,2, 为定义在(-, ) 上的 函数列, 证明它的收敛域是 (1, 1] , 且有极限函数 0, | x | 1, f ( x) 1, x 1. 证 任给 0 (不妨设 1), 当 0 | x | 1 时, 由于
函数列 f n 在 D 上不一致收敛于 f 的正面陈述是:
存在某正数 0 , 对任何正数 N, 都有某一点 x0 D 和
某一正整数 n0 N( 注意: x0 与 n0 的取值与 N 有关 ),
使得
f n0 ( x0 ) f ( x0 ) 0 .
n x 在 (0, 1) 上不可能一致收敛于 0. 由例1 中知道,
下面来证明这个结论.
1 事实上, 若取 0 , 对任何正整数 N 2, 取正整 2
1 数 n0 N 及 x0 1 (0, 1), 就有 N 1 1 n0 x0 0 1 . N 2
1 N
函数列{ f n ( x)}在区间D上一致收敛于f ( x)的 几何意义: 对任意给定的正数 , 存在正整数N , 对于一 切序号大于N的曲线y f n ( x), n N 1, N 2,... 都落在以曲线y f ( x) 与y f ( x) 为边的 带型区域内.
数学分析13-2132 一致收敛函数列与函数项级数的性质

一致收敛性的重要性在于可以 将通项函数的许多解析性质遗传给和 函数,如连续性、可积性、可微性等, 这在理论上非常重要.
前页 后页 返回
定理13.8 ( 极限交换定理 ) 设函数列 { fn } 在
(a, x0 ) ( x0,b) 上一致收敛于 f ( x), 且对每个 n,
b
a fn( x) f ( x) dx (b a),
这就证明了等式 (3).
这个定理指出: 在一致收敛的条件下, 极限运算与
积分运算的顺序可以交换.
前页 后页 返回
例1 设函数
2nn x,
Байду номын сангаас
0 x 1 , 2n
fn
(
x)
2 n
2n n
x,
1 x 1,
2n
n
n 1, 2,
.
0,
1 x 1, n
lim
xb
fn( x) 存在, 则有
lim
xb
lim
n
fn(
x)
lim
n
lim
xb
fn( x).
前页 后页 返回
定理13.9 (连续性) 若函数列 { fn } 在区间 I上一致收 敛, 且每一项都连续, 则其极限函数 f 在 I 上也连续.
证
设
x0
为
I
上任一点.由于
lim
x x0
fn(x)
fn( x0 ),
收敛于 0 的充要条件是 n 0(n ) .
又因
1 0
fn( x)dx
n ,
2n
故
1
1
0 fn( x)dx 0 f ( x)dx 0
数分13-3

即 2 x 0时, 原级数发散.
(3) 当| 1 x | 1, x 0或x 2,
当 x 0时, 当 x 2时,
级数 (1)n 收敛;
n1 n
级数 1 发散;
n1 n
故级数的收敛域为(,2) [0,).
例2 研究级数
1 x1
x
1
2
x
1
1
x
1
n
x
1 n
1
在区间[ 0,)上的一致收敛性.
第十三章习题课
一、主要内容
二、典型例题
一、函数项级数主要内容
(1) 定义
设 u1( x), u2 ( x), , un ( x), 是 定 义在I R 上 的
函数,则 un( x) u1( x) u2 ( x) un( x)
n1
称为定义在区间I 上的(函数项)无穷级数.
(2) 收敛点与收敛域
敛于零的“快慢”程度是不一致的.
从下图可以看出:
例4 证明级数
sin x sin 22 x sin n2 x
12
22
n2
在(,)上一致收敛.
证 在(,)内
sin n2 x 1
n2
n2
(n 1,2,3, )
级数
1 收敛,
n2
n1
由魏尔斯特拉斯判别法,
所给级数在(,)内一致收敛.
例5 求级数 (n 1)( x 1)n 收敛域及和函数. n0
解 (n 1)(x 1)n 的收敛半径为 R 1, n0 收敛域为 1 x 1 1, 即 0 x 2,
设此级数的和函数为 s( x), 则有
s( x) (n 1)(x 1)n . n0
两边逐项积分
《数学分析(3)》知识点整理

《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.5(1)柱面坐标变换cos ,0,:sin ,02,.x r r T y rz z z θ,θθπ=≤⎧⎪=≤⎨⎪=-∞<<⎩<+∞≤+∞(,,)V 三重积分的柱面坐标换元公式为f x y z dxdydz ⎰⎰⎰(cos ,sin ,)V f r r z rdrd dz θθθ'=⎰⎰⎰,这里V '为V 在柱面坐标变换下的原象.(2)球坐标变换T y sin cos ,0,:sin sin ,0,cos ,02.x r r r z r ϕθϕθϕπϕθπ=≤<+∞⎧⎪=≤≤⎨⎪=≤≤⎩三重积分的球坐标换元公式(,,)Vf x y z dxdydz ⎰⎰⎰2(sin cos ,sin sin ,cos )sin V f r r r r drd d ϕθϕθϕϕϕ'=⎰⎰⎰θ,这里V '为V 在球坐标变换下的原象.DS ∆=.6.曲面面积计算公式:第二十二章 曲面积分(10%)1.设有光滑曲面),(,:(,S z z x y =)x y D ∈,(,,)f x y z 为上的连续函数,则S (,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰. 2.设R 是定义在光滑曲面:(,S z z x y )=,(,)xy x y D ∈上的连续函数,以的上侧为正侧(这时的法线方向与轴正向成锐角),则有S S z (,,),))(,,(xySD R x y z dxdy x y dxdy =⎰⎰R x y z ⎰⎰.3.高斯公式:设空间区域V 由分片光滑的双侧封闭曲面围成.若函数,,S P Q R 在V 上连续,且有一阶连续偏导数,则(VSP Q Rdxdydz Pdydz Qdzdx Rdxdy x y z ∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ ,其中取外侧. S 4.斯托克斯公式:设光滑曲面的边界是按段光滑的连续曲线.若函数,Q ,S L P R 在(连同)上连续,且有一阶连续偏导数,则S L ()(()L P =⎰ S P R Q P dydz dzdx dxdy d Q z x x y ∂∂∂∂-+-∂∂∂∂⎰⎰R Q y z ∂∂∂∂x dy +Rd +z (或-+Sdz dzdx dxdydy x y z P Q R∂∂∂∂∂∂⎰⎰ LPdx Qdy Rdz =++⎰ ),其中的侧与的方向按右手法则确定. S L。
《数学分析》第十三章 函数列与函数项级数

110第十三章 函数列与函数项级数 ( 1 2 时 )§1 一致收敛性( 6 时 )一 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念:收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛(或称为“点态收敛”)的“N -ε”定义.例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x ,用“N -ε”定义验证其收敛域为] 1 , 1 (-,且∞→n l i m )(x f n = ∞→n lim n x =⎩⎨⎧=<.1 , 1 , 1 || , 0 x x例2 )(x f n =nnx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0.例3 考查以下函数列的收敛域与极限函数: ) (∞→n .⑴ )(x f n =xxx x nn n n --+-. )(x f n →,sgn x R ∈x .⑵ )(x f n =121+n x . )(x f n →,sgn x R ∈x .⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令)(x f n =⎩⎨⎧≠∈=.,,, ] 1 , 0 [ , 0,,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [.⑷ )(x f n =2222xnxen -. )(x f n →0, R ∈x .⑸ )(x f n =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,4111x x x x x n n n n n n n有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意⎰≡11)(dx x f n .)111二. 函数列的一致收敛性:问题: 若在数集D 上)(x f n →)(x f ,) (∞→n .试问:通项)(x f n 的解析性质是否必遗传给极限函数)(x f ?答案是否定的.上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传.例3⑷⑸说明虽然可积性得到遗传, 但→n lim()⎰⎰∞→≠11)(lim)(dx x f dx x f n n n .用函数列的极限表示函数是函数表达的一种重要手段.特别是表达非初等函数的一种手段. 对这种函数, ∞→n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果.定义1 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则) 函数列}{n f 在数集D 上一致收敛⇔N , 0∃>∀ε,N n m >∀ , D x ∈∀⇒ε<-)()(x f x f n m .( 介绍另一种形式ε<-+n p n f f .) 证)⇒(利用式.f f f f f f n m n m -+-≤-))⇐易见逐点收敛.设∞→n lim)(x f n =)(x f ,……,有 2|)()(|ε<-x f x f n m .令∞→m ,⇒εε<≤-2|)()(|x f x f n 对∈∀x D成立,即)(x f n −→−−→−)(x f ,) (∞→n ,∈x D .Th2 在D 上nf −→−−→−f ,) (∞→n ⇔0|)()(|sup lim =-∞→x f x f n Dn .推论 设在数集D 上)(x f n →)(x f ,) (∞→n .若存在数列}{n x ⊂D ,使0 |)()(|→/-n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛.应用推论判断函数列)}({x f n 在数集D 上非一致收敛时,常选n x 为函数=)(x F n )(x f n ―)(x f 在数集D 上的最值点.112验证函数一致收敛性: 例4 )(x f n nnx sin =. 证明函数列)}({x f n 在R 内一致收敛.例5 )(x f n 2222xnxe n -=. 证明在R 内 )(x f n →0, 但不一致收敛.证 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点n x =n21处取得极大值022121→/=⎪⎭⎫ ⎝⎛-nen f n ,) (∞→n . 由系2 , )}({x f n 不一致收敛.例6 221)(xn x x S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .证 易见 ∞→n lim .0)()(==x S x S n 而nnx x n n xn x x S x S n 21)(1||2211|||)()(|222≤+⋅=+=- 在) , (∞+∞-内成立.由系1 , ⇒ ……例7 对定义在区间] 1 , 0 [上的函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n证明: ∞→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛. [1]P 30 E3,图13—3.证10≤<x 时,只要1->x n ,就有)(x f n =0.因此,在] 1 , 0 (上有)(x f =∞→n l i m )(x f n =0. 0)0(=n f ⇒)0(f =∞→n lim)0(n f =0.于是, 在] 1 , 0 [上有)(x f =∞→n lim )(x f n =0.但由于021|)()(|max ]1,0[→/=⎪⎭⎫ ⎝⎛=-∈n n f x f x f n n x ,) (∞→n ,因此, 该函数列在] 1 , 0 [上不一致收敛.113例8 )(x f n =12sin2+n x . 考查函数列)}({x f n 在下列区间上的一致收敛性:⑴ )0( , ] , [>-l l l ; ⑵ ) , 0 [∞+.Ex [1]P 35 1⑴—⑸,2.三. 函数项级数及其一致收敛性:1. 函数项级数及其和函数:∑)(x u n , 前n 项部分和函数列)}({x S n ,收敛点,收敛域, 和函数, 余项.例9 定义在) , (∞+∞-内的函数项级数(称为几何级数)+++++=∑∞=nn nx x x x201的部分和函数列为 ) 1 ( 11)(≠--=x xxx S nn , 收敛域为) 1 , 1 (-.2. 一致收敛性: 定义一致收敛性.Th3 (Cauchy 准则)级数∑)(x u n 在区间D 上一致收敛⇔N ,0∃>∀ε,,N n >∀N ∈∀p ,∈∀x D ⇒ ε<-+)()(x S x S n p n 或ε |)()()(|21<++++++x u x u x u p n n n .推论 级数∑)(x u n 在区间D 上一致收敛⇒ n u )(x −→−−→−0, ) (∞→n .Th4 级数∑)(x u n 在区间D 上一致收敛于)(x S ⇔∞→n lim =∈|)(|sup x R n x D∞→n lim 0|)()(|sup =-∈x S x S n x D.例10 几何级数∑∞=0n n x 在区间] , [a a -)10(<<a 上一致收敛;但在) 1 , 1(-内非一致收敛.证 在区间] , [a a -上,有011sup|)()(|sup ],[],[→-=--=---aaaxx S x S nna a n a a ) (∞→n ⇒∑一致收敛;114而在区间) 1 , 1(-内, 取∈+=1n n x n ) 1 , 1(-, 有∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+≥-=----1)1,1()1,1(1111 1sup |)()(|sup n nnn n n n nn n n x x x S x S ,) (∞→n ⇒∑非一致收敛.(亦可由通项n n x x u =)(在区间) 1 , 1(-内非一致收敛于零⇒∑非一致收敛.)几何级数∑∞=0n n x 虽然在区间) 1 , 1(-内非一致收敛,但在包含于) 1 , 1(-内的任何闭区间上却一致收敛. 我们称这种情况为“闭一致收敛”.因此,我们说几何级数∑∞=0n n x 在区间) 1 , 1(-内闭一致收敛 .Ex [1]P 35 4,5, 6.四. 函数项级数一致收敛判别法:1.M-判别法:Th5 ( Weierstrass 判别法)设级数∑)(x u n 定义在区间D 上,∑nM是收敛的正项级数.当n 充分大时,对∈∀x D 有||)(x u n n M ≤,则∑在D 上一致收敛.证 , |)(| )( 1111∑∑∑∑==+=++=+=≤≤pi pi in pi in i n pi i n MMx u x u 然后用Cauchy 准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数∑nM是级数∑)(x un的一个优级数. 于是Th 4 可以叙述为:若级数∑)(x u n 在区间D 上存在优级数,则级数∑)(x u n 在区间D 上一致收敛.应用时,常可试取|})({|sup x u Mn Dx n∈=.但应注意,级数∑)(x u n 在区间D 上不存在优级数⇒/级数∑)(x u n 在区间D 上非一致收敛.115注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例11 判断函数项级数 ∑∞=in nnx 2sin 和 ∑∞=in nnx 2cos 在R 内的一致收敛性.例12 设) , 2 , 1 ( )( =n x u n 是区间] , [b a 上的单调函数. 试证明:若级数∑)(a u n 与∑)(b un都绝对收敛, 则级数∑)(x u n 在区间] , [b a 上绝对并一致收敛 .简证 , 留为作业. |)(||)(| |)(|b u a u x u n n n +≤.…… 2. Abel 判别法:Th 5 设ⅰ> 级数∑)(x u n 在区间I 上收敛; ⅱ> 对每个∈x I ,数列)}({x v n 单调; ⅲ> 函数列)}({x v n 在I 上一致有界, 即0 >∃M ,使对I ∈∀x 和n ∀,有M x v n |)(|≤. 则级数∑)()(x v x u n n 在区间I 上一致收敛 . ( [1]P 33 )3. Dirichlet 判别法:Th 6 设ⅰ> 级数∑)(x u n 的部分和函数列∑==nk kn x ux U 1)()(在区间I 上一致有界;ⅱ> 对于每一个∈x I ,数列)}({x v n 单调; ⅲ> 在区间I 上函数列)}({x v n 一致收敛于零.则级数∑)()(x v x u n n 在区间I 上一致收敛. 例13 判断函数项级数∑++-1)() 1(n nn nn x 在区间] 1 , 0 [上的一致收敛性.解 记nn nn n x x v nx u ⎪⎭⎫ ⎝⎛+=-=1)( , ) 1()(. 则有ⅰ> 级数∑)(x u n 收敛; ⅱ> 对每个∈x ] 1 , 0 [, )(x v n ↗;ⅲ>e n x x v nn ≤⎪⎭⎫ ⎝⎛+=1|)(| 对∀∈x ] 1 , 0 [和n ∀成立.由Abel 判别法, ∑在区间] 1 , 0 [上一致收敛. 例14 设数列}{n a 单调收敛于零.试证明: 级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.116证 由本教案Ch12§3例4,在] 2 , [απα-上有212sin2121|2sin|21212sin2) 21sin(|cos |1+≤+≤-+=∑=αx x xn kx nk .可见级数∑nx cos 的部分和函数列在区间] 2 , [απα-上一致有界.取nx x u n cos )(=,n n a x v =)(就有级数∑)(x u n 的部分和函数列在区间] 2 , [απα-上一致有界, 而函数列)}({x v n 对每一个∈x ] 2 , [απα-单调且一致收敛于零.由Dirichlet 判别法,级数∑nx a n cos 在区间] 2 , [απα-上一致收敛.其实,在数列}{n a 单调收敛于零的条件下,级数∑nx ancos 在不包含) , 2 , 1 , 0 ( 2 ±±=k k π的任何区间上都一致收敛.Ex [1]P 35 3.§2 一致收敛函数列和函数项级数的性质( 4 时 )一. 一致收敛函数列极限函数的解析性质:1.连续性:Th 1 设在D 上n f −→−−→−)(x f ,且对∀n ,函数)(x f n 在D 上连续⇒)(x f 在D 上连续.证 (要证: 对∈∀0x D ,)(x f 在点0x 连续.即证:对0>∀ε,0>∃δ, 当|δ<-|0x x 时⇒ε<-|)()(|0x f x f .)|)()(||)()(||)()(| |)()(|0000x f x f x f x f x f x f x f x f n n n n -+-+-≤-.117估计上式右端三项.由一致收敛, 第一、三两项可以任意小;而由函数)(x f n 在点0x 连续, 第二项|)()(|0x f x f n n -也可以任意小 . ……推论 设在D 上)(x f n →)(x f .若)(x f 在D 上间断,则函数列{)(x f n }在D 上一致收敛和所有)(x f n 在D 上连续不能同时成立.注: Th1表明: 对于各项都连续且一致收敛的函数列{)(x f n },有)(lim lim )(lim lim 00x f x f n x x n n n x x →∞→∞→→=.即极限次序可换 . 2. 可积性:Th 2 若在区间] , [b a 上函数列{)(x f n }一致收敛,且每个)(x f n 在] , [b a 上连续.则有()⎰⎰∞→∞→=baban n n n dx x f dx x f )(lim)(lim.证 设在] , [b a 上n f −→−−→−)(x f , 由Th1,函数)(x f 在区间] , [b a 上连续,因此可积.我们要证 ⎰⎰=∞→baban n dx x f dx x f )()(lim. 注意到⎰⎰⎰-≤-ban baban f f f f || , 可见只要ab x f x f n -<-ε|)()(|在] , [b a 上成立.注:Th2的条件可减弱为:用条件“)(x f n 在] , [b a 上(R )可积”代替条件“)(x f n 在] , [b a 上连续”.证明可参阅 江泽坚著《数学分析》上册P 350. 3. 可微性:Th 3 设函数列{)(x f n }定义在区间] , [b a 上,在某个点∈0x ] , [b a 收敛.对n ∀,118)(x f n 在] , [b a 上连续可导,且由导函数构成的函数列{)(x f n '}在] , [b a 上一致收敛,则函数列{)(x f n }在区间] , [b a 上收敛,且有())(lim)(lim x f dxd x f dxdn n n n ∞→∞→=.证 设)(0x f n →A ,) (∞→n . )(x f n '−→−−→−)(x g , ) (∞→n .对∈∀x ] , [b a , 注意到函数)(x g 连续和 )(x f n =)(0x f n +⎰'xx n dt t f 0)(, 就有∞→n lim )(x f n =∞→n lim )(0x f n + ∞→n lim⎰'xx n dt t f 0)( ( 对第二项交换极限与积分次序)= A + ()d t t f xx n n ⎰'∞→0)(lim = A +⎰==xx dt t g 0)(令)(x f .(估计 |)(0x f n +⎰'x x n dt t f 0)( ― A ― ⎰≤xx dt t g 0|)(≤|)(0x f n ―A | + |()⎰-'xx n dtt g t f 0|)()(, 可证得)(x f n −→−−→−)(x f .))(x f '=='⎪⎭⎫ ⎝⎛+⎰xx dt t g A 0)()(x g =∞→n lim =')(x f n ∞→n lim )(x f dx d n .即()=∞→)(limx f dxdn n ∞→n lim)(x f dxd n . 亦即求导运算与极限运算次序可换.例1 [1]P 38 E1(说明定理的条件是充分的, 但不必要.)例2 [1]P 50 E2(说明定理的条件是充分的, 但不必要.)Ex [1] P 41 1,2, 3.119二. 一致收敛函数项级数和函数的解析性质:把上述Th1—3表为函数项级数的语言,即得关系于和函数解析性质的相应结果.参阅[1]P 40 Th13.12—13.14. 例3 [1]P 40—41 E3例4 证明函数)(x f =∑∞=-1n nxne在区间) , 0 (∞+内连续.证 (先证∑∞=-1n nxne在区间) , 0 (∞+内闭一致收敛.)对+∞<<<∀b a 0,有nanxnene--≤≤0,∈x ] , [b a ;又∑+∞<-nane⇒∑∞=-1n nxne在] , [b a 一致收敛.( 次证对∈∀0x ) , 0 (∞+,)(x f 在点0x 连续 ) 对∈∀0x ) , 0 (∞+, 由上段讨论,∑∞=-1n nxne在区间] 2 , 2[00x x 上一致收敛;又函数nxne-连续⇒)(x f 在区间]2 , 2[00x x 上连续⇒ )(x f 在点0x 连续. 由点0x 的任意性,)(x f 在区间) , 0 (∞+内连续.例5 =)(x S ∑∞=-11n n nn x, ∈x ] 1 , 1 [-. 计算积分 ⎰xdt t S 0)(.Ex [1]P 52—53 3—8,9⑴,10 .。
数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为
,
,
令
,则
;
令
,则
则
从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)
;
(2)
.[北京科技大学2011研]
解:(1)因为
且
收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果
则
(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得
对
,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有
,
;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

是单调递减的.
又对任意
故
由狄利克雷判别法知
致收敛.
(3)因为|x|>r≥1,所以
在
上一
当 r>1 时,因级数
收敛,所以 在| x |>r>1 上一致收敛.
3 / 23
圣才电子书
当 r=1 时,
十万种考研考证电子书、题库视频学习平台
所以级数
上不一致收敛.
(4)因
时.
,而
上不一致收敛. 考虑区间[0,M]时,
所以 在[0,M]上一致收敛且
上内闭一致收敛.
(5)任意给定的
(i)
,考虑区间[-1,1]时,
由(ii)知 在[0,+∞)
(ii)D=(-∞,+∞)时.
故 但由(i)知 在
所以
在(-∞,+∞)上不一致收敛.
上内闭一致收敛.
2.证明:设
2 / 23
若对每一个正整数 n 有
证明:必要性
总存在 的一个邻域 和 I 的一个内闭区间[a,b],使得
所以
而 在[a,b]上一致收敛于 f,因此 在
上一致收敛于 f.
充分性
由已知
使得 在
上一致收敛于
f.从而
当
时
有
显然,当
取遍[a,b]上所有点时,
覆盖[a,b].由有限覆盖定理,存在有限个区间覆盖[a,b].不妨设
取
,则当 n>N 时,
证明:不妨设存在 M≥0,对任意
有|g(x)|<M.因
在 D 上一致收敛于
S(x),故对任意
存在 N>0,当 n>N 时,对任意
,均有
从而,对任意
4 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
数学分析13函数列与函数项级数总练习题

第十三章 函数列与函数项级数总练习题1、试问k 为何值时,下列函数列{f n }一致收敛;(1)f n (x)=xn k e -nx , 0≤x<+∞;(2)f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<⎪⎭⎫ ⎝⎛≤≤1x n 20n 2x n 1n x -n 2n1x 0 xn kk,,,. 解:(1)当x=0时,f n (x)=xn k e -nx =0,∴使{f n }在[0, +∞)上一致收敛, 必有f(x) =∞n lim +→f n (x)=0. 又f ’n (x)=n k e -nx (1-xn),f n (x)在x=n1处有最大值,∴), [0x sup +∞∈|f n (x)-f(x)|=), [0x sup +∞∈|xn k e -nx |=n k-1e -1,仅当k<1时,n k-1e -1→0 (n →∞). ∴当k<1时,{f n }在[0, +∞)上一致收敛. (2)使函数列{f n }在[0, 1]一致收敛,必有f(x) =∞n lim +→f n (x)=0.又f n (x)在x=n1处有最大值,∴,1][0x sup ∈|f n (x)-f(x)|=,1][0x sup ∈|xn k |=n k-1,仅当k<1时,n k-1→0 (n →∞). ∴当k<1时, {f n }在[0,1]上一致收敛.2、证明:(1)若f n (x)⇉f (x) (n →∞), x ∈I ,且f 在I 上有界,则{f n }至多除有限项外在I 上是一致有界的;(2)若f n (x)⇉f (x) (n →∞), x ∈I ,且对每个正整数n ,f n 在I 上有界,则{f n }在I 上一致有界.证:(1)∵f 在I 上有界,∴可设|f(x)|≤M ;∵f n (x)⇉f (x) (n →∞), x ∈I , ∴∀ε>0, ∃正整数N ,当n>N 时,对一切x ∈I ,都有|f n (x)-f(x)|< ε, 又ε>|f n (x)-f(x)|≥|f n (x)|-|f(x)|≥|f n (x)|-M, ∴|f n (x)|<M+ε. 即|f n (x)|≤M. ∴{f n }至多除N 项外在I 上是一致有界的.(2)∵f n (x)→f (x) (n →∞), x ∈I ,∴对∀ε>0, ∃正整数N ,当n>N+1>N 时, 对一切x ∈I ,都有|f n (x)-f N+1(x)|<ε, ∴当n>N+1时,∀x ∈I ,有 |f n (x)|<|f N+1(x)|+ε. 又对每个正整数n ,f n 在I 上有界,可设|f n (x)|≤M n (n=1,2,…,N+1,x ∈I). 记M=max{M 1,M 2,…,M N+1},则 对一切的自然数n ,都有|f n (x)|<M+ε,即|f n (x)|≤M (x ∈I). 得证!3、设f 为[21,1]上的连续函数,证明:(1){x n f(x)}在[21,1]上收敛;(2){x n f(x)}在[21,1]上一致收敛的充要条件是f(1)=0.证:(1)∞→n lim x n f(x)=⎪⎩⎪⎨⎧=<≤1x f(x),1x 21 0, ,得证! (2)[必要性]若{x n f(x)}在[21,1]上一致收敛,则∞→n lim x n f(x)=0,又当x=1时,∞→n lim x n f(x)=f(x)=0,∴f(1)=0.[充分性]若f(1)=0. 则∞→n lim x n f(x)=0=g(x).又f 在[21,1]上连续,∴f 在[21,1]上有界,可设|f(x)|≤M,x ∈[21,1). ∴当x=1时,x n f(x)=0;当x ∈[21,1)时,|x n f(x)|≤Mx n →0 (n →∞). ∴,1]21[x sup ∈|f n (x)-g(x)|=,1]21[x sup ∈|x n f(x)|→0 (n →∞),∴{x n f(x)}在[21,1]上一致收敛.4、证明:若函数列{f n }在[a,b]上一致收敛,且每一项在[a,b]上都可积,则{f n }在[a,b]上的极限函数在[a,b]上也可积.证:对[a,b]任作一分割T ,f(x)在△i 上的振幅为ωi =ix ,x sup ∆∈''''|f(x ’)-f(x)”|.∵f n (x)⇉f (x) (n →∞), x ∈[a,b],∴∀ε>0, ∃N ,使得 |f N (x ’)-f(x ’)|<)a b (3ε-, |f N (x ”)-f(x ”)|<)a b (3ε- (x ’,x ”∈[a,b]). 又f N (x)在[a,b]上可积,∴对上述的ε>0, ∃δ>0,只要T <δ,就有∑=∆'n1i ii x ω<3ε, 其中ω’i =i x ,x sup ∆∈''''|f N (x ’)-f N (x)”|. 于是,当x ’,x ”∈△i 时, |f(x ’)-f(x)”|≤|f N (x ’)-f(x ’)|+|f N (x ”)-f(x ”)|+|f N (x ’)-f N (x)”|<)a b (32ε-+ω’i . 从而∑=∆n1i i i x ω≤∑=∆⎥⎦⎤⎢⎣⎡'+-n1i ii x ω)a b (32ε=∑∑==∆'+∆-n1i i i n 1i i x ωx )a b (32ε<32ε+3ε=ε, ∴f (x)在[a,b]上也可积.5、设级数∑n a 收敛,证明:∑+→x n0x n a lim =∑n a . 证:∵x n 1≤1 (x ∈[0,+ ∞)),且x x n 1)1(n 1≤+,∴{xn 1}单调一致有界; 又∑n a 收敛,从而∑n a 在[0,+ ∞)上一致收敛,由阿贝尔判别法知,∑xn n a 在[0,+ ∞)上一致收敛. 又xnn a (n=1,2,…)在[0,+ ∞)上连续, 由连续性知:∑+→x n 0x n a lim =∑+→x n0x n a lim =∑n a .6、设可微函数列{f n }在[a,b]上收敛,{f ’n }在[a,b]上一致有界,证明: {f n }在[a,b]上一致收敛.证:设|f ’n (x)|≤M, (n=1,2,…,x ∈[a,b]). ∀ε>0, 在[a,b]上取m-1个点: x 1,x 2,…,x m-1满足a=x 0<x 1<…<x m-1<x m =b ,使它们把[a,b]分割成m(有限)个小区间△i =[x i-1,x i ]且△x i =x i -x i-1<M4ε(i=1,2,…,m). ∵{f n }在[a,b]上收敛,∴对△i 上全意一点i x , ∃N i >0,当n>N i 时, 对任意自然数p ,有|f n (i x )-f n+p (i x )|<2ε. 对函数f n (x)-f n+p (x)应用微分中值定理:∀x △i , 有 |[f n (x)-f n+p (x)]-[f n (i x )-f n+p (i x )]|=|f ’n (ξ)-f ’n+p (ξ)||x-i x |<2M ·M 4ε=2ε.于是 |f n (x)-f n+p (x)|≤|[f n (x)-f n+p (x)]-[f n (i x )-f n+p (i x )]|+|f n (i x )-f n+p (i x )|<2ε+2ε=ε. 取N=max{N 1,…N m },当n>N 时,对一切x ∈[a,b],都有 |f n (x)-f n+p (x)|<ε,∴{f n }在[a,b]上一致收敛.7、设连续函数列{f n }在[a,b]上一致收敛于f ,而g 在R 上连续. 证明:{g(f n (x))}在[a,b]上一致收敛于g(f(x)).证:∵函数列{f n }在[a,b]上一致收敛于f ,且函数列{f n }在[a,b]上连续, 根据连续性,知f 在[a,b]上连续,从而{f n }在[a,b]上一致有界,记 |f n (x)|≤M ,则|f(x)|≤M ,又g 在R 上连续. ∴g 在[-M,M]上一致连续. ∀ε>0, ∃δ>0, 对一切的x ∈[a,b], 有f n (x),f(x)∈[-M,M],又由|f n (x)-f(x)|< δ, ∴对一切的n, 有|g(f n (x))-g(f(x))|<ε. 得证!。
第十三章 函数列与函数项级数

存在某个正整数 0对任何正数N ,都有
D上某一点x'与自然数n' N , 使得
fn' (x') f (x') 0
定理13.1: 函数列{ fn}在数集D上一致收敛的充要条件
是:对任给正数,总存在正数N , 使得当n, m N时,对一切x D,都有 fn (x) fm (x)
第十三章 函数列与函数项级数
∮1 一致收敛性
㈠ 函数列及其一致收敛性
函数列: f1, f2.., fn ,..(1) 是一列定义在同一数集E上的函数,则称之为 定义在E上的函数列。
设x0 E,以x0代入(1)可得函数列: f1( x0 ), f2 ( x0 ),..fn ( x0 ),..(2)
fn (0) f (0) 0 , fn (1) f (1) 0 ,
即证得{ fn}在(1,1]上收敛,且有如题所示 的极限函数。
例2: 定义在(,)上的函数列fn (x) sin nx / n, n 1,2,...由. 于对任何实数x,都有sin nx / n
1/ n,故对任给的 0,只要n N 1/ , 就有sin nx / n 0 .
证明:必要性
设fn (x) f (x)(n ), x D,即对给任何 0
存在正数N,使得当n N时,对一切x D都
有 fn (x) f (x) / 2,于是当n, m N时,就可
得 fn (x) fm (x) fn (x) f (x) f (x) fm (x)
fn(x) f (x) f (x) fm(x) / 2 / 2
..
xn
..的部分和函数为Sn
(x)
1 xn 1 x
数学分析试卷

数学分析试卷第十三章函数项级数应用题第十三章函数项级数计算题1.设S(某)=nen某某>0,计算积分ln3ln2S(t)dt2..判断级数(1)n某nn1某n(某>0)的敛散性.第十三章函数项级数计算题答案1.nen某在[ln2,ln3]上连续且一致收敛它在[ln2,ln3]可逐积分(得4分)ln3(t)dtln3nen某d某ln2(得6分)n1ln2=[(1)n(1)n23]111(得8分)n111211232.对交错级数(1)nn由莱布尼兹判别法知它收敛(得3分)而某n1某n当某>1时,单增有界;某=1时,值为12;当某<1时,单降为界(得6分)故由阿贝尔判别法知(1)n某nnn收敛(得8分)1某第十三章函数项级数填空题1.f)某nn(某n=1,2,…{fn(某)}在[0,1]上的极限函数是__________2n2某0某12n2.f某)2n2n2n(某12n某1n的极限函数是________________________10n某1第十三章函数项级数填空题答案01.f(某)10某1某12.f0第十三章函数项级数证明题1.证明:函数f(某)=inn某n3在(-,)有连续的导函数.(10分)某2.设f0(某)在[a,b]上连续,定义函数序列fn+1(某)=fn(t)dt,n0,1,2,,a证明fn(某)在[a,b]上一致收敛.(10分)3.设f(某)在[12,1]上的连续函数,那么当f(某)在[n12,1]有界且f(1)=0时,{某f(某)}在[4.设fn(某)n某1n某2212,1]上一致收敛.(10分)求证1)对任给的0<1,fn(某)在[,1]上一致收敛.2)fn(某)在(0,1]上不一致收敛(12分)5.若在区间I上,对任何自然数n,|un(某)|vn(某),证明:当vn(某)在I上一收敛时级数n1u(某)在I上也一致收敛,且绝对收敛.(11分)nn1第十三章函数项级数证明题答案1.证:(inn某n3)con某n2而inn某n3con某n21n2(得2分)由而由1n2收敛知1n3()在(-,)上一致收敛(得2分)inn某n3inn某n3及1n3收敛知收敛(得6分)(又inn某3ncon某n2)=con某n2(得8分)con某n2在(-,)上连续且con某n2在(-,)上一致收敛在(-,)上连续.(得10分)2.证:f0(某)在[a,b]上连续.f0(某)m(得3分)2从而f1(某)m(某a)m(ba)(得5分)f2(某)某am(ta)dtm2!(ba)(得6分)2fn(某)m(ba)n!nn(得8分)n又n1(ba)n!收敛.limm(ba)n!n0(得9分)从而fn(某)一致收敛.(得10分)n03.证明:f(某)M且lim某f(某)nf(1)n,某1,某1(得3分)而f(1)=0,故lim某f(某)0(得5分)n又由于f(某)在某=1处连续,故0,0.当1-某1时,f(某)f(1)f(某)(得7分)从而当某[,1)时,某f(某)0(1)M0(得8分)21nn当某[1,1]时,某f(某)0f(某)(得9分)因此,某f(某)一致收敛.(得10分)nn4.证明:先求极限函数f(某)某(0,1]易知lim(1)因为|fn(某)f(某)|=对某0取N=[1n某1n某22n某1n某222n0即f(某)=0(得2分)1n2n1n2nn22(得4分)2]则当n>N时1n2对某[,1]必有|fn(某)-f(某)|按定义有fn(某)在[,1]上一致收敛(得6分)(2)因为dfn(某)d某n(1n某)(1n某)22222对每个自然数n,某n=1n是fn(某)的唯一极大值点.因而必是连续函数fn(某)在[0,1]的最大值点(得9分)显然也是它在(0,1]的最大值点,所以upfn(某)f(某)0某1=ma某(0某1)fn(某n)fn()1n某n222n某113故fn(某)在(0,1]不一致收敛(得12分)5.证先证一致收敛性,对>0,由vn(某)在I上一致收敛,存在N(),当n>N时,对自然数p和某I vn1(某)vn2(某)vnp(某)(得5分)于是un1(某)unp(某)un1(某)unp(某)vn1(某)vnP(某)(得8分)对自然数p和某I成立即un(某)在I上一致收敛(得10分)又un(某)vn(某)某I故un(某)在I上绝对收敛(得11分)第十三章函数项级数选择题1.设an(某)在(a,b)内任何区间(a1,b1)(an1面哪个结论是错误的()(A)可逐项求导(B)可逐项求积(C)极限与求和可交换顺序(D)级数收敛2.下列函数列在所示区间D上不一致收敛的是()(A)fn(某)(C)fn(某)n某某21n2D=(-1,1)(B)fn(某)某1n某22D=(-,+)D=[0,+)(D)fn(某)n某D=[0,10]第十三章函数项级数选择题答案1.C2.C第十四章幂级数选择题1.n1某2nn的收敛区间为()(A)(-1,0)(B)[0,1](C)[-1,1](D)(-1,1)2.f(某)=ln(2+某)展开成某的幂级数是()(A)ln2+(1)n1n1某nnn2(B)ln2(1)n1n1某nnn24(C)1+(1)n1某n(1)n1ln2某nn1n(D)n1n(2)3.函数f(某)=e某2展开成某的幂级数为()23(A)1+某+某某32!3!(B)1-某+某22!某3!某4某6(C)1+某2+(D)1-某2+某4某62!3!2!3!4.已知ann某在某=-2处收敛,则在某=3/2处此级数n1(A)收敛(B)发散(C)可能收敛(D)可能发散5.级数(11n2nn)(某1)的收敛半径R=n1(A)1(B)e(C)e1(D)e26..级数某nn1n2的收敛域为()(A)(-1,1)(B)(-1,1](C)[-1,1)(D)[-1,1]7.下述展开式正确的是()2(A)e某1某某2某nn某R(B)e某1某某2某n2!n!某[-1,1](C)e某1某某2某n2!n!某R(D)e=1+1+11123n8.下列级数在所示区间上不一致收敛的是()(A)某n某[-r.r](r>0)(B)某nn2(n1)!n1n2某[0,1](1)n12(C)某n某(-,)(D)n0n1(1某2)n1某n9..级数某nn1n的收敛域为()5。
第十三章 函数列与函数项级数习题

第十三章 函数列与函数项级数一、基本概念与基本理论1.函数列的收敛2. 函数列一致收敛的定义及判别方法3. 函数项级数的收敛4 函数项级数一致收敛的定义及判别法 5.一致收敛函数列与函数项级数的性质二、练习题1.判断题(1) 若函数列{}()n f x 在I 上内闭一致收敛,则函数列{}()n f x 在I 上一致收敛( ) (2) 函数项级数一致收敛必绝对收敛( ) (3) 函数项级数绝对收敛必一致收敛( )(4)若函数列()(),(),n f x f x n x D →→∞∈,()()n n f x f x a -≤,且数列{}n a 收敛,则{}()n f x 在D 上一致收敛于()f x ( ). (5)函数项级数1()n n u x ∞=∑在D 上一致收敛的充要条件是D x x un∈⇒,0)(( ).(6)若()(),(),n f x f x n x D →→∞∈,且存在数列D x n ∈}{,使)()(n n n x f x f -不趋近0,则函数列{}()n f x 在D 上非一致收敛( ). (7)若函数项级数一致收敛,则必存在优级数( )(8)阿贝尔判别法是判断函数项级数一致收敛的充分非必要条件( ) (9)若)()(1x ax f n n∑∞==在[,]a b 上一致收敛,且()n a x 可导(n =1,2…),那么()f x 在[,]a b上可导,且∑∞='='1)()(n n x a x f ( )(10){})(x f n 定义在],[b a 上,0x ],[b a ∈为{})(x f n 的收敛点,{})(x f n 的每一项在],[b a 上有连续的导数,且{})(x f n 在],[b a 上一致收敛,则)(lim ))(lim (x f dx dx f dx d n n n n ∞→∞→=( )(11){})(x f n 为定义在],[b a 上的函数列,0x ],[b a ∈为{})(x f n 的收敛点,{})(x f n '在],[b a 上连续,且{})(x f n '在],[b a 上一致收敛,则{})(x f n 也一致收敛( )(12) 每项都连续的函数列{})(x f n 在区间I 上内闭一致收敛于)(x f ,则)(x f 在I 上连续( ) (13)一致收敛是极限运算与积分运算能够交换顺序的充要条件( )2.设函数列()nn f x x =,1,2,n =,(1)求该函数列的极限函数和收敛域(2)证明()nn f x x =在[,](01)a a a -<<上一致收敛,在(1,1]-上不一致收敛,在(1,1)-呢 3.判断函数列()(1)[0,1]nn f x x x x =-∈,,1,2,n =是否一致收敛4. 设函数()f x 是[0,1]上的连续函数,()()nn g x f x x =,1,2,n =,证明函数列()n g x 在[0,1]上一致收敛的充要条件是(1)0f =.5. 函数()x ϕ是[,]a b 上的连续函数,()0b ϕ=,函数列{}()n f x 满足:(1) {}()n f x 在[,)a b内闭一致收敛;(2){}()n f x 在[,]a b 上一致有界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。