高中物理第十六章动量守恒定律第2节动量和动量定理教学案人教版5

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2节动量和动量定理
1.物体质量与速度的乘积叫动量,动量的方向与
速度方向相同。

2.力与力的作用时间的乘积叫冲量,冲量的方向
与力的方向相同。

3.物体在一个过程始末的动量变化量等于它在这
个过程中所受合力的冲量,动量变化量的方向
与合力的冲量方向相同。

一、动量及动量的变化
1.动量
(1)定义:物体的质量和速度的乘积。

(2)公式:p=mv。

(3)单位:千克·米/秒,符号:kg·m/s。

(4)矢量性:方向与速度的方向相同。

运算遵守平行四边形法则。

2.动量的变化量
(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式)。

(2)动量始终保持在一条直线上时的动量运算:选定一个正方向,动量、动量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小)。

二、冲量
1.定义:力与力的作用时间的乘积。

2.公式:I=F(t′-t)。

3.单位:牛·秒,符号是N·s。

4.矢量性:方向与力的方向相同。

5.物理意义:反映力的作用对时间的积累效应。

三、动量定理 1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。

2.表达式:mv ′-mv =F (t ′-t )或p ′-p =I 。

1.自主思考——判一判
(1)动量的方向与速度方向一定相同。

(√)
(2)动量变化的方向与初动量的方向一定相同。

(×)
(3)冲量是矢量,其方向与恒力的方向相同。

(√)
(4)力越大,力对物体的冲量越大。

(×)
(5)若物体在一段时间内,其动量发生了变化,则物体在这段时间内的合外力一定不为零。

(√)
2.合作探究——议一议
(1)怎样理解动量的矢量性?
提示:动量是物体的质量与速度的乘积,而不是物体的质量与速率的乘积,动量的方向就是物体的速度方向,动量的运算要遵守矢量法则,同一条直线上的动量的运算首先要规定正方向,然后按照正负号法则运算。

(2)在地面上垫一块较厚的软垫(如枕头),手拿一枚鸡蛋轻轻的释放让它落到软垫上,鸡蛋会不会破?动手试一试,并用本节知识进行解释。

提示:鸡蛋不会破。

因为软垫延长了与鸡蛋的作用时间,根据动量定理得F =Δp Δt
,即鸡蛋受到的冲击力减小,故不会破。

对动量、冲量的理解
1.动量的性质
(1)瞬时性:通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p =mv 表示。

(2)矢量性:动量的方向与物体的瞬时速度的方向相同。

(3)相对性:因物体的速度与参考系的选取有关,故物体的动量也与参考系的选取有关。

2.冲量的性质
(1)过程量:冲量描述的是力的作用对时间的积累效应,取决于力和时间这两个因素,
所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量。

(2)矢量性:冲量的方向与力的方向相同,与相应时间内物体动量变化量的方向相同。

3.动量的变化量:是矢量,其表达式Δp =p 2-p 1为矢量式,运算遵循平行四边形定则,当p 2、p 1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算。

[典例] 羽毛球是速度最快的球类运动之一,运动员扣杀羽毛球的速度可达到342 km/h ,假设球飞来的速度为90 km/h ,运动员将球以342 km/h 的速度反向击回。

设羽毛球质量为5 g ,击球过程只用了0.05 s 。

试求:
(1)运动员击球过程中羽毛球的动量变化量。

(2)运动员击球过程中羽毛球所受重力的冲量、羽毛球的动能变化量各是多少?
[思路点拨] 解答本题时应注意以下两点:
(1)求动量变化时要选取正方向,同时注意球的初速度与末速度的方向关系。

(2)动能是标量,动能的变化量等于球的末动能与初动能的大小之差。

[解析] (1)以羽毛球飞来的方向为正方向,则
p 1=mv 1=5×10-3×903.6 kg·m/s=0.125 kg·m/s p 2=mv 2=-5×10-3×
3423.6 kg·m/s=-0.475 kg·m/s, 所以动量的变化量
Δp =p 2-p 1=(-0.475-0.125)kg·m/s=-0.600 kg·m/s,所以羽毛球的动量变化大小为0.600 kg·m/s,方向与羽毛球飞来的方向相反。

(2)羽毛球重力大小为G =mg =0.05 N
所以重力的冲量I =Gt =2.5×10-3
N·s
羽毛球的初速度为v =25 m/s ,羽毛球的末速度v ′=-95 m/s
所以ΔE k =E k ′-E k =12mv ′2-12
mv 2=21 J 。

[答案] (1)0.600 kg·m/s,与球飞来的方向相反 (2)2.5×10-3 N·s 21 J
动量和动能的比较
动量 动能 物理意义
描述机械运动状态的物理量 定义式
p =mv E k =12
mv 2 标矢性 矢量 标量
变化决定因素物体所受冲量外力所做的功
换算关系p=2mE k,E k=p2
2m
1.(多选)关于物体的动量,下列说法中正确的是( )
A.惯性越大的物体,它的动量也越大
B.动量大的物体,它的速度不一定大
C.物体的动能不变,则其动量也保持不变
D.运动物体在任一时刻的动量的方向一定是该时刻的速度方向
解析:选BD 动量的大小由质量和速度的大小决定,即p=mv,惯性大则质量大,但动量不一定大,选项A错误;动量大的物体,可能是速度大,但也有可能是质量大,选项B 正确;动量是矢量,其方向与速度方向相同,只有在速度的大小、方向均不变时,物体的动量才保持不变,而动能不变只能说明物体的速度大小不变,故选项C错误,D正确。

2.(多选)关于动量的变化,下列说法中正确的是( )
A.做直线运动的物体速度增大时,动量的增量Δp与速度的方向相同
B.做直线运动的物体速度减小时,动量的增量Δp与运动方向相反
C.物体的速度大小不变时,动量的增量Δp为零
D.物体做曲线运动时,动量的增量Δp一定不为零
解析:选ABD 当做直线运动的物体速度增大时,其末动量p2大于初动量p1,由矢量的运算法则可知Δp=p2-p1>0,与速度方向相同,如图甲所示,选项A正确;当做直线运动的物体速度减小时,Δp=p2-p1<0,即p2<p1,如图乙所示,此时Δp与物体的运动方向相反,选项B正确;当物体的速度大小不变时,动量可能不变,即Δp=0,也有可能动量大小不变而方向变化,此种情况Δp≠0,选项C错误;物体做曲线运动时,速度的方向不断变化,故动量一定变化,Δp一定不为零,如图丙所示,选项D正确。

3.如图16­2­1所示,一质量m=3 kg的物体静止在光滑水平面上,受到与水平方向成60°角的力作用,F的大小为9 N,经2 s时间,求:(g取10 N/kg)
图16­2­1
(1)物体重力冲量大小。

(2)物体受到的支持力冲量大小。

(3)力F 的冲量大小。

(4)合外力的冲量大小。

解析:对物体受力分析如图所示,则
(1)重力的冲量
I G =mgt =3×10×2 N·s=60 N·s。

(2)支持力的冲量IF N =F N t =(mg -F sin 60°)t =⎝ ⎛⎭⎪⎫3×10-9×
32×2 N·s≈44.4 N·s。

(3)力F 的冲量 I =Ft =9×2 N·s=18 N·s。

(4)合外力的冲量I 合=F cos 60°·t =9×0.5×2 N·s=9 N·s。

答案:(1)60 N·s(2)44.4 N·s(3)18 N·s
(4)9 N·s
对动量定理的理解及应用
1.对动量定理的理解
(1)适用对象:在中学物理中,动量定理的研究对象通常为单个物体。

(2)适用范围:动量定理不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动。

不论是变力还是恒力,不论物体的运动轨迹是直线还是曲线,动量定理都适用。

(3)因果关系:合外力的冲量是原因,物体动量的变化量是结果。

冲量反映了力对时间的积累效应,与物体的初、末动量以及某一时刻的动量无必然联系。

物体动量变化的方向与合力的冲量的方向相同,物体在某一时刻的动量方向与合力的冲量的方向无必然联系。

2.动量定理的应用
(1)定性分析有关现象。

①物体的动量变化量一定时,力的作用时间越短,力就越大,反之力就越小。

例如,易碎物品包装箱内为防碎而放置碎纸、刨花、塑料泡沫等填充物。

②作用力一定时,力的作用时间越长,动量变化量越大,反之动量变化量就越小。

例如,杂耍中,用铁锤猛击“气功师”身上的石板令其碎裂,作用时间很短,铁锤对石板的冲量很
小,石板的动量几乎不变,“气功师”才不会受伤害。

(2)定量计算。

①应用动量定理可以计算某力或合力的冲量,通常多用于计算变力的冲量。

②应用动量定理可以计算某一过程中的平均作用力,通常多用于计算持续作用的变力的平均大小。

③应用动量定理可以计算物体的初、末动量,尤其方便处理物体受瞬间冲量的问题。

(3)应用动量定理定量计算的一般步骤。

错误!→错误!→错误!
[典例] 质量为0.5 kg的弹性小球,从1.25 m高处自由下落,与地板碰撞后回跳高度为0.8 m。

设碰撞时间为0.1 s,g取10 m/s2,求小球对地板的平均作用力。

[思路点拨]
(1)小球碰撞地板前做自由落体运动,碰撞地板后做竖直上抛运动。

(2)小球碰撞地板时受地板作用力和自身重力。

(3)小球对地板的平均作用力与地板对小球的平均作用力是作用力与反作用力。

[解析] 解法一:分段处理
取小球为研究对象,根据自由落体运动和竖直上抛运动可知,小球碰撞前的速度:v1=2gh1=2×10×1.25 m/s=5 m/s,方向向下;
小球碰撞后的速度:v2=2gh2=2×10×0.8 m/s=4 m/s,方向向上。

小球受力情况如图所示,取竖直向上为正方向。

根据动量定理:
由牛顿第三定律可知,小球对地板的平均作用力大小为50 N,方向竖直向下。

解法二:全程处理
以开始下落的瞬间为初状态,反弹到最高点时为末状态,则重力的作用时间:
由牛顿第三定律可知,小球对地板的平均作用力大小为50 N,方向竖直向下。

[答案] 50 N,方向竖直向下
应用动量定理的四点注意事项
(1)明确物体受到冲量作用的结果是导致物体动量的变化。

冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则。

(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小。

(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系。

(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量。

1.如图16­2­2所示,铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉在地上的P点,其他条件不变,若以2v的速度抽出纸条,则铁块落地点为( )
图16­2­2
A.仍在P点
B.P点左边
C.P点右边不远处
D.P点右边原水平位移两倍处
解析:选B 两种情况纸片运动距离相同,所以速度越大,需要的时间越短。

在抽出的
过程中,铁块受摩擦力作用,使铁块获得速度,根据动量定理得Ft =mv -0,时间越短,速度越小,平抛距离越短,所以选B 。

2.(多选)从塔顶以相同速度抛出A 、B 、C 三个小球,A 球竖直上抛,B 球平抛,C 球竖直下抛,另有D 球从塔顶开始自由下落。

已知四个小球的质量相同,落到同一水平地面上。

则( )
A .落地时动能相同的小球是A 、
B 、C
B .落地时动量相同的小球是A 、B 、C
C .从离开塔顶到落地的过程中,动能增量相同的小球只有A 、B 、C
D .从离开塔顶到落地的过程中,动量增量相同的小球是B 、D
解析:选AD 四个小球在运动过程中机械能均守恒,抛出时动能相同的小球,机械能相同,落地时它们的机械能一定也相同,即落地时动能相同,故选项A 正确。

动量是矢量,落地时B 的速度方向与A 、C 不同,故B 的动量与A 、C 不同,选项B 错误。

四个小球在运动过程中的动能增量均为ΔE k =mgh ,选项C 错误。

小球在运动过程中的动量增量为Δp =mgt ,只有B 、D 运动时间相同,故选项D 正确。

3.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t
-mg C.m gh t +mg D.m gh t
-mg 解析:选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,
设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma
又v =at
解得F =m 2gh t
+mg 。

方法二:由动量定理得(mg -F )t =0-mv ,得F =
m 2gh t
+mg 。

选项A 正确。

1.(多选)下列说法正确的是( )
A .运动物体的动量的方向总是与它的运动方向相同
B .作用于物体上的合外力的冲量不为0,则物体的动量一定发生变化
C .作用于物体上的合外力的冲量不为0,则物体的动能一定发生变化
D .物体所受合外力的冲量方向总是与物体的动量方向相同
解析:选AB 动量的方向总与速度即运动方向相同,故A 对;合外力的冲量不为零,由动量定理I 合=Δp ,可知动量的变化量Δp 一定不为零,即动量一定变化,但动能不一定变化,有可能动量的大小不变,方向变化,故B 对,C 错;I 合的方向一定与动量变化量的方向相同,但不一定与动量的方向相同,故D 错。

2.篮球运动员通常伸出双手迎接传来的篮球。

接球时,两手随球迅速收缩至胸前。

这样做可以( )
A .减小球对手的冲量
B .减小球对手的冲击力
C .减小球的动量变化量
D .减小球的动能变化量
解析:选B 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确。

3.(多选)古时有“守株待兔”的寓言,设兔子的头部受到大小等于自身体重的打击力时即可致死。

若兔子与树桩发生碰撞,作用时间为0.2 s ,则被撞死的兔子的奔跑的速度可能是( )
图1
A .1 m/s
B .1.5 m/s
C .2 m/s
D .2.5 m/s
解析:选CD 根据题意建立模型,设兔子与树桩的撞击力为F ,兔子撞击树桩后速度为零,根据动量定理有-Ft =0-mv ,所以v =Ft m =mgt m
=gt =10×0.2 m/s=2 m/s 。

4.质量为1 kg 的物体做直线运动,其速度图像如图2所示。

则物体在前10 s 内和后10 s 内所受外力的冲量分别是( )
图2
A .10 N·s,10 N·s
B .10 N·s,-10 N·s
C .0,10 N·s
D .0,-10 N·s
解析:选D 由图像可知,在前10 s 内初、末状态的动量相等,p 1=p 2=5 kg·m/s,由动量定理知I 1=0;在后10 s 内p 3=-5 kg·m/s,I 2=p 3-p 2=-10 N·s,故选D 。

5.原来静止的物体受合外力作用时间为2t 0,作用力随时间的变化情况如图3所示,则
( )
图3
A .0~t 0时间内物体的动量变化与t 0~2t 0内动量变化相等
B .0~t 0时间内物体的平均速率与t 0~2t 0内平均速率不等
C .t =2t 0时物体的速度为零,外力在2t 0时间内对物体的冲量为零
D .2t 0时间内物体的位移为零,外力对物体做功为零
解析:选C 0~t 0与t 0~2t 0时间内作用力方向不同,动量变化量不相等,A 错;t =t 0时,物体速度最大,t =2t 0时物体速度为零,由动量定理Ft =m Δv 可得,F 0t 0-F 0t 0=0,0~t 0与t 0~2t 0时间内物体平均速率相等,B 错,C 正确;物体先加速后减速,位移不为零,动能变化量为零,外力对物体做功为零,D 错。

6.质量相等的A 、B 两个物体,沿着倾角分别是α和β的两个光滑的固定斜面,由静止从同一高度h 2下滑到同样的另一高度h 1,如图4所示,则A 、B 两物体( )
图4
A .滑到h 1高度时的动量相同
B .滑到h 1高度时的动能相同
C .由h 2滑到h 1的过程中所受重力的冲量相同
D .由h 2滑到h 1的过程中所受合力的冲量相同
解析:选B 两物体由h 2下滑到h 1高度的过程中,机械能守恒,mg (h 2-h 1)=12
mv 2,v =2g (h 2-h 1),物体下滑到h 1处时,速度的大小相等,由于α不等于β,速度的方向不同,由此可判断,物体在h 1高度处动能相同,动量不相同。

物体运动过程中动量的变化量
不同,所以合外力的冲量不相等。

物体下滑的过程中,mg sin α=ma ,h 2-h 1sin α=12at 2。

由上述两式求得时间t =
1sin α2(h 2-h 1)g
,由I G =mgt 可以判断物体下滑过程中重力的冲量不等。

7.冰壶在水平冰面上的一次滑行可简化为如下过程:如图5所示,运动员将静止于O 点的冰壶(视为质点)沿直线OO ′推到A 点放手,此后冰壶沿AO ′滑行,最后停于C 点。

已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m ,AC =L ,CO ′=r ,重力加速度为g 。

图5
(1)求冰壶从O 点到A 点的运动过程中受到的冲量大小。

(2)若将BO ′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C 点的冰壶能停于O ′点,求A 点与B 点之间的距离。

解析:(1)由-μmgL =0-12
mv 2A ,得v A =2μgL 。

由I =mv A ,将v A 代入得I =m 2μgL 。

(2)设A 点与B 点之间的距离为s ,由
-μmgs -0.8μm g (L +r -s )=0-12
mv 2A ,将v A 代入得s =L -4r 。

答案:(1)m 2μgL (2)L -4r
8.用0.5 kg 的铁锤把钉子钉进木头里,打击时铁锤的速度v =4.0 m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01 s ,那么:
图6
(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?
(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g 取10 m/s 2)
(3)比较(1)和(2),讨论是否要忽略铁锤的重力。

解析:(1)以铁锤为研究对象,不计重力时,只受钉子的作用力,方向竖直向上,设为F 1,取竖直向上为正,由动量定理可得F 1t =0-mv
所以F 1=-0.5×(-4.0)0.01
N =200 N , 方向竖直向上。

由牛顿第三定律知,铁锤钉钉子的作用力为200 N ,方向竖直向下。

(2)若考虑重力,设此时受钉子的作用力为F 2,对铁锤应用动量定理,取竖直向上为正。

(F 2-mg )t =0-mv (矢量式)
F 2=-0.5×(-4.0)0.01
N +0.5×10 N=205 N ,方向竖直向上。

由牛顿第三定律知,此时铁锤钉钉子的作用力为205 N ,方向竖直向下。

(3)比较F 1与F 2,其相对误差为|F 2-F 1|F 1
×100%=2.5%,可见本题中铁锤的重力可忽略。

答案:(1)200 N ,方向竖直向下
(2)205 N ,方向竖直向下 (3)见解析。

相关文档
最新文档