转基因植物的研究进展
转基因植物生物学重复
转基因植物生物学重复摘要:1.转基因植物的概述2.转基因技术在植物生物学研究中的应用3.转基因植物的重复现象及其影响4.我国在转基因植物研究方面的进展5.转基因植物生物学重复的应对策略正文:一、转基因植物的概述转基因植物是通过生物科技手段,将外源基因导入植物基因组中,使其获得新的遗传特性。
这些特性可能包括抗病、抗虫、抗旱、提高产量等,以提高作物对环境适应能力,保障粮食安全。
二、转基因技术在植物生物学研究中的应用转基因技术在植物生物学研究中具有重要意义。
首先,通过转基因技术,研究者可以研究基因的功能和调控机制,深入了解植物生长发育过程。
其次,转基因技术为植物功能基因组学研究提供了有力手段。
此外,转基因植物还可在环境保护、生物制药等领域发挥作用。
三、转基因植物的重复现象及其影响转基因植物生物学重复现象指的是在实验过程中,同一实验对象经过多次实验,得到的结果不尽相同。
这种现象可能导致研究结果的可靠性受到质疑,影响科研进展。
重复现象的原因可能包括实验操作不规范、实验条件不一致、基因转移效率不稳定等。
四、我国在转基因植物研究方面的进展我国转基因植物研究取得了世界领先的成果。
在棉花、水稻、玉米等作物上成功研发了许多具有自主知识产权的转基因品种。
这些品种在抗病、抗虫、抗旱等方面表现出优良的性状,为我国农业发展做出了巨大贡献。
五、转基因植物生物学重复的应对策略1.加强实验操作规范性:提高实验人员操作水平,确保实验过程中的一致性。
2.优化实验条件:确保实验环境的稳定性,降低实验条件对结果的影响。
3.提高基因转移效率:采用先进的基因转移技术,提高转基因植物的成功率。
4.加强同行评议:对研究结果进行严格的审查,确保科研质量。
5.建立数据库:收集和整理转基因植物的研究数据,为科研人员提供可靠的数据支持。
总之,转基因植物生物学重复现象是科研过程中需要关注的问题。
转基因番茄的研究进展
1、抗病转基因番茄
• 烟草花叶病毒(TMV)、黄瓜花叶病毒(CMV)、苜蓿 花叶病毒(AMV)和番茄黄花卷叶病毒(TYLCV)等是引起 番茄病毒病的主要病原。在番茄转基因抗病毒育种中, 主要利用病毒的外壳蛋白(Coat protein,CP)基因、 复制相关蛋白(Replication-associated protein, REP)基因、卫星RNA基因和病毒片段的反义RNA基因等。 外壳蛋白(CP)在转基因植物中的积累可以干扰病毒脱 衣壳,抑制病毒在植物体中的复制、转运和积累从而 使转基因植株获得了病毒抗性。
•
2003年陈溪利用转基因番茄作为生物反应器生产人 胰岛素,通过以口服方式摄入胰岛素来研究在抑制自身免 疫攻击以及预防I型糖尿病中所起到的作用,己经取得了 很大的进展。
•
2006年, Chen等人将肠道病毒EV71的外壳蛋白VP1基
因导入番茄,外壳蛋白VP1在转基因番茄中获得了表达.用 转基因番茄喂食小白鼠,小白鼠可以抗肿瘤细胞的感染。
2003年王仁厚利用转基因番茄表达人酸性成纤维细胞生长 因子(aFGF),通过构建的双元表达载体带有一个经过改构的 人酸性成纤维细胞生长因子基因(afgf),载体上的选择标记基 因为manA,它使得转化过程中可以使用PMI这种不含抗生素及 除草剂的选择系统。利用农杆菌介导的转化方法获得了afgf 转基因番茄植物,并且通过PCR-Southern、RT-PCR证明了afgf 在宿主基因组中的整合及表达。
•
葡激酶( Staphylokinase,SAK) 是由金黄色葡萄球菌 分泌的一种纤溶酶原激活剂,首次发现于 1948 年,它可以 激活人体中的血纤维蛋白溶酶原形成血纤维蛋白溶酶,从而 溶解血栓。同其他溶栓药物相比,葡激酶具有溶栓效果好, 纤维蛋白选择性强,无显著促凝血作用等优点。 2011杜景川等人利用农杆菌介导的方法,将葡激酶( Staphylokinase,SAK) 基因导入番茄中。经 PCR、 Southern 杂交和 Northern 杂交检测,葡激酶基因已整合 到再生番茄植株基因组中,共获得 8 个转基因株系。经 ELISA 检测,转基因番茄的果实和叶片均能表达 SAK 蛋白, SAK 蛋白在果实和叶片可溶性蛋白中的比例最高分别为 3.42%和2.47%。转基因番茄中的 SAK 蛋白具有一定的溶栓 活性,溶栓比活力为 3 866 AU·mg-1。
植物遗传转化研究进展
植物遗传转化研究进展一、植物遗传转化技术的发展目前,基因枪法是最常用的植物遗传转化技术之一、该方法通过将特定基因或外源DNA片段载入微粒或金属微粒表面,并利用高能量加速器,将其“枪射”入植物细胞中。
这种方法具有转化效率高、转基因植物种类广等优点。
另一个常用的植物遗传转化技术是农杆菌介导的转化法。
该方法通过注射农杆菌悬浮液进入植物受体细胞中,利用特定的农杆菌转移DNA到植物基因组中。
农杆菌介导的转化法具有转化效率高、适用范围广的特点。
二、植物遗传转化应用领域在农业领域,植物遗传转化技术可以用于改良作物的抗性能力,提高作物产量和品质,并改善作物的耐盐碱、耐旱、抗虫等性状。
例如,通过转入抗虫基因,可以使作物具备抵抗虫害的能力,从而减少农药的使用,达到生态环境保护的目的。
同时,植物遗传转化技术也可以用于改良作物的适应能力,使其能够在恶劣环境下存活和生长。
在医药领域,植物遗传转化技术可以用于生产重要药物和疫苗。
通过将相关基因导入植物中,利用植物生长发育的能力,可以大量生产特定蛋白质,从而制取药物和疫苗。
这种方法不仅生产成本低,还减少了对动物的依赖,有利于提高疫苗的安全性。
在环境领域,植物遗传转化技术可以用于修复受到污染的土壤和水体。
通过将相关基因导入植物中,使其能够吸收和转化毒性物质,从而达到治理污染的目的。
这种方法被广泛应用于石油污染地区、重金属污染地区等。
三、植物遗传转化的研究进展随着植物遗传转化技术的发展,人们不断探索新的方法和途径,以提高转化效率和稳定性。
此外,人们也在探索非转基因的植物遗传改良方法。
在非转基因改良中,人们通过引入RNA干扰技术、微量RNA技术等方法,通过调控内源基因的表达来改变植物的性状。
这种方法避免了外源基因的导入,从而减少了对转基因植物的争议。
总的来说,植物遗传转化技术在农业、医药和环境等领域有着广泛的应用和研究。
随着科学技术的不断进步,植物遗传转化技术将为人类创造更多的可能性和机会。
转基因牧草研究进展
k02 第 期 21 6 年
S i c n eho g rm tn 科技与推广 c ne dTcnl yPo oi e a o o
转 基 因牧草研 究进 展
与其 他农作物 品种 的基 因工程 改 良研究 相比 ,牧 草基 因工程 研究相对 滞后 ,很 多还不 能应用于 实 践 ,并且创新 不足。
因作 为选 择标 记 。br 因编码 P T a基 A ,对 除草剂 g f 迫 的研 究还很 有限 。 . lo u s a 和b l hs 有抗性 ,使 它们 失活 。利 用 除草 i t ia o具 ne ap 5品质 改 良转基 因牧草 。牧草品质在很大程 . 剂抗性基因作选择标记 ,具有独特 的优越性 ,可以 度 上决 定 和影 响 着 动 物 的 生 产性 能 ,表现 在 影 响 使转 基 因植 物具 有抗除 草剂性 状 。
植物细胞的全能性获得转基因再生植株。该法具有 M 、I }) V 2 存在的情况下,聚乙烯乙二醇 ( E [+ r P G) 明显 的优点 :费 用低 廉 , 作 程序 简单 ;获得 的转 能够有效地诱导D A 操 N 产生颗粒状沉淀 ,从而使细胞
5 9
科 技 与 推 广 :Si c n eho g rm tn c ne d cnl yPo oi e a T o o
文 l明福 ( 李 山东省新泰市农业局 )
徐传 涛 ( 山东省新泰市畜牧兽医局 )
2 世 纪 9 年 代 以来 ,植 物 基 因 工程 技 术 的快 基 因植 物通 常 仅含 1 3 拷 贝的 完整外 源基 因 ,可 0 0  ̄个 速 发展 促进 了转 基 因牧草 的研究 ,牧 草 育种方 法进 较稳定地 表达和遗传到子代。农杆 菌介导法是 目 入 新时 代 。 前植 物基 因工程 研究 中最 常用 的方 法。 ( 2)基 因枪 法 。 基 因枪 利 用 火 药 爆 炸 或 其 他 动力 加 速 包 裹 了D A 液 的金 属 粒 子 ( 钨 、 N 溶 如
浅谈植物转基因技术的发展与影响
浅谈植物转基因技术的发展与影响
一、转基因植物研究的历史发展
二、转基因植物研究的现状
三、转基因植物研究对社会经济发展带来的影响
1.改善农业生产结构,提高土地利用率和劳动生产率。
2.促进食品工业及其他相关行业的发展,扩大市场需求。
3.增加就业机会,缓解失业压力。
4.保护环境,实现可持续发展。
5.培育新型优良作物种质资源,丰富作物育种材料库。
6.拓宽国际贸易渠道,增强我国的农业竞争能力。
7.有助于科技成果的推广应用。
8.为人类健康事业服务。
9.其它意义:(1)为防治疾病提供了更好的药物和方法。
利用转基因植物生产药用蛋白的研究进展
利用转基因植物生产药用蛋白的研究进展[摘要]简要评述了利用转基因植物生产的药用蛋白种类和表达系统,利用转基因植物生产药用蛋白的研究现状、发展趋势,以及转基因植物生产药用蛋白的基本方法、应用研究等。
尽管目前植物作为药用蛋白的生物反应器受到诸多因素限制,优点与问题并存,但利用转基因植物生产药用蛋白是植物基因工程研究领域的一个新的发展趋势。
[关键词]转基因植物;药用蛋白;生物反应器引言传统的生物医药基因工程常利用动物病毒、细菌、酵母等为生物反应器进行药用蛋白的生产,存在一些不足之处,如,细菌细胞不能进行许多病毒蛋白质的转录后的修饰作用,不利于蛋白质的正确折叠,导致其免疫性通常较弱;酵母菌对有些蛋白质的过分糖基化可能影响针对特定蛋白质的免疫反应,妨碍着酵母菌在一些疫苗生产中的应用;多数动物培养系统表达水平低,需要昂贵的生长培养基,且培养基需要特殊处理,因此疫苗成本很高,限制了其商品化应用。
利用转基因植物作为生物反应器,把外源基因导入植物核基因组或叶绿体基因组中可以生产出在医学上有生物活性的药用蛋白,且可以克服其他反应系统的缺陷,成为药用蛋白生产的又一新途径。
1、问题的提出现代基因工程技术最初是建立在结构简单的微生物,尤其是大肠杆菌的基础之上的,最初都以大肠杆菌为受体表达外源蛋白,用转基因植物生产药用蛋白的思路出自偶然。
八十年代末,比利时pgs公司的科学家将一个神经肽(enkephalin,脑啡肽)编码基因转入烟草中表达,用意在于让瘾君子们不用抽烟,只需拿烟叶闻一闻或放在口中嚼一嚼即可过烟瘾,以此减少尼古丁对人体的危害及减少空气污染。
他们把这个小肽基因两端设计了两个蛋白酶的酶切位点,将改造后的基因串联导入烟草细胞并成功获得再生植株,结果小肽以多聚体的形式表达存在,用胰蛋白酶和羧肽酶作用后获得了神经肽,每粒种子在200nmol,然而,他们的目的最终没能达到,因为神经肽要经血液运输而起作用,在口腔及消化道内会被降解掉,但他们却意外地找到了一条转基植物生产神经肽的途径,引起人们对此领域的关注。
转基因技术在植物遗传改良中的研究进展
转基因技术在植物遗传改良中的研究进展随着全球人口的不断增长,种植业的发展也越来越重要,对于种植业的改良和提高来说,遗传改良技术一直是关键所在。
转基因技术在种植业中的应用,尤其是在植物遗传改良方面,近年来备受关注。
本文将探讨转基因技术在植物遗传改良中的研究进展。
一、转基因技术简介转基因技术是指通过基因工程的手段将来自不同物种的基因或DNA片段导入到宿主细胞中,从而以改变宿主细胞和整个有机体的遗传信息。
转基因技术可以使植物在抗虫、抗病、耐旱、耐盐等方面的性状得到有效改善。
这项技术对现代农业的进步有着重要的作用。
二、转基因技术在植物遗传改良中的应用2.1 农业稳产增收在植物种植的过程中,植物常常遭遇各种环境压力和病虫害的侵袭,这些情况都会影响植物的生长和产量。
如果运用转基因技术,将含有抗虫、抗病、耐旱、耐盐等抗逆性状的基因导入到植物中,不仅可以提高植物的抗逆性,也可以提高植物的生长和产量,最终达到稳产增收的目的。
例如,使用Bt基因将其导入到棉花中,可以使棉花对除炭疽病外的多种害虫表现出强烈的抗性,从而保证了棉花的产量和品质的提高。
2.2 新品种的培育转基因技术还可以在植物遗传改良中培育出新品种,例如经过转基因改造的植物可以表现出其他植物所没有的优异性状,比如耐盐、耐旱、抗寒、抗病、抗虫等,但是也必须保证其安全性。
通过对基因的剪裁和重新组合,使其适应不同的自然环境,例如对主产区域状况和需求的精准调整和优化,可以大幅提高新品种的产量、品质和离子营养水平。
2.3 拯救灭绝物种随着生物多样性的破坏和气候变化等因素的影响,许多珍稀濒危物种濒临灭绝的境地。
在这种情况下,转基因技术可以被用来拯救灭绝物种——通过在其DNA上插入其他物种的基因,使其具有另一种抗病、抗虫的能力。
通过转基因技术,可以使这些物种重新获得生存的能力并在自然环境中重新生长繁衍。
三、转基因技术存在的问题尽管转基因技术在植物遗传改良中具有巨大的潜力,但其也存在一些问题和争议。
玉米转基因研究进展
[文章编号]1005-0906(2000)03-0014-04玉米转基因研究进展3赵久然,郭景伦,滕海涛,尉德铭,郭 强(北京市农林科学院玉米研究中心,北京100089)[摘 要] 玉米转基因的方法主要有农杆菌、基因枪、PEG介导等方法,受体主要是愈伤组织和幼胚等生活较旺盛的部位。
目前在玉米上的成功应用是抗玉米螟的Bt转基因玉米、抗除草剂转基因玉米等种类。
转基因技术目前面临的问题是关于环境和食物链的问题。
也就未来玉米的转基因发展进行了讨论。
[关键词] 玉米;转基因;研究进展[中图分类号]S513103513[文献标识码]A 转基因也称重组DNA技术,创立于1972年。
1985年首先在烟草上获得转基因植株。
随着研究的深入,植物基因工程在农业上取得了巨大进展。
到1997年初,美国已经批准的转基因田间实验已经达到2584项,批准17例转基因植物商业化释放。
我国已经批准商业化生产4项,环境释放4项,中间实验10项(吴志平)。
转基因可以使优良的生物基因在动物、植物、微生物之间进行交流,将其他生物上的优良基因转移到玉米内,弥补某些遗传资源的不足,丰富种质库。
玉米是我国和世界主要农作物之一,是植物遗传研究的模式植物,玉米的生产对于解决世界和我国的粮食问题具有十分重要的意义,因此有必要了解玉米基因现状。
1 玉米中的转基因技术111 转基因的主要技术类型农杆菌是转基因中经常应用的一种手段。
根癌农杆菌是许多双子叶植物肿瘤病的病原菌,其中带有一种T i质粒,其中的DNA能够转移到植物基因组上,而使植物得到转化。
利用农杆菌在双子叶植物中的转化已经十分完善,但是因为玉米等单子叶植物不是其天然的寄主,转化工程比较困难。
G rismly(1987)年将玉米条锈叶病毒的cDNA克隆到[收稿日期]2000-03-24[作者简介]赵久然(1962-),男,北京市农林科学院玉米研究中心主任、研究员,目前主要从事玉米新品种选育、高产优质配套技术及种子产业化等研究,承担多项国家和北京市课题。
雪花莲凝集素转基因抗虫植物的研究进展
雪花莲凝集素转基因抗虫植物的研究进展摘要:近年来雪花莲凝集素(GNA)基因已成为国内外在植物抗虫基因工程中应用较为广泛的基因。
目前已在小麦、大豆、水稻等农作物上的研究获得成功,并有相当规模的种植。
另外在烟草、马铃薯、地瓜、莴苣、棉花、甘蔗、油菜等经济作物也已经试验成功.GNA转基因抗虫植物的培育为减少杀虫剂的使用和提高产量以及环境保护方面起到了巨大的作用。
本文就GNA的分布、来源、杀虫机理、GNA转基因抗虫植物的发展况以及种植GNA抗虫植物的安全性进行了概述。
关键词:GNA基因;转基因植物;抗虫;安全Research advances in GNA transgenicanti-insect plantsAbstract:in recent years the snowdrops lectin gene(GNA)become insect-resistant genes in plants at home and abroad in engineering application a wide range of genes. Currently on wheat,soy and rice crops in research,and has won initial success of comparable size planting.Other tobacco potatoes sweet potato lettuce in economic crops such as cotton and sugar cane rape trial has success.GNA genetically modified insect resistance plant cultivation to reduce the use of pesticides and increase production and environmental protection has played a great role.This paper the distribution insecticidal mechanism GNA GNA genetically modified insect resistance plant development status and planting GNA insect resistance plant impact on environment were summarized.Keywords:GNA genes;transgenic plants;anti-insect;safety雪花莲凝集素(Galanthus nivalis agglutinin简称GNA)是植物外源激素的一种,成熟的GNA是四聚体蛋白,且蛋白质分子未被糖基化,同时含有12个甘露糖专一性结合位点,属整体凝集素类。
课程论文—木本植物转基因研究进展
木本植物转基因研究进展摘要:从木本植物的概况及其转基因的现状、发展历程、研究现状、转化的目的基因、方法、受体系统、选择标记等方面入手,阐述了木本植物转基因研究的相关进展,并对各个环节的最新研究和存在的问题进行了简要的说明,探讨了可能的解决和替代方案,对于木本植物转基因未来的发展趋势进行了展望。
关键词:木本植物;转基因;研究进展1.前言木本植物指茎的木质化程度高、木质化细胞多、茎常较坚硬且直立的多年生植物,依形态不同,分乔木、灌木和半灌木三类。
自古以来,木本植物在人类社会的各个层面都扮演着极为重要的角色,如建筑、工业、园林、食品等,已经成为人类必不可少的资源之一。
此外,木本植物对于生物多样性、地表形态建成、全球气候等也有着决定性作用。
1974年,科恩(Cohen)将金黄色葡萄球菌质粒上的抗青霉素基因转到大肠杆菌体内,揭开了转基因技术应用的序幕[1]。
将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术。
自诞生以来,转基因技术一直毁誉参半,一方面,转基因技术对于植物性状改良、新品种的研发及生物技术的进步有着莫大的贡献;另一方面,由于转基因技术的不成熟和应用领域的关系,产生了一些负面影响,如遗传漂变、性状退化、致病性等,导致人们对转基因技术产生误解。
即便如此,转基因技术的发展还是势不可挡,随着科学技术的不断进步和完善,转基因将有更多的用武之地。
长期以来,木本植物的改良主要是通过杂交育种的方式进行,但木本植物所特有的许多生物学特性,如较长的生长周期和童期、复杂的生殖方式、高度杂合性等,使得应用常规育种方法受到了极大的限制[2],这就需求一种快速有效的方法来缩短木本植物的研究周期,从而更好地为人类的生产、生活提供帮助。
转基因技术的兴起,为木本植物各方面的研究提供了契机,也为经济发展、人们生活水平的提高提供了机遇,现已逐渐成为研究的热点。
植物生物技术研究
植物生物技术研究植物生物技术是一门学科,通过运用生物学、基因工程和细胞生物学等技术手段来改良植物的性状、提高产量和抗病性,以满足人类对食物、能源和环境的需求。
植物生物技术的研究领域广泛,包括转基因植物、植物组织培养、植物遗传改良和功能基因研究等。
本文将逐一介绍这些方面的研究进展和应用。
一、转基因植物研究转基因植物是经过基因工程技术改造的植物,通过导入外源基因来使植物获得特定性状或改善性状。
转基因植物广泛应用于农业生产中,可以提高作物的产量、抗虫性、抗病性和逆境抗性等。
例如,转基因玉米、大豆和棉花等作物,通过导入抗虫基因,能够减少对农药的依赖,提高农作物的产量和质量。
二、植物组织培养研究植物组织培养是指将植物的一小部分组织或细胞培养在含有适当激素和养分的培养基上,使其分化成为新的植株。
这项技术可用于繁殖难以进行传统繁殖方式的植物,如珍稀植物和病毒感染的植物。
另外,植物组织培养还可以用于植物的遗传改良,例如利用离体花粉培养技术,可以通过人工授粉和培养使植物迅速产生后代,实现物种的快速繁殖。
三、植物遗传改良研究植物遗传改良是指通过自然界中存在的遗传变异或经过人工诱发的变异,选育出表现出优良性状的新品种。
这项研究可以应用于传统农作物品种改良和新品种的培育。
科学家通过基因的遗传分析和选择,使得植物在性状上更加稳定和优良,以适应不同的生态环境和人类的需求。
四、功能基因研究功能基因研究是指对植物基因进行定位、克隆、表达和功能解析等研究。
通过对植物基因的深入研究,可以揭示植物在生长发育和逆境响应等方面的分子机制。
这项研究对于理解植物的基本生物学过程和提高植物抗逆性具有重要意义。
例如,一些抗旱基因的发现和运用,可以提高植物在干旱条件下的生存能力,为干旱地区的农业生产提供技术支持。
总结起来,植物生物技术研究在农业生产中起着重要的作用。
通过转基因植物的研究,人类可以改良作物的性状,提高产量和质量。
通过植物组织培养和遗传改良,可以培育新的品种,适应不同的生态环境和需求。
转基因作物的现状与研究进展
转基因作物的现状与研究进展随着人口不断增长和气候变化的影响,农业生产面临着巨大的挑战。
如何在有限的耕地上生产更多的粮食,如何在气候变化的影响下保持农作物的高产和品质成为了当代农业科技研究的一个重要课题。
而在这个过程中,转基因技术,一种可以改变农作物基因组成的技术,被越来越多的人所关注。
转基因作物是指人为将外源基因导入农作物中,以改变其基因组成,使其具有新的性状或性能。
转基因作物改进了植物的抗病性、抗虫性、耐药性等方面,促进了农业生产的发展。
然而,在实际应用中,转基因作物也引发了不少的争议。
一方面,转基因作物可以为人类带来诸多好处。
例如,转基因玉米能够抵抗玉米螟等虫害,不仅增加了玉米产量,还降低了化学农药的使用量,减少了环境污染。
转基因水稻也能够增加水稻植株的抗性和耐盐碱性,使其适应恶劣的自然环境,为有限的耕地提高了生产能力。
另一方面,由于人为操纵了植物的基因,转基因作物也被认为可能会带来不可预测的健康风险和环境风险。
虽然多项研究表明,转基因食品没有明显的食品安全问题,但是这种技术的风险仍然存在着不确定性,需要科学家们持续关注和研究。
在转基因作物的研究中,一些新的技术逐渐成为了重要的研究方向,为转基因作物的发展和应用提供了新的思路和可能性。
例如,基因编辑技术可以精准地切除或修改某个基因,与传统的转基因技术相比,基因编辑更为安全,也更为可控。
不仅如此,基因编辑还可以通过人为改变植物的基因组,实现更多元化的农作物品种。
此外,在转基因作物的研究中,科学家们还注重了将转基因作物的性状与疾病、营养等方面进行关联,进一步增加作物的使用价值。
例如,通过修改某个基因,科学家成功地让作物中产生更多的维生素A,从而减少视力丧失病例,提高了食品的营养价值。
总的来说,虽然转基因作物在应用过程中存在一定的争议和风险,但是在当前农业生产面临的挑战下,其发展仍然具有重要的意义和价值。
通过科学家的不断努力和研究,转基因作物的应用范围和功能将不断拓展,为我们创造出更多的生产和生活便利。
Bt转基因抗虫植物研究进展
2 u nnE t —x npc o n u r t e K m ig 5 28 C i ) .Y n a n yE iIset nadQ aa i , u m n 0 2 , h a r t i nn 6 n
Absr c t a t:Atp e e t r s n ,Btg n s h v e n wie y sud e n pp id i heg n tc e gie rng o ns c —e it n a ti h rd e e a e b e d l t id a d a le n t e e i n n e i fi e tr ssa tpln n te wo l . T r r n r ns e i l n swhih ha e o e o wo Btg n s,s c s maz he e a e ma y Btta g nc p a t c v n rt e e u h a ie,c to n tt a e b e uliae n al r e ot n a d poao h v e n c tv td i a g — s ae. Mo e v r o fn w r n g ni l n ss c s rc cl r o e ,a l to e Btta s e c p a t u h a ie. b a e n,rpe,a fIa,c u i o ra d c so v e e eo e U — a 1af a lf we n a trha e be n d v lp d S C l c s f l d s r a r d a l. Th e eo m e to r n g ni ns c—e itntpln sh sc n rb e o i e sul an p e d g a u ly y e d v lp n fBtta s e c i e tr ssa a t a o ti utd t mpr v il s,rdu e p si o ey ed e c e t— cd s g i e u a e,a d p oe t o e v rnme t . Th l sii to fBtg n s,t e n r tc e t n io ns e c a sf in o e e ca h me ha im fa to c n s o c in,t e d v lp h e eo men fBtta s e c to r n g ni a t,n e tp a t , a l s t fe to l n so n io m e twe e ito u e n p e e tr ve n iis c l n s swe la he efc fBtp a t n e vr n n r n r d c d i r s n e iw.
植物转基因抗性策略研究进展
126--农业经济•专题综述 DOI:10.16498/ki.hnnykx.2016.010.035自首次报道转基因植物表达植物病毒序列并表现抗病性以来,人们尝试了各种不同类型的抗性产生方法。
这些方法主要包括表达不同的病毒序列、非病毒序列、宿主来源的抗性基因及各种宿主防御反应因子等。
笔者主要围绕以上各种成分或序列介导产生的抗性展开综述。
1 病毒蛋白介导的抗性策略1.1 外壳蛋白介导的抗性外壳蛋白(Coat protein ,CP )介导的抗性方法主要通过在转基因植株表达病毒的外壳蛋白基因从而获得抗此种病毒或相关病毒的能力。
1986年Abel 等[1]将烟草花叶病毒(TMV )的外壳蛋白编码序列导入到烟草中,获得了具有TMV 抗性的抗病毒植株。
随后,科学家们先后将黄瓜花叶病毒(CMV )、马铃薯Y 属病毒(PVY )、辣椒重症花叶病毒(PepSMV )等的外壳蛋白基因导入烟草植株后,均得到了抗病毒植株。
外壳蛋白介导的抗性可能是蛋白质水平介导的干扰或RNA 水平的沉默的结果,也可能同时存在蛋白质和RNA 两种作用机制。
此外,当接种高病毒剂量或接种病毒RNA 时,外壳蛋白介导的抗性普遍存在容易被打破的共性[2-4]。
1.2 复制酶基因介导的抗性复制酶(Replicase )介导的抗性方法主要通过表达病毒复制酶通读序列、全长序列、突变序列及缺失序列获得具有抗病毒能力的植株。
1990年Golemboski 等[5]将TMV 的54KD 复制酶基因转入烟草植株,获得了高抗TMV 的转基因抗病毒植株。
研究表明,复制酶基因介导的抗性策略产生的抗性不具广谱性,接种非常高剂量的病毒时表现出强抗性,接种病毒RNA 时也表现出高水平的抗性[6],但是表达缺失型复制酶蛋白编码序列表现出广谱抗性[7]。
关于复制酶基因介导的抗性机制尚无定论。
多数早期的研究认为复制酶基因介导的抗性是由蛋白介导的,稍后的研究却发现存在RNA 介导的过程,也许复制酶基因介导的抗性在蛋白质水平和RNA 水平存在互补或替换的过程[6]。
转基因技术在大豆育种上的研究进展及发展趋势
转基因技术在大豆育种上的研究进展及发展趋势摘要:近年来,转基因技术在大豆上的研究重点主要集中在建立高效再生体系和稳定地遗传转化体系方面,随着遗传转化技术的发展,我国已获得了抗病、抗虫转基因的大豆植株并取得突破性进展。
本文就大豆遗传转化在受体系统(器官发生受体系统、体细胞胚胎发生受体系统、原生质体受体系统)以及转化方法(农杆菌介导法、基因枪法)等方面的研究进展情况进行了综述,并对今后大豆转基因研究方向进行了探讨。
关键词:大豆;遗传转化;转基因;农杆菌;基因枪1 大豆再生体系研究进展大豆的组织培养于20世纪60年代开始,一直到80年代分别建立了组织、细胞、原生质体水平的植株再生技术,为大豆的外源DNA导人提供了有效的受体系统。
1.1 大豆体细胞胚胎发生再生系统大豆体细胞胚胎发生本身繁殖快、单细胞起源、两极性等优点,是遗传转化的基础,不会出现嵌合体问题,而且体细胞胚团高密度高质量,遗传上稳定,可以一次获得大量植株;体细胞胚团可以在适宜的条件下保存,仍然具有再生能力,因此是基因枪和农杆菌转化的最适宜的受体系统。
大豆体细胞胚胎发生再生系统采用的外植体主要为未成熟子叶、胚轴、完整幼胚。
诱导培养基主要为Ms以及改良培养基,生长调节物质主要为2,4.D和NAA。
80年代初期,Christianson等旧1以幼胚轴为外植体,诱导体细胞胚胎发生,首先获得再生植株。
随后,Ranch等对2,4.D诱导的大豆未成熟胚的体细胞胚胎发生系统进行了较为详细的研究。
Lazzeri等用10mg.L~2,4.D诱导了大豆幼胚子叶的体细胞胚胎发生。
他们认为2,4一D诱导大豆体细胞胚胎发生虽然频率高,但形态不正常,难以萌发形成完整植株。
NAA诱导的大豆体细胞胚胎发生虽然频率低,但是形态正常,可以不经过愈伤组织而直接生成子叶期体细胞胚。
最后获得可育再生植株。
周思军等通过大豆幼胚培养,经过体细胞胚胎发生和组织培养获得再生植株,并对影响大豆体细胞胚胎发生的因素进行了系统研究。
植物转基因技术的研究现状与展望
植物转基因技术的研究现状与展望转基因技术,又称遗传工程技术,是指通过人工手段改变生物中的基因,达到改变其生长发育,产生新的生理功能,甚至改变其基本结构的目的。
在农业领域,转基因技术的应用主要是通过改变植物的基因构成来提高农作物品种的产量、抗病能力和耐逆性等。
近年来,随着科技的发展,植物转基因技术也在逐步完善与深化。
本文将详细探讨现在植物转基因技术的研究现状与未来的发展方向。
一、植物转基因技术的研究现状1. 基因编辑技术的发展基因编辑技术是指通过对基因组DNA序列进行精准修饰,以实现特定功能的目的。
现代基因编辑技术主要有CRISPR-Cas9、ZFN、TALEN等多种技术。
其中,CRISPR-Cas9近几年来因其高效、简便、精准等特点在全球范围内得到广泛运用。
通过基因编辑技术,可以将优异的抗病品种的基因编制到普通农作物上,实现抗病、抗旱、耐潮、抗寒、产量等多种课题的解决。
2. 基因组学与生物信息学的结合基因组学的主要任务是研究特定生物的基因组DNA序列和功能以及基因-环境的相互作用,是现代遗传学的重要分支之一。
而生物信息学则是基因组学研究过程中的数据处理、分析和模拟等活动。
现在,植物生物学家们通过将这两者结合起来,加速了对植物基因组数据的研究分析,为改善植物转基因技术提供了新的技术与方法。
3. 基因编辑与重组技术的结合在将传统的基因重组(例如外源基因工程技术)与现代的基因编辑技术结合后,研究人员可以更加准确和可靠地将特定基因编入目标物种的基因组DNA中。
已有研究表明,基因编辑与转基因结合的技术可以大大提高目标植物抗病、抗虫、产量等方面的特性,具有非常广阔的应用前景和发展潜力。
二、植物转基因技术的未来发展方向虽然植物转基因技术在当前的科技水平下已经得到了广泛的应用,但是未来的发展还面临着不少的问题与挑战。
1. 生态环境的保护植物转基因技术未来的发展需要注意到对生态环境的影响,不能随意改变作物种类与结构,也不能滥用转基因技术对农药、化肥等的依赖。
转基因育种研究进展(精选)
作物转基因育种研究进展摘要:近年来,植物基因工程取得了辉煌的成就,而转基因技术由于其巨大的产业价值,特别是在作物品质改良、产量和抗逆性提高等方面的明显优势,一直是国际农业高新技术竞争的焦点和热点。
本文主以棉花、玉米、水稻为例就转基因育种技术在作物上的研究进展进行相关的介绍。
关键词:作物,棉花,玉米,水稻,转基因育种,研究进展植物转基因技术是指利用重组技术、细胞DNA培养技术或种质系统转化技术将目的基因导入植物基因组,并能在后代中稳定遗传,同时赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。
常规育种常常受有性杂交亲和性的制约,而利用转基因技术可以打破物种界限、克服有性杂交障碍,快速有效地创造遗传变异,培育新品种、创造新类型,大大缩短新品种育成的时间。
因此,随着现代生物技术的迅速发展,植物转基因技术也蓬勃发展[1]。
1 转基因棉花育种的研究与进展近年来,随着基因工程技术的不断发展,利用生物技术来创新棉花种质资源和培育新品种是一条非常有效的途径,极大地推动了棉花遗传育种的发展[2]。
中棉所是世界上唯一可以同时采用农杆菌介导法、花粉管通道法、基因枪轰击法快速获得转基因抗虫棉新材料的技术平台,能将植物嫁接技术成功应用于转基因棉花的快速移栽,成活率超过90%。
未来3~5年,中棉所将挖掘、整合与优化抗病、抗除草剂等基因10个,筛选高产因子、高品质纤维等基因或分子标记150个,创造转基因棉花育种新材料100份以上,培育重大新品种(组合)3~5个。
1.1转抗虫基因1991年成功将外源Bt基因导人棉株中,1992年人工合成了全长1824bp的CrylAb和CrylAc融合的GFMCry1A基因,并于1993年采用农杆菌介导法和外源基因胚珠直接注射法成功导入晋棉7号、中棉12、泗棉3号等主栽品种,获得了高抗棉铃虫的转基因棉花株系;包含CryIAc和AP基因双价抗虫基因载体,通过农杆菌介导转化冀合321胚性愈伤组织,经6代筛选后培育出抗棉铃虫90%的纯合品系,且农艺性状均优于对照。
转基因番茄研究进展
转基因番茄研究进展摘要:利用转基因技术培育,已经获得延熟、抗病、抗虫、抗逆、抗除草剂和品质改进的转基因番茄,并主要介绍转基因技术在这些方面的研究成果和研究进展,此外简单介绍了转基因番茄的优势及其展望。
关键词:转基因番茄进展番茄〔Lycopersicon eseulentem.Mil〕是茄科( Solanaceae) 番茄属( Lycopersicon) 的一年生或多年生植物,是世界上重要的蔬菜作物之一。
番茄需求量大,种植广泛,同时对其的遗传理论研究较为深入,番茄已经成为蔬菜基因工程研究的模式植物之一,且在1994年成为世界上第一例商品化生产的转基因作物——转基因延熟番Flavr-SavrTM,其由美国Calgene公司培育成功并获准进入市场。
其后几年利用转基因技术培育出抗病虫害、抗除草剂、抗逆和高品质的优良番茄品种。
番茄的基因转化技术主要采用农杆菌介导的基因转化方法。
此外,黄永芬等[1]利用花粉管导入法进展番茄的基因转化,将整合了抗冻蛋白基因的Ti 质粒直接注入番茄子房或花粉管中进展转化获得了抗冻番茄。
1.转基因番茄研究进展1.1延熟转基因番茄目前利用基因转化技术延熟番茄有两种方法,一是抑制细胞壁的降解,二是抑制乙烯的合成,在防止其腐烂方面取得了较好的效果。
1.1.1抑制番茄细胞壁降解的研究细胞壁水解酶对果实的成熟有促进作用,通过抑制阻止细胞壁水解酶活性,可抑制果实细胞壁的降解,延缓成熟与衰老。
主要包括两类酶,一类是多聚半乳糖醛酸酶(PG),可将细胞壁中的多聚半乳糖苷降解为低聚半乳糖苷,在果实成熟过程中,PG的mRNA水平可提高100倍。
叶志彪等[2]将PG基因的Hindfi 片段反向克隆在植物转化载体Bin19的花椰菜病毒( CaMV) 的35S启动子和3' 端非翻译区( nos) 终止子之间,经农杆菌与番茄无菌苗子叶外植体共培养,获得转化植株,这种转反义PG基因的番茄果实中,PGmRNA水平及PG酶活性在果实成熟阶段明显降低。
浅谈转基因作物的研究进展
9O 作物 栽培 史上 的一 场空 前革命 。 O0年
涉及各类基因 13 0 种。近年来有近 2 种转基 因植 O
物进 入 了 田 间试 验 或 环 境 释 放 阶段 。 至 19 99年 ,
【 关键词 】 基因 物; 源 因; 体 转 作 外 基 受
中图分 类号 :Q93 2 4 . 文献 标识 码 :A
万公顷,增幅为 1%,达到了 1 2 3 . 亿公顷,首次 0
前
言
突破 1 公 顷大 关 ;种 植 转 基 因 作 物 的农 户 数 量 亿
首 次超 过 了 10 户 ; 19 0 0万 9 6年 到 2 0 0 6年 的 累计
同程度 的抗虫 性 。抗虫 基 因有 两类 : ( )B 杀 虫 1 t
2 转基 因作物的研究
蛋白基因,来 自苏云金芽孢杆菌 ,现已导入棉花、 玉 米 、水 稻、 烟 草 、番 茄 、 马 铃 薯、 胡 桃
2 1 抗病 基因 .
( g n s.、杨树 (ou s p ) J l sp) ua Ppl .、落叶松 ( x us I s. ;()蛋 白酶抑制剂基因,可抑制蛋 白酶 p )等 2
得 了多项 里程碑 式 的成果 。
12 我 国转基 因作物 的发 展 .
和连接 ,构成重组 D A分子,然后导人受体细胞 N 内整合 、表达 ,并能通过无性或有性繁殖过程将
外源基因遗传 给后代。若受体为农作物称为转基
因作 物 (eecl oie rp MC 。从 表 面 gntaym dfdc ,G ) i l i o
转基因植物标记基因安全性研究进展
随着 植 物 细 胞 全 能性 的发 现 和 转 基 因技 术 的发 展 , 人 类 已经利 用 基 因工 程改 变 植物 的性状 , 在提 高 作物 产 量 、 改
中 图分类 号
Q 8 78
文献标 识 码
A
文章 编号 1 0 - 7 9 2 1 )3 0 1 - 4 0 7 5 3 (0 2 0 - 0 7 0
Re e r h Pr g e s o ee to a k r Ge e n T a s e i a t s a c o r s n S lc i n M r e n s i r n g n c Pl n
1 共 转 化 法
共 转化 的原理 是 将 目的基 因和标 记 基 因 单独 组装 到 2
善 品 质 、 决 全球 不断 增 长 的 粮 食 需 求等 方 面 发挥 了 重要 解 作 用 。 随 着 转基 因技 术 的 迅猛 发 展 , 关注 转 基 因植 物所 但 在
带 来 的巨 大 经 济效 益 的 同时 , 安 全性 问题 也 日益 受 到人 其 们 的 重视 。
O l i d M n t d ct n H ri H i n j n 0 4 ; e ig g c l r i e h o g eerh e t ) i e , ii r o E u a o , a n e o g ag1 0 0 B in n u ua Bo c n l y s c n r l F syf i b l i 5 j A t l t o R a C e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。