基于单片机实现的数据采集系统
基于单片机的数据采集系统设计本科生
![基于单片机的数据采集系统设计本科生](https://img.taocdn.com/s3/m/4eeac535178884868762caaedd3383c4ba4cb411.png)
基于单片机的数据采集系统设计本科生摘要:数据采集系统是信息技术广泛应用于各个领域的一项重要技术。
本文介绍了基于单片机的数据采集系统的设计过程和实施方法。
该系统使用单片机作为主控芯片,通过传感器采集环境中的数据,并通过通信接口将数据传输给上位机进行分析和处理。
本文详细介绍了系统的硬件设计和软件实现,同时对系统的性能进行了测试和分析。
实验结果表明,该系统具有较高的数据采集效率和较好的稳定性,可以在各个领域中广泛应用。
1.引言随着科技的不断发展,数据采集系统已经被广泛应用于各个领域,如工业自动化、环境监测、医疗健康等。
数据采集系统的设计对于实现数据的准确采集、处理和分析具有重要意义。
基于单片机的数据采集系统由于其成本低、体积小和易于实现等特点被广泛应用。
本文主要介绍了一种基于单片机的数据采集系统的设计和实施过程。
2.系统硬件设计2.1主控芯片的选择本系统使用单片机作为主控芯片,根据具体的应用需求选择合适的单片机。
主控芯片需要具备较强的处理能力、丰富的接口和良好的稳定性。
常见的单片机有AVR单片机和51单片机等,本文选择AVR单片机进行设计。
2.2传感器的选择与接口设计根据实际应用需求,选择合适的传感器,并设计相应的接口电路连接到主控芯片。
传感器可以是光电传感器、温湿度传感器、气体传感器等。
通过传感器可以实时采集环境中的各种数据,并通过接口电路将数据传输给主控芯片。
2.3数据存储和传输设计为了实现数据的存储和传输,需要设计相应的存储器和通信接口。
可以使用EEPROM作为数据存储介质,通过串口通信或无线通信将数据传输给上位机进行后续处理。
同时,为了保证数据的稳定传输和防止数据丢失,可以设计相应的纠错机制和重发机制。
3.系统软件实现3.1系统初始化在系统初始化过程中,需要对主控芯片和传感器进行初始化,包括引脚设置、时钟配置、中断设置等。
3.2数据采集和处理在数据采集和处理过程中,主控芯片通过接口电路和传感器进行数据采集,并对采集到的数据进行预处理和滤波处理,以确保数据的准确性和可靠性。
基于STM32F103单片机的数据采集系统设计
![基于STM32F103单片机的数据采集系统设计](https://img.taocdn.com/s3/m/a5e6816f492fb4daa58da0116c175f0e7dd11959.png)
基于STM32F103单片机的数据采集系统设计本文。
在现代科技快速发展的时代背景下,数据采集系统作为信息获取的重要手段之一,已经成为各行业必备的工具之一。
STM32F103单片机作为一款性能稳定、功能强大的微控制器,被广泛应用于各种数据采集系统中。
本文将以STM32F103单片机为基础,探讨其在数据采集系统中的设计原理、实现方法以及应用案例,旨在为同行业研究者提供参考和借鉴。
一、STM32F103单片机概述STM32F103单片机是意法半导体公司推出的一款32位MCU,采用ARM Cortex-M3内核,工作频率高达72MHz,具有高性能、低功耗、丰富的外设接口等特点。
在各种嵌入式系统中,STM32F103单片机的应用十分广泛,特别适用于需要较高计算性能和功耗要求低的场景。
二、数据采集系统概述数据采集系统是一种用于采集、处理和传输数据的系统,通常由传感器、数据采集设备、数据处理单元和通信模块等组成。
在工业控制、环境监测、医疗诊断等领域,数据采集系统扮演着重要角色,能够实时监测各种参数并进行数据分析,为决策提供数据支持。
三、STM32F103单片机在数据采集系统中的应用1. 数据采集系统设计原理数据采集系统的设计原理包括数据采集、数据处理和数据传输等环节。
在STM32F103单片机中,可以通过外设接口如ADC、UART等模块实现数据的采集和传输,通过中断和定时器等功能实现数据的处理和分析,从而构建完整的数据采集系统。
2. 数据采集系统实现方法基于STM32F103单片机的数据采集系统的实现方法主要包括硬件设计和软件编程两个方面。
在硬件设计方面,需要根据具体需求选择合适的传感器和外设接口,设计电路连接和布局;在软件编程方面,需要利用STM32CubeMX等工具进行初始化配置,编写相应的驱动程序和应用程序,实现数据的采集、处理和传输。
3. 数据采集系统应用案例以环境监测系统为例,我们可以利用STM32F103单片机搭建一个实时监测空气质量的数据采集系统。
课设之基于单片机的数据采集系统设计
![课设之基于单片机的数据采集系统设计](https://img.taocdn.com/s3/m/7416428f1b37f111f18583d049649b6648d709e1.png)
课设之基于单片机的数据采集系统设计随着科技的飞速发展,数据采集系统也在逐渐普及。
而基于单片机的数据采集系统设计,是一种简单、可靠、成本低的方案。
一、系统概述数据采集系统是通过采集各种物理量(如温度、湿度、压力等)的信号,将其转换成数字信号,并进行处理和存储,从而实现对物理量的监测、控制和分析。
基于单片机的数据采集系统,是利用单片机的时序控制、数字转换和通信等功能,对物理量进行采集和处理的系统。
二、系统组成基于单片机的数据采集系统主要由传感器、信号调理电路、单片机、存储器和通信模块等组成。
其中:1.传感器:根据需要采集的物理量不同,可以选择多种类型传感器,如温度传感器、湿度传感器、气压传感器等。
2.信号调理电路:对传感器输出的信号进行放大、滤波、线性化等处理,使其符合单片机的输入要求。
3.单片机:选用低功耗、高集成度、性能稳定的单片机,进行数据采集和处理,并实现控制和通信等功能。
4.存储器:将采集到的数据进行存储,以便后期分析和处理。
5.通信模块:将采集到的数据通过串口、CAN、以太网等方式发送到远程计算机或其它设备,并实现数据交互和共享。
三、系统设计在设计基于单片机的数据采集系统时,需要进行如下步骤:1.选择合适的单片机:比较常用的单片机有STC、AVR、PIC、ARM 等,需根据具体需要进行选型。
2.设计信号调理电路:选择合适的电路元件(如运放、滤波电容、电阻等),进行电路设计和仿真,需要考虑到信号质量、成本和体积等因素。
3.编写单片机程序:根据需要,编写适合的程序,实现对信号的采集、处理、存储和通信等功能。
4.调试和测试:对完成的数据采集系统进行调试和测试,查看系统的稳定性、精度和响应时间等指标是否达到要求。
四、应用案例基于单片机的数据采集系统,广泛应用于自动化控制、实验室测量、环境监测和智能家居等领域,如温度、湿度、光照、气压和土壤含水量等的监测等。
例如,在环境监测中,基于单片机的数据采集系统可以采集空气质量、气压、温度、湿度等多项指标数据,通过数据分析和处理,提供科学依据和决策支持,实现环境保护和生态安全等目标。
《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文
![《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文](https://img.taocdn.com/s3/m/831eb2a00342a8956bec0975f46527d3240ca6dc.png)
《基于单片机和LabVIEW的多路数据采集系统设计》篇一一、引言在现代化工业和科技应用中,数据采集扮演着举足轻重的角色。
为了满足多路数据的高效、准确采集需求,本文提出了一种基于单片机和LabVIEW的多路数据采集系统设计。
该系统设计旨在实现多通道、高精度的数据采集,为工业自动化、科研实验等领域提供可靠的解决方案。
二、系统设计概述本系统设计以单片机为核心控制器,结合LabVIEW软件进行数据采集、处理和显示。
系统采用模块化设计,包括数据采集模块、数据处理模块、数据传输模块以及LabVIEW上位机显示模块。
通过各模块的协同工作,实现多路数据的实时采集和监控。
三、硬件设计1. 单片机选型及配置系统采用高性能单片机作为核心控制器,具有高速运算、低功耗等特点。
单片机配置包括时钟电路、复位电路、存储器等,以满足系统运行需求。
2. 数据采集模块设计数据采集模块负责从传感器中获取数据。
本系统采用多路复用技术,实现多个传感器数据的并行采集。
同时,采用高精度ADC(模数转换器)对传感器数据进行转换,以保证数据精度。
3. 数据传输模块设计数据传输模块负责将采集到的数据传输至单片机。
本系统采用串口通信或SPI通信等方式进行数据传输,以保证数据传输的稳定性和实时性。
四、软件设计1. 单片机程序设计单片机程序采用C语言编写,实现对传感器数据的采集、处理和传输等功能。
程序采用中断方式接收数据,避免因主程序繁忙而导致的漏采现象。
2. LabVIEW上位机程序设计LabVIEW是一种基于图形化编程的语言,适用于数据采集系统的上位机程序设计。
本系统采用LabVIEW编写上位机程序,实现对数据的实时显示、存储和分析等功能。
同时,LabVIEW程序还具有友好的人机交互界面,方便用户进行操作和监控。
五、系统实现及测试1. 系统实现根据硬件和软件设计,完成多路数据采集系统的搭建和调试。
通过实际测试,验证系统的稳定性和可靠性。
2. 系统测试对系统进行实际测试,包括多路数据采集的准确性、实时性以及系统的稳定性等方面。
浅谈基于单片机的数据采集系统
![浅谈基于单片机的数据采集系统](https://img.taocdn.com/s3/m/b7cb346e9b6648d7c1c74620.png)
科 技论坛 【I
浅谈基于单片机 的数据 采集系统
彭 文广 张 秀 红
( 、 药集 团有 限公 司 , 龙 江 哈 尔滨 10 0 2 哈 药 集 团 中药 二 厂, 江 哈 尔滨 10 1 ) 1哈 黑 5 00 、 黑龙 50 0
摘 要: 随着科学技 术的发展, 数据采集技 术被普遍认 为是现代科学研 究和技 术发展的一个重要课题 , 它在工业测控以及试验 室研究方面的应 用非常广泛。一方面, 数据采集 系统向着高精度、 高速度 、 稳定可靠和集成化的方向发展 ; 另一方面, 数据采集系统也向着实时系统方向发展 , 特别是 逻 辑 和 时序 要 求 比较 高的 系统 。 文设 计 了一 款 基 于 串 口的数 据 采 集 系统 , 本 包括 上 位机 软 件 与 下住 机 的 硬 件 电路 。 适 用 于 中小规 模 的 数据 采 集 任 其
务 与后 期 的 数据 处 理 。 关 键 词 : 据 采 集 系统 : 通 信 : 片机 数 串行 单
2 / . A D转换 电路 2 数据采 集系统 中的通 讯方式 一般 采用 串 【的 J . 表 1 串 口线 的信 号 内容 方式, 它也是目前已经应用的最普遍的通信方式. . 模 数转 换 AD 0 0 ,一个 8 C84 位 1 数据采集系统中的发展趋势 全 MO S中速 AD 转 换器 、它是 逐次 / 1 国外发展趋 势 . 1 逼近式 AD 转换 器 , 以和单 片机直 / 可 串行接 口技术在国外已经得到 rJ泛的应 接连接, ‘ 单通道输入。 需要注意的是, 用 ,在 工业 自动化 方面也是 应用最早 的通讯 方式 , AD 0 0 工作时必须有工作时钟 , C84 1: 串行通信是一种把二进制数据按位传送的通信 方 作 时 钟 可 以直 接 在 C K N 与 C K LI LR 式 , 以它所需 要的传 输线 条数 极少 , 别适 用于 两 支引脚 外接 R 所 特 C电路 产生 频率 。 分级、 分层和分布式数据采集系统以及远程通信。 A C 84存 C KI C K D 00 L N和 L R两 支引 1 2国内数 据采 集与 串行 通信 技 术 的发展 趋 脚外 接 R C电路产 生频 率时 ,其转 换 . 势 肘问大约 为 11 。 以在本系统 中 /. 1 所 RC 随着 串行 接 口的发 展 ,S ( nvr lA r l 的 A C 84的外接 电阻为 1K、 U B U i s ei ea a D 00 0 电容 Bs u, 通用串行总线) 以其支持热插拔 、 即插即用、 接 为 10f 转换频 率就 大约是 , 换 5p, 其 转 口体积小巧和低成本等优点受到越来越多的硬件 时 间 约 为 15 s 这 些 参 数 是 编 写 . u。 6 厂商的支持。随着 U B .版本的发布, S S2 0 U B将会 AI采样 程序 的重要依据 。 / ) 温 度显示 电路 越来越流行, 现今已经成为一种新的标准接u。 2硬 件 电晓 营 十 体 D 1 B 0与 A 8 S 2 S 2 8 T 9 5 的连接 基 于串 口的数 据采集系 统在硬什 电路 上采用 因为足“ 一线总线”使用方法简单 , 的一 片 A 8 S 2 T 9 5 主控 芯片 ,它主要 负责处理 AD 单 片机的一 个脚来读取 数据和写人 指令 / 转换器送来的信号、 实时数据显示和把这些数据通 的是 连接 地线 和电源线就 可以使用 , 2 示。 如图 所 <== DS 8 2 1B 0 过串口送给上位机进行进一步的处理, 并且负责执 2 S 2 2 口原 理 ,R 一3 接 4 行上位机的通过串口 传送来的指令, 它是整个系统 串行通讯时,要求通讯双方都采用一个标 的控制核心, 如图 1 所示。其中芯片AD 0 0 C 84主 准接 口 , 同的 设备可 以方便地 连接起来 进行通 使不 VCC GND 要负责把传惑踹 羞 来的溪拟信号 转换成 信号, 讨 。R 一 3一 t S 2 2 C接 口( 又称 EA R 一 3 一: 目前 I S 2 2 (是 l 图 2 D 1 B 0与 AT 9 5 S82 8 S 2的连 接 并送到主窿芯片 A 8 S 2 T 9 5 中进行处理。进而把数 最常用 的一种 串行通汛 接 。在 R 一 3 一 中任 S22C 据显示在 L M显示屏上 ,数据是由 A 8 S 2的 何 一 言 C T95 条f号线的电压均为负逻辑关系 即: , 逻辑“” 这 个继 电器可 以控制某个 电动机 ,让其停 止工 作 ; l P 2口通过并行的方式传送到 L M的。L M是作 为 一 到 一 5 ; 逻 辑 ‘ 为 + 到 + 5 或是 去控 制某 个加热 设备 ,进而 形成 —个恒 温 系 C C 3 1V ’ 3 lV。 这 为—个单独的显示硬件, 它之所以能够将外来的数 R 一 3 一 S 2 2 C最常用的 9条引线的信号内容如下表 统 , 就矍取 决于使用 者的实际月 途了。 3结论 据转换成文字显示出来, 是通过写存单片机中的硬 1 示 、 所 本文提出了一种以单片机为核心的集散型数 件驱动程序和控制程序来实现的。 温度检测模块采 2 5液晶 示部分 电路 用了数字式温度传感器 D IB 0 S 8 2 ,它行只需要一 奉 l系统 的娃示部分 采H 了一 块液 晶显示模块 据采集系统。下位机以单片机为核J啦 制芯片, j 0 完 在总体设 条线 与 单片机 进行通讯 ,节约 了单 片机的 1 1 米实现, / I。 O- 考虑到数码管耗电量大、 显示的字符单一 成了从数据采集到数据显示和通信任务。 而且外部无需再连接任何器件, 就连电源也可以从 而被否定 r。 : 根据数据采集系统的基本原理进行了模块化 本液晶的型号为OC J2 3 C 3其 计 j, M 12 2 一 , 数据信号线上取得 ,转换的精度为0 : 5 ,量程为 内部 自带 汉字 库 , 略 了汉字 取模 的过程 , 与 的设 计思想 ,使 整体 的制作 以及调试 过程 进行 顺 省 实现 利 5 %至 + 2 % , 在硬件方 面开销最 小 的温 度 单片机 连接 简 单化 。 5 15 它是 参考文献 采集模块。 2 报警 电路硬 件 . 6 2 最 小系统 设计 l 报警 部分的主 要硬件就 是 蜂呜器 ,还有 f阿  ̄. C 5 l MS - 1系列单片机应用系统设计 北 单片机正 常工作 , 完成最 小系统 的搭建 , 两个高亮 的蓝色 发光二极管 。 要注意 的就 是蜂鸣 京 : 需要 北京舨_ 空大学 出版社 ,9 31-3 天航 13 :2 1. 需 包括了: 芯片供电电源、复位电路和和振荡电路 器的电流需求比较大, 虽然采片 已经是 5 j V的小蜂 [It fc gtesr l S 3 o[BO l td 2 ne ai h e aR 2 2P nE /E,ht / ] r n i/ l b o g lg og ri s i . m, 0 6 & c s le a h Ame 公司A 8 S2单片机 , t l T 95 一种低功耗、 高性能 鸣器了, 但是单片机的驱动能力还是不能直接的就  ̄ w.ey n do i.r/e a/ r 1 t 2 0 , C OS8位微 控制器 , M 具有 8 的在系统 可编 程闪 f 响起来 。这只需接 个达林顿管 就 可以 , 鼹个 K 张友德. 单片微型计算杌原理、 应用与实 验嗍 上 它 朋 海 : 海复旦 大学 出版社 ,9 28 1. 上 19 :-2 存存储器。实现最小系统在 MC U上的引脚连接 极 管 可以代 替 为 :c 4 脚 臌 + V电源 。 s 2 脚 讨 地。 E V c( o 5 V s( 0 妾 A 2 继 电保护部 分 . 7 『王志宏. 4 l 单片机与 P C机的 串口通讯 北京: 现 20 :52 / p 3 脚) + V电源 , V p(1 : 5 接 这样才町以使用片内的 设计电路是一个用 5 V米控制 20 2 V的继电 代电子技 术 出版社 .0 02- 7 5 I _ s l ai V u c 北 京: R M。 T L ( 脚 ) T L ( 脚 讨 晶振 再配合 器 , O .X A I 9 、X A 21 1 8 妾 控制芯片还 是 A ’ S 2 1 9 5 。一个数据采 集系统 需 I范 ̄ . i a B s 与分布式监 控 系统F 8 接两个小电容 , 电容经典值是 3 P , 0 F品振的值最大 要直接对数据进行判断进而做出最 }的反映, 2 0. 失 首先 清华大学出版社,0 2 可以选择 3 MH , 中要 川到 串 口通 讯 , 了产 可能要 抛、该是断电保护, 3 Z 系统 为 保障整个系统不至于 生标准的波特率选用 1. 9 MH 0 2 Z的晶振较为合 由于过大的冲击而损坏。 15 这里需要注意的和蜂呜器 理 。R TV D9脚 )单片机 复位脚 , 人离 电平单 样 , 要两个 极 管来做 电流的放 大。 ! 序 中 S /P ( : 输 需 程 片机 复位 , 应电路起 到了开关作 川。 相 把 与报警 音 同时触发 ,这也 符 合 一般盼 隋况。 } Βιβλιοθήκη f j 一
基于STM32单片机的多路数据采集系统设计毕业设计
![基于STM32单片机的多路数据采集系统设计毕业设计](https://img.taocdn.com/s3/m/37ad4b9e5122aaea998fcc22bcd126fff7055d0e.png)
基于STM32单片机的多路数据采集系统设计毕业设计摘要:本篇设计主要以STM32单片机为核心,设计了一个多路数据采集系统。
该系统能够实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
设计中使用了STM32单片机的AD转换功能实现模拟量信号的采集,使用GPIO口实现数字量信号的采集,通过串口与上位机进行通信。
经过实验验证,该系统能够稳定地采集多路数据,并实现远程数据传输和控制功能,具有较高的可靠性和实用性。
关键词:STM32单片机,数据采集,模拟量信号,数字量信号,上位机通信一、引言随着科技的发展,数据采集系统在工业控制、环境监测、生物医学等领域得到了广泛的应用。
数据采集系统可以将现实世界中的模拟量信号和数字量信号转换为数字信号,并进行处理和存储。
针对这一需求,本文设计了一个基于STM32单片机的多路数据采集系统。
二、设计思路本系统的设计思路是通过STM32单片机实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
该系统采用了模块化设计方法,将系统分为采集模块、显示模块和通信模块。
1.采集模块采集模块通过STM32单片机的AD转换功能实现模拟量信号的采集,通过GPIO口实现数字量信号的采集。
通过在程序中设置采样频率和采样精度,可以对不同类型的信号进行稳定和准确的采集。
2.显示模块显示模块通过LCD显示屏显示采集到的数据。
通过程序设计,可以实现数据的实时显示和曲线绘制,使得用户可以直观地观察到采集数据的变化。
3.通信模块通信模块通过串口与上位机进行通信。
上位机通过串口发送控制命令给STM32单片机,实现对系统的远程控制。
同时,STM32单片机可以将采集到的数据通过串口发送给上位机,实现数据的远程传输。
三、实验结果与分析通过实验验证,本系统能够稳定地采集多路模拟量和数字量信号,并通过串口与上位机进行通信。
系统能够将采集到的数据实时显示在LCD屏幕上,并通过串口传输给上位机。
基于STM32单片机的数据采集系统
![基于STM32单片机的数据采集系统](https://img.taocdn.com/s3/m/08c1a328a32d7375a41780fa.png)
五、设计安卓移动端APP软件,能接受单片机通过蓝牙模块上传的数据,并提取出数据帧中的有效数据显示在设备界面中。显示内容包括:4个LED灯状态、4个按键状态、AD采样数据或采样电压值、陀螺仪6轴原始数据及解算姿态角度。
数据采集和上传任务:
按键处理任务:
显示任务:
初始启动LOGO姓名学号功能在显示任务中实现,之后进入界面选择的循环程序中等待按键选择。
功能1流水灯在按键任务中实现,调用RunLsd()函数;状态和数据显示在DrawScreen1函数中实现;
功能2在DrawScreen2中实现,并使用航向角为参数调用SetPWMLight函数调节LED亮度;
5.按键×4,加1个复位按键
6.精密可调电阻10KΩ
7.IIC接口6轴陀螺仪传感器:MPU-6050
8.IIC接口0.96寸128x64点阵单色OLED
9.HC05蓝牙2.0通信模块
系统框图:
通过AD软件绘制原理图:
软件系统:
1.STM32开发的集成开发环境(IDE):KEIL(ARM)公司提供的MDK
二、功能1为系统测试界面,4个LED灯显示流水灯,OLED屏以图形方式显示测试内容,内容包括4个LED灯状态、4个按键状态、AD采样数据、陀螺仪传感器原始数据。单页显示不下时通过K1、K2上下翻页。LED与按键状态可用图形或图片进行显示,AD采样数据以及MPU6050数据可使用柱状图结合文字显示。
三、功能2为陀螺仪姿态解算界面,OLED显示内容为解算出的MPU6050姿态角数据(pitch俯仰角、roll横滚角和yaw航向角),精确0.1°,并能以其中的某个角度控制4个LED灯的亮度(100%-0%亮度可调)。
基于单片机的多路数据采集系统设计(3章)
![基于单片机的多路数据采集系统设计(3章)](https://img.taocdn.com/s3/m/1fd1c29571fe910ef12df8d4.png)
基于单片机的多路数据采集系统设计摘要数据采集是指从带有模拟、数字被测单元的传感器或者其他设备中对非电量或电量信号进行自动采集,再送到上位机中进行分析和处理。
近年来,众人时刻关注着数据采集及其应用的发展和市场形势。
广大人们的关注使得数据采集系统的发展有了质的飞跃,它被广泛用于各种数字市场。
本文介绍了数据采集的相关概念和基本原理,设计了基于STM32F407的多路数据采集系统的硬件和软件的实现方法及实现过程,并经过调试完成其主要功能和主要技术指标。
硬件部分包括:主控电路、信号采集处理电路、TFT液晶显示电路、SD 卡存储电路、串口通讯电路。
实现过程是以STM32F407为控制核心,通过模数转换器,实时对输入信号进行采样,得到一串数据流,通过控制器的处理实现数据的采集和显示。
软件部分包括:信号采集分析算法、嵌入式操作系统移植、UC-GUI人机交互界面设计、文件管理系统移植。
主要实现了对采集数据的存储和分析,频率和幅值的计算,液晶屏的控制和界面显示。
程序是在keil uVision的集成开发环境中用C语言写成的,编程具有模块化的特点,因此可读性比较高,维护成本较低。
最后,用Altium designer(DXP)设计了数据采集系统的原理图,并制作了PCB电路板。
在实验室里制作了数据采集系统并进行了系统调试,经过调试,达到了所应该实现的功能和技术指标。
关键词:多路数据采集,STM32F407,液晶显示MULTI-CHANNEL DATA ACQUISITION SYSTEMBASED ON SINGLE CHIP DESIGNABSTRACTData acquisition is the automatic acquisition of non electric or electric quantity signals from sensors and other devices, such as analog and digital.In recent years, data acquisition and its application has gradually become the focus of attention. Therefore, the data acquisition system has been rapid development, it is widely used in various fields.The software part includes: signal acquisition and the embedded operating system transplant, UC-GUI man-machine interface design. Mainly realizes the storage and analysis of the collected data, calculate the frequency and am plitude of the LCD screen display and control interface. The program is written by C language in the integrated development environment KEIL uVision and modular programming makes the program readable and easy maintenance features Finally, using designer Altium to design and manufacture the digital oscilloscope circuit board PCB. In the laboratory, the digital oscilloscope has been made and the system has been debugged. After debugging, it has achieved the function and technical index that should be realized.KEY WORDS: Multi-channel data acquisition,STM32F407,liquid-crystal display目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1研究背景及其目的意义 (1)1.2国内外研究现状 (2)1.3研究的主要内容 (2)2系统总体方案设计 (4)2.1系统总体设计方案 (4)2.2系统总体框图 (4)2.3硬件系统方案设计 (4)2.3.1单片机的选择 (5)2.3.2信号衰减和放大电路 (5)2.3.3A/D模数转换器的选择 (6)2.3.4显示部分 (6)2.4软件系统方案设计 (6)2.5本章小结 (7)3硬件电路设计 (8)3.1电源部分 (8)3.2信号调理部分 (10)3.3信号采样 (12)3.4系统控制部分 (12)3.5本章小结 (14)1绪论1.1研究背景及其目的意义最近几年,众人时刻关注着数据采集及其应用的发展和市场形势。
(完整版)基于单片机的模拟量数据采集系统设计本科毕业设计
![(完整版)基于单片机的模拟量数据采集系统设计本科毕业设计](https://img.taocdn.com/s3/m/cc686ee6700abb68a982fb80.png)
基于单片机的模拟量数据采集系统设计摘要随着计算机技术的飞速发展和普及,数据采集系统也得到了广泛的应用。
微机在通用自动化、信息处理、信息系统等方面得到广泛的应用。
在冶金、化工、医疗等应用场合,需要对很多信号进行采集,预处理,暂存和对上位机的传输。
再由上位机对数据进行分析处理。
本文设计的模拟量采集系统采用上位机、下位机通信方式运行。
由上位机实现对下位机的控制和数据采集的显示,下位机实现模拟量的采集过程。
下位机硬件设计采用AT89C52单片机为控制核心,采用ADC0808将模拟量进行转化为数字量进行采集,完成了模拟量采集系统的硬件设计。
采用RS-232进行串口通信。
结果证明,该设计方法可行,实现了离散量采集系统的自动化,克服了传统数据采集的弊端,应用具有良好的前景和使用价值。
关键词:模拟量采集系统;单片机;通信AbstractAlong with the rapid development of computer technology and popularization, data acquisition system is also widely application. Microcomputer is widely applied in general automation, information processing and information system etc . Signal acquisition, pretreatment, temporary and PC transmission is needed by metallurgy, chemical, medical care and other applications。
The design is a discrete variables acquisition system with upper and lower operating mode. The PC machine controls the lower machine and display the date, and the lower machine realizes data collection. Hardware design of digital machines AT89C52 single-chip design Used for RS-232 serial communication, you can relay through the computer to control the realization of the bright lights out billiards control and manual control switch can monitor. The results proved that the design method is feasible to achieve a billiards automated agency management system to overcome the drawbacks of traditional management methods, the application system; communication目录1 绪论 (1)1.1 课题背景 (3)1.2 课题相关技术 (4)1.3 课题任务及要求 (9)1.4 课题内容及安排 (10)2 系统方案设计 (12)2.1 方案设计原则 (12)2.2 方案设计 (13)3 系统硬件设计与设备选型 (15)3.1 单片机模块 (15)3. 1.1 AT89C52介绍 (16)3.1.2 单片机最小系统 (27)3.2 AD转换模块 (30)3.2.1 AD转换 (30)3.2.2 ADC0808介绍 (30)3.3 输入模块 (35)3.4 串口模块 (36)3.5 电源模块 (41)3.6 设备选型 (43)4 系统软件设计与实现 (44)4.1 软件编程介绍 (45)4.2 系统软件方案设计 (48)4.2.1上位机设计部分 (48)4.2.2 下位机设计部分 (50)5 系统集成与调试 (51)5.1 Keil软件开发平台介绍 (51)5.2 调试分析 (52)5.3 调试步骤 (53)5.4 故障调试及解决方式 (54)5.5 联调结果 (55)结论 (56)社会经济效益分析 (57)参考文献 (59)致谢 (62)附录Ⅰ原理图 (64)附录Ⅱ元器件清单 (65)附录Ⅲ程序清单 (66)1 绪论目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
基于单片机技术的多功能数据采集系统的开发与实现
![基于单片机技术的多功能数据采集系统的开发与实现](https://img.taocdn.com/s3/m/a3297489e53a580216fcfe38.png)
要 :多 功能 数 据 采 集 系 统 ,采 用 Ke C 1 言 作 为 嵌 入 式 系 统 的编 程 语 言 ,采 用 片 上 系统 方 i5语 l
式 进 行 设 计 , 用 具 有 C 1单 片 机 内 核 的 AD C 3 作 为 系统 的核 心处 理 机 , 过 上 位 机 软 件 向处 使 5  ̄ 81 通 理 机 发 送 命 令 的方 式 实 现 采 集 通 道 的配 置 ,实 现 单 一 通 道 多 功 能采 集 的 目的 。该 系统 可提 供 8 个 采 集 通 道 ,其 中 4 模 拟 通 道 ,可 实 现 对 温 度 、湿 度 、气 压 等 要 素 的采 集 功 能 ,另 外 4个 数 字 通 个
2 1 通 道 选 择 电路 .
多功 能数 据采 集 系统 主要 由 3部分 组成 :基 于单 片机 的硬件 平 台 ,提供 系 统必 要 的硬 件设 备 支持 ;在 硬 件系 统 MC 中运 行 的嵌 入式 软 件 系 U 统 ,负 责完 成硬 件系 统 的运 行 配置及 通 讯 的具 体
通 道 选 择 电路 主要 采 用模 拟 开关 组 合 构 成 ,
选 择 C O 2芯 片作 为模 拟开 关 芯片 。 D4 5 D4 5 C 0 2芯
功能 ;终 端 软件 ,该 软件负 责对 运行 在 硬件 平 台
上 的嵌入 软件 发送 命令 ,完 成数 据采 集 器工 作模
式 和数据 采集 等功 能 。
外 4 通道 可完 成雨 量 的采集 。 个 2 硬 件 平台设 计 与实现
多功 能数据 采集 系 统硬件 平 台主要 由模 拟传 感 器 ( 压 、温 度 、湿 度 )接 口电路 、通道选 择 气 电路 、 量采 集接 口电路 、 雨 AD 转换 电路 、 片机 单 核 心及 复位 电路 、通 信 接 口电路及 外 围设 备 ( 计 算 机 和终端 软件 ) 等组 成 。
《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文
![《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文](https://img.taocdn.com/s3/m/32740c142a160b4e767f5acfa1c7aa00b52a9dd4.png)
《基于单片机和LabVIEW的多路数据采集系统设计》篇一一、引言随着科技的发展,多路数据采集系统在工业、医疗、环境监测等领域的应用越来越广泛。
为了满足多路数据的高效、准确采集需求,本文提出了一种基于单片机和LabVIEW的多路数据采集系统设计。
该系统设计旨在实现多路信号的同时采集、处理及实时监控,以适应复杂多变的应用环境。
二、系统概述本系统采用单片机作为核心控制器,结合LabVIEW软件进行数据采集和处理。
系统由多个传感器模块、单片机控制器、数据传输模块以及上位机软件组成。
传感器模块负责实时监测各种物理量,如温度、湿度、压力等,并将采集到的数据传输给单片机控制器。
单片机控制器对数据进行处理和存储,并通过数据传输模块将数据发送至上位机软件进行进一步的处理和显示。
三、硬件设计1. 传感器模块:传感器模块采用高精度、高稳定性的传感器,如温度传感器、湿度传感器等,实现对物理量的实时监测。
传感器模块的输出为数字信号或模拟信号,方便与单片机进行通信。
2. 单片机控制器:采用具有高速处理能力的单片机作为核心控制器,实现对数据的快速处理和存储。
单片机与传感器模块和数据传输模块进行通信,实现数据的实时采集和传输。
3. 数据传输模块:数据传输模块采用无线或有线的方式,将单片机控制器的数据传输至上位机软件。
无线传输方式具有灵活性高、安装方便等优点,但需要考虑信号干扰和传输距离的问题;有线传输方式则具有传输速度快、稳定性好等优点。
四、软件设计1. 单片机程序设计:单片机程序采用C语言编写,实现对传感器数据的实时采集、处理和存储。
同时,程序还需要与上位机软件进行通信,实现数据的实时传输。
2. LabVIEW程序设计:LabVIEW程序采用图形化编程语言编写,实现对单片机传输的数据进行实时处理和显示。
同时,LabVIEW程序还可以实现对数据的存储、分析和报警等功能。
五、系统实现1. 数据采集:传感器模块实时监测各种物理量,并将采集到的数据传输给单片机控制器。
基于STM32单片机的多路数据采集系统设计
![基于STM32单片机的多路数据采集系统设计](https://img.taocdn.com/s3/m/8baa478c0408763231126edb6f1aff00bed5700e.png)
基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。
基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。
本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。
设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。
其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。
2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。
其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。
具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。
-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。
-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。
-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。
实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。
在设计时要注意信号的良好地线与电源隔离。
2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。
(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。
(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。
通过ADC的DMA功能,实现数据的连续采集。
(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。
基于单片机的数据采集和无线数据传输系统设计
![基于单片机的数据采集和无线数据传输系统设计](https://img.taocdn.com/s3/m/1d48e5c5690203d8ce2f0066f5335a8102d266aa.png)
基于单片机的数据采集和无线数据传输系统设计一、本文概述随着信息技术的快速发展和物联网的广泛应用,数据采集和无线数据传输在各个领域都发挥着越来越重要的作用。
基于单片机的数据采集和无线数据传输系统设计,以其低成本、高效率、易扩展等特点,受到了广泛关注和应用。
本文旨在探讨基于单片机的数据采集和无线数据传输系统的设计原理、实现方法以及在实际应用中的优势与挑战。
本文将首先介绍系统的整体架构,包括数据采集模块、单片机处理模块和无线数据传输模块的设计。
然后,详细阐述各个模块的工作原理和实现技术,包括传感器选型、数据采集电路设计、单片机选型与编程、无线传输协议选择以及数据传输的稳定性与可靠性保障等。
本文还将分析该系统设计在实际应用中的性能表现,如数据传输速度、传输距离、功耗等,并通过具体案例展示其在环境监测、智能家居、工业自动化等领域的应用效果。
文章将总结该系统设计的优点与不足,并对未来发展方向进行展望,以期为相关领域的研究和实践提供有益的参考和启示。
二、单片机基础知识单片机(Microcontroller Unit,MCU)是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机具有体积小、功耗低、控制功能强、扩展灵活、抗干扰能力强、性价比高等一系列优点,因此在工业控制、智能仪表、汽车电子、通信设备、家用电器、航空航天等许多领域得到了广泛应用。
单片机按照其内部结构可以分为多种类型,例如8051系列、AVR 系列、PIC系列、ARM系列等。
每种类型的单片机都有其独特的指令集、架构和外设接口,因此在使用时需要了解其具体的特性和编程方法。
在数据采集和无线数据传输系统设计中,单片机通常作为核心控制器,负责数据的采集、处理、存储和传输。
通过编程,单片机可以控制外设进行数据采集,如使用ADC(模数转换器)将模拟信号转换为数字信号,或者使用传感器接口读取传感器的输出值。
基于单片机实现FBG传感器的数据采集
![基于单片机实现FBG传感器的数据采集](https://img.taocdn.com/s3/m/6f4f935554270722192e453610661ed9ad5155dd.png)
基于单片机实现FBG传感器的数据采集FBG传感器是一种利用光纤布拉格光栅(Fiber Bragg Grating,FBG)原理进行测量的传感器。
FBG传感器具有很高的灵敏度、抗干扰能力、多通道测量能力等特点,被广泛应用于温度、压力、应变等物理量的测量领域。
本文将基于单片机实现FBG传感器的数据采集过程,并通过代码说明实现的具体步骤。
一、系统设计基于单片机的FBG传感器数据采集系统主要由光纤传感器、光纤光栅测量装置、信号调理电路、单片机和显示设备等组成。
其中,光纤传感器将物理量转化为光学信号,光纤光栅测量装置将光学信号转化为电信号,信号调理电路对电信号进行放大和滤波处理,单片机负责采集和处理数据,显示设备用于显示结果。
二、采集电路设计在FBG传感器数据采集系统中,信号调理电路起到放大和滤波作用,以保证采集的信号质量。
常规的信号调理电路一般由放大器、滤波器和模数转换器等组成。
放大器部分采用差动放大器设计,以提高信噪比和抑制共模干扰。
滤波器部分采用低通滤波器设计,去除高频噪声。
三、单片机编程设计单片机负责采集和处理FBG传感器的数据。
在采集过程中,首先需要初始化ADC、串口和定时器等模块。
接着,设置合适的ADC参数,以达到适当的分辨率和采样速率。
然后,通过定时器中断来触发ADC的转换,将转换结果存储到相应的寄存器中。
在数据处理过程中,可以根据需要进行数据的滤波、校准、标定等处理。
滤波可以采用一些常用的滤波算法,如中值滤波、均值滤波等。
校准可以通过在标准条件下对FBG传感器进行校准,获得校准系数,并在数据处理中应用。
最后,将处理后的数据通过串口发送给上位机,或通过显示设备直接显示。
四、实验结果在实验中,我们采用了一款基于ARM Cortex-M系列单片机的开发板作为硬件平台,通过编写适配的软件代码实现了FBG传感器的数据采集。
实验结果表明,FBG传感器的数据可以准确采集,并且实验数据与标准值之间的误差很小。
基于STM32单片机的多路数据采集系统设计毕业设计
![基于STM32单片机的多路数据采集系统设计毕业设计](https://img.taocdn.com/s3/m/552a33e2d0f34693daef5ef7ba0d4a7303766c5d.png)
基于STM32单片机的多路数据采集系统设计毕业设计本文将设计一种基于STM32单片机的多路数据采集系统。
该系统可以实现多个输入信号的采集和处理,在电子仪器、自动化控制、工业检测等领域具有广泛的应用前景。
首先,我们需要选择合适的STM32单片机作为系统的核心处理器。
STM32系列单片机具有低功耗、高性能和丰富的外设资源等优点,非常适合用于嵌入式数据采集系统的设计。
在选取单片机时,要考虑到系统对于处理速度、存储容量和外设接口的需求,以及预算等因素。
其次,我们需要设计合适的外部电路来连接待采集的信号源。
常用的信号源包括温度传感器、光敏电阻、加速度传感器等。
我们可以使用适当的模拟电路将这些信号转换为STM32单片机能够接收的电平。
此外,还可以考虑使用模数转换芯片来实现对多路模拟信号的高速采集。
接下来,我们需要设计软件算法来对采集到的数据进行处理。
在数据采集系统中,常见的算法包括滤波、数据压缩、数据存储等。
通过滤波算法可以去除噪声,提高信号的质量;数据压缩可以减少数据存储和传输的空间;数据存储可以将采集到的数据保存在存储介质中以供后续分析。
最后,我们需要设计用户界面以便用户能够方便地操作系统。
可以使用LCD屏幕和按键等外设来实现用户界面的设计。
用户界面应该直观简洁,提供友好的操作和显示效果,方便用户进行数据采集和系统设置。
综上所述,基于STM32单片机的多路数据采集系统设计需要考虑到硬件电路和软件算法的设计,以及用户界面的设计。
通过合理的设计和实现,可以实现多路信号的高速采集、滤波处理和存储,为电子仪器、自动化控制和工业检测等领域提供可靠的数据支持。
基于单片机C8051的数据采集和控制系统设计
![基于单片机C8051的数据采集和控制系统设计](https://img.taocdn.com/s3/m/fed20f30a66e58fafab069dc5022aaea998f4109.png)
基于单片机C8051的数据采集和控制系统设计本文将介绍如何使用基于单片机C8051的数据采集和控制系统。
此系统适用于需要实时采集和处理数据并进行控制的应用,如机器人控制、环境监测等。
1. 概述基于单片机C8051的数据采集和控制系统由硬件和软件两部分组成。
硬件包括主控板、传感器和执行器等。
软件则是由C 语言编写,用于采集、处理数据和进行相关控制。
2. 系统设计在硬件方面,主控板使用C8051F系列单片机,该系列具有丰富的外设资源,包括模数转换器、计时器、USART等,可以满足数据采集和控制的需求。
传感器和执行器使用数字型设备,其输出信号可直接与单片机接口对接,便于数据采集和控制。
在软件方面,系统采用基于单片机的嵌入式开发环境Keil C51进行编写。
具体实现上,采用中断方式对传感器数据进行采集,并通过串口将数据传送到计算机端进行处理和显示。
同时,通过PWM信号控制执行器的工作状态,实现对执行器的控制。
3. 系统特点基于单片机C8051的数据采集和控制系统具有以下特点:a. 系统响应速度快,采集数据和进行相关控制能够以高速度进行。
b. 通过串口与计算机连接,便于数据传输和显示。
c. 可以进行实时控制,通过PWM信号控制执行器的工作状态,实现对执行器的控制。
4. 应用领域基于单片机C8051的数据采集和控制系统适用于各种需要实时采集和处理数据并进行控制的应用。
例如机器人控制、工业自动化、环境监测等领域。
5. 结论本文介绍了基于单片机C8051的数据采集和控制系统的设计方案。
该系统采集速度快、控制可靠,并可应用于各种实时采集和处理数据的应用领域。
基于单片机的实时数据采集系统设计
![基于单片机的实时数据采集系统设计](https://img.taocdn.com/s3/m/349d15553b3567ec102d8ae4.png)
基于单片机的实时数据采集系统设计刘松文(株洲职业技术学院,湖南株洲412001)应用科技哺要】单片机I的运算能力强有力,遥算速度快,I/O接口功能完善,抗干扰能力强。
可靠性高,对于现场数据采集处理时。
它仍然是现场数据采集器的核心元件之一。
陕麓词】数据采集;串口;单片机;M SC om m单片机的运算能力强有力,运算速度快,I/O接口功能完善,抗干扰能力强,可靠性高,对于现场数据采集处理时,它仍然是现场数据采集器的核心元件之一。
当现场测试点较为分散时,通常以串行通信方式将数据采集连接成网络,主机采用主从访问方式,实现多点的数据采集。
这种方案在数据传输量较小且频率较高、采样周期较长时,可以较好地完成多点数据采集处理任务。
但是,当现场信号频率较高时,根据香农定理可知,采样频率也应提高,这样在单位时间内的数据传输量也相应增大,若采用这种主从式网络进行多点采集,实时性难以满足,甚至会造成系统崩溃。
本文提出了一种基于单片机的并行通讯方式进行处理,然后将处理结果以串行方式通过RS485口送入监控主机。
1分布式数据采集系统的结构图1为本文设计的主从式数据采集处理系统。
I冬|l上从式数据采集处理系统该方案较好地解决了采集系统的实时性问题。
工作在现场的数据采集单元仍然是以C PU为核心的智能单元,实现对现场模拟量(比如水分、温度等)或现场状态的检测和采集,经过相应的预处理如滤波、编码,以串行通信方式发给数据处理单元。
数据处理单元与每个采集单元之间以点对点的方式收发数据,每一路数据有一个独立的收发单片机(89C51),以并行传送方式与数据处理单元主处理器(89C52)进行信息交换。
由于各路数据收发独立,并且并行传达时间很短(一般为几十个微秒),由前端数据采集单元的数据到数据处理单元的传送时间主要取决于串行通信所用的时间,以9600B ps传送7个字节数据的时间为7X10X1/9600=7.292m s,各路传送并工作,主处理器几乎可以同时获取数据,当数据采集器采样间隔不低于20m s时,该方案的数据处理具有较好的实时性。
基于51单片机的温度数据采集系统
![基于51单片机的温度数据采集系统](https://img.taocdn.com/s3/m/f30d795e87c24028915fc3e8.png)
8 | 电子制作 2018年11月格的,比如:工厂在生产某一种产品时温度要求范围在25到30摄氏度之间,只有在这个温度范围内才可以生产出合格的产品,还有在进行某些科研实验时对温度的要求就会更加严格,有的精确到1摄氏度以内,甚至有的精确到0.5摄氏度以内。
因此我想设计一个“电子温度计”,基本功能是对温度的采集与显示。
在温度采集的设计上必须要A/D 转换,也就是将模拟信号转化为数字信号,因此我选择了DS18B20温度传感器模块,该模块不仅可以对温度进行实时测控,并且具有较高的灵敏度。
在数据的显示方面我选择了LCD1602显示模块,整个系统采用STC89C52单片机控制。
本设计在Altium Designer 上画出原理图,然后通过热转印制作PCB 板,完成硬件部分。
此次设计在大量科学知识的支持下具有较高的可行性和实用性。
1 系统工作原理该系统是在C 语言编程以及51单片机知识为基础上进行设计的,同时采用了DS18B20温度传感器模块以及LCD1602显示模块,利用KEIL 软件进行软件编程,将编写好的程序录入51单片机中,在51单片机的控制下实现温度数据的采集。
图1 系统整体结构框图整个实时数据采集系统满足以下功能指标:线和表格中。
2 硬件系统设计图2 总体系统结构此系统以STC89C52单片机为控制核心,采用了数字温度传感器模块DS18B20,该模块将采集到的温度数据转化为数字信号,并将信号传送给单片机,单片机处理数据后,通过LCD1602液晶显示器将温度显示出来。
在整个作品上首先提到的是硬件系统的设计,然后就是各个模块的工作原理以及工作特点,详细介绍系统的硬件设计,在给出系统的连接图,通过PROTEL 99SE 进行系统电路原理图的绘制,生成相应的PCB 板,并分析系统的工作原理,在软件方面对整体和各个模块的程序进行设计,在KEIL 中进行编写,在编写过程中如果出现理论错误,系统会给与提示,编程结束后也可手动调试来改正错误,或者修改程序功能。
基于单片机实现数据采集的设计
![基于单片机实现数据采集的设计](https://img.taocdn.com/s3/m/117555b7f01dc281e43af096.png)
基于单片机实现数据采集的设计摘要:本论文的目的就是设计实现一个具有一定实用性的实时数据采集系统。
本文介绍了基于单片机的数据采集的硬件设计和软件设计。
数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有非常重要的作用。
数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机AT89C51 来实现,硬件部分是以单片机为核心,还包括A/D 模数转换模块,显示模块,和串行接口电路。
本系统能够对8 路模拟量,8 路开关量和1 路脉冲量进行数据采集。
被测数据通过TLC0838 进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过串行口MAX232 传输到上位机,由上位机负责数据的接受、处理和显示,并用LCD 显示器来显示所采集的结果。
对脉冲量进行采集时,通过施密特触发器进行整形后再送入单片机。
本文对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。
关键词:数据采集AT89C51 单片机TLC0838 MAX232TP274 :A :1003-9082 (2017) 02-0298-01前言数据采集,又称数据获取,是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。
数据采集技术广泛应用在各个领域。
近年来,数据采集及其应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,它可以广泛的应用于各种领域。
本文设计的数据采集系统,它的主要功能是完成数据采集、处理、显示、控制以及与PC 机之间的通信等。
在该系统中需要将模拟量转换为数据量,而A/D 是将模拟量转换为数字量的器件,他需要考虑的指标有:分辨率、转换时间、转换误差等等。
而单片机是该系统的基本的微处理系统,它完成数据读取、处理及逻辑控制,数据传输等一系列的任务。
本系统对数据采集系统体系结构及功能进行分析,设计并实现采用单片机为核心,扩展电源电路、复位电路、LCD 接口电路等,并配有标准RS-232 串行通信接口。
基于MSP430单片机的实时数据采集系统设计
![基于MSP430单片机的实时数据采集系统设计](https://img.taocdn.com/s3/m/2aab6acc6137ee06eff918ab.png)
《 计量与漫 试技 拳》 8 8年 第3 4 2O 5卷第 1 0期
由 R1 0UT 送 到 单 片 机 的 UT D 。这 就 是 上 位 机 与 X O MS 4 0单 片机 通讯 的回路 。 P3
2 系统 的软件 设计
本 次实验 A 1 钟 源 选 择 为 S L DC 2时 MC K=8MIz -, I 采用单通道单次转换 模式。限于篇 幅,仅给 出 A C 2 D 1 初始化 子 程序 :
由 U X 0出来输入到 MA 22的 T I T D X3 1N脚 ,转换成 ± 1V 的信 号 由 T O T 送 到 通 讯 标 准 接 头 的 2脚 5 1U ( ) R ,±1V的信号 由通讯标准接头的 3脚 ( )) 5 ]( ) r【 出来输入到 MA 22的 R I X3 IN脚 ,转换成 ±1V的信号 5
张 小琴 等 :基 于 MS 4 0单片枫 的实对数据采集 系统设诗 P3
基 于 MS 4 0单 片 机 的 实 时数 据 采集 系统 设 计 P3
Da a Re t al— tme Co lc i g S se Ba e n M SP43 n l i le tn y tm s d o 0 Si g eChi p
12 串口通信接 口电路设计 . 与计算机 的通信采用串口异步通信 ,R 22 S3 协议 的 转换 电 平 。下 面 介 绍 一 下 R 2 2协 议 。 本 系 统 采 用 S3 MA 22 X 3 芯片实现单片机与计算机接 口的转换 ,其 中在 管脚 C +、C 一、C 1 1 2+、C 2一、V+和 V一处 分 别 放 置 0 1 的电容实现充 电作用 ,以满 足相应 的充 电泵 . 的要 求 。管 脚 TI T、T1N、R OUT 和 R I 分 别 OU I I 1N 是 RS3 换 的输 入 与输 出脚 ,实 现 单 片机 的 1 电 22转 ] 平与上 位机 的接 口电平 的转换 。为减小 输入 端受 到 的干
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机课程设计报告题目:数据采集系统(一)设计任务1. 采用8051和ADC0809构成一个8通道数据采集系统。
能够顺序采集各个通道的信号。
2. 先利用A/D转化器对各路电压进行采样,得到相应数字量,再按数字量与模拟量成正比关系运算得到相应的模拟电压值,然后将模拟量通过显示器显示出来。
3. 采集信号的动态范围:0~5V。
每个通道的采样速率:100 SPS。
4.要求四位LED数码管上轮流显示或单路选择显示,测试最小分辨率为0.019V,测量误差为± 0.02V。
5.利用单片机仿真器,将采样数据送入单片机70H~77H存储单元。
6.编写相应的单片机采集程序,到达规定的性能。
(二)设计方案硬件选择:89C51,ADC0809,电源,单片机仿真器,LED,电位器,RAM,74LS02,开关K1K2。
接口芯片:74LS244驱动及四个共阳极的LED数码管软件部分:1测量电压值最大是5V,显示最大值为5V。
2使用89C51单片机,6MH晶振,P0口读入A/D值,P2口为A/D转换控制口。
3采用T0定时100uS来产生5分钟来进行数据采集,以下为主要芯片的简要介绍:AD0809引脚图1、AD0809 的逻辑结构ADC0809 是8 位逐次逼近型A/D转换器。
它由一个8路模拟开关、一个地址锁存译码器、一个A/D 转换器和一个三态输出锁存器组成(见图1)。
多路开关可选通8个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。
三态输出锁器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。
2、AD0809 的工作原理IN0-IN7:8 条模拟量输入通道ADC0809 对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4条ALE 为地址锁存允许输入线,高电平有效。
当ALE线为高电平时,地址锁存与译码器将A,B,C 三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。
A,B 和C 为地址输入线,用于选通IN0-IN7 上的一路模拟量输入。
通道选择表如下表所示。
C B A 选择的通道0 0 0 IN0 0 0 1 IN1 0 1 0 IN2 0 1 1 IN3 1 0 0 IN4 1 0 1 IN5 1 1 0 IN6 1 1 1 IN7 数字量输出及控制线:11 条ST 为转换启动信号。
当ST 上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D 转换;在转换期间,ST 应保持低电平。
EOC 为转换结束信号。
当EOC 为高电平时,表明转换结束;否则,表明正在进行A/D 转换。
OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。
OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。
D7-D0 为数字量输出线。
CLK为时钟输入信号线。
因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF(-)为参考电压输入。
3 、ADC0809 应用说明(1)ADC0809 内部带有输出锁存器,可以与A T89S51 单片机直接相连。
(2)初始化时,使ST 和OE信号全为低电平。
(3)送要转换的哪一通道的地址到A,B,C 端口上。
(4)在ST 端给出一个至少有100ns 宽的正脉冲信号。
(5)是否转换完毕,我们根据EOC 信号来判断。
(6)当EOC变为高电平时,这时给OE 为高电平,转换的数据就输出给单片机了。
4、AD0809 的应用了解完A/D 转换芯片,下面我们以图2 为例来完成它的程序设计。
电路说明:CLK:时钟输入信号,0809的时钟频率范围在10~1200kHz ,典型值为640kHz 。
1.数据采集系统电路图:图3 ADC0809时序图ADC0809是带有8:1多路模拟开关的8位A/D 转换芯片,所以它可有8个模拟量的输入端,由芯片的A ,B ,C 三个引脚来选择模拟通道中的一个。
A ,B ,C 三端分别与8051的P1.0~P1.2相接。
地址锁存信号(ALE)和启动转换信号(START ),由P2.7和/WR 或非得到。
输出允许,由P2.7和/RD 或非得到。
时钟信号,可有8051的ALE 输出得到,不过当采用6M 晶振时,应该先进行二分频,以满足ADC0809的时钟信号必须小于640K 的要求。
(三)实验程序 ORG 0000HLJMP START START: CLR A MOV P2,A MOV R0,#70H MOV R2,#0DH LOOPMEM: MOV @R0,A INC R0DJNZ R2,LOOPMEM MOV 20H,#00H ;00H 位在20H 字节中 MOV A,#0FFHMOV P0,A ;数据口 MOV P1,A ;段码口 MOV P3,A ;字位口MAIN: LCALL TEST ;调用A/D 转换程序 LCALL DISPLAY ;调用显示程序 ;显示子程序DISPLAY: JB 00H,DISP11 ;为1跳DISP11 MOV R3,#08H ;00H 位=0循环显示 MOV R0,#70H ;首地址 MOV 7BH,#00H ;选中0通道 DISLOOP1: LCALL TUNBCD MOV R2,#0FFHD 0-7A B C OESTART ALE CLOCK74LS740202P 0.1-P 0.7P 2.0P 2.1P 2.2/RDP 2.7/WR ALE80510809Vref-Vref+VCCIN0IN7...EOC P 1.0图4 系统电路图DISLOOP2: LCALL DISPLCALL KEYWORK1DJNZ R2,DISLOOP2 ;延时INC R0INC 7BH ;循环选中8通道DJNZ R3,DISLOOP1RETDISP11: MOV A,7BH ;00H位=1跳来,实现单路显示SUBB A,#01HMOV 7BH,AADD A,#70HMOV R0,ADISLOOP11: LCALL TUNBCDMOV R2, #0FFHDISLOOP22: LCALL DISPLCALL KEYWORK2DJNZ R2,DISLOOP22 ;延时INC 7BH ;通道号加1RET;显示数据转换为3位BCD码子程序TUNBCD: MOV A,@R0MOV B,#51DIV AB ;A-商,B-余数MOV 7AH, AMOV A,BCLR F0SUBB A,#1AHMOV F0,CMOV A,#10MUL ABMOV B,#51DIV ABJB F0,LOOP2ADD A,#5LOOP2: MOV 79H,AMOV A,BCLR F0SUBB A,#1AHMOV F0,CMOV A,#10MUL ABMOV B,#51DIV ABJB F0,LOOP3ADD A,#5LOOP3: MOV 78H,ARET;LED扫描显示子程序DISP: MOV R1,#78HMOV R5,#0FEHPLAY: MOV P1,#0FFHMOV A,R5ANL P3,AMOV A,@R1MOV DPTR,#TABMOVC A,@A+DPTRMOV P1,AJB P3.2,PLAY1CLR P1.7PLAY1: LCALL DL5MININC R1MOV A,P3JNB ACC.3,ENDOUTRL AMOV R5,AMOV P3,#0FFHENDOUT: MOV P3,#0FFHMOV P1,#0FFHRETTAB: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,F8H,80H,90H,0FFH;延时子程序DL5MIN: MOV TMOD,# 10HMOV TH1,# 3CHMOV TL1,# 0B0HCLR TF1SETB TR1MOV R4,# 100MOV R6, # 30WAIT0:JNB TF1, WAIT0CLR TF1MOV TH1,# 3CHMOV TL1,# 0B0HDJNZ R4,W AIT0MOV R4,# 100DJNZ R6,W AIT0RETA/D转换子程序TEST: CLR AMOV P2,AMOV R0,#70H ;通道号地址MOV R7,#08H ;LCALL TESTARTWAIT: JB P3.7,MOVD ;EOC=P3.7=1跳AJMP WAITTESTART: SETB P2.3 ;ALE=1NOPNOPCLR P2.3SETB P2.4 ;START=1NOPNOPCLR P2.4NOPNOPNOPNOPRETMOVD: SETB P2.5 ;OE=1MOV A,P0MOV @R0,ACLR P2.5INC R0 ;指向下一通道MOV A,P2INC A ;地址加1MOV P2,ACJNE A,#08H,TESTENDTESTEND: JC TESTCON ;C=1跳CLR AMOV P2,AMOV A,#0FFHMOV P0,AMOV P1,AMOV P2,ARETTESTCON: LCALL TESTARTLJMP W AIT ;按键检测子程序KEYWORK1: JNB P3.5,KEY1 ;K1=P3.5=0跳KEY1 KEYOUT: RETKEY1: LCALL DISP ;按下K1后调用显示程序JB P3.5,KEYOUT ;K1=1跳(松开)WAIT11: JNB P3.5,W AIT12 ;K1=0跳CPL 00H ;K1松开后切换显示方式MOV R2,#0AHMOV R3,#01HRETWAIT12: LCALL DISP ;按K1后调用显示AJMP W AIT11KEYWORK2: JNB P3.5,KEY1 ;按K1后跳JNB P3.6,KEY2 ;K2=0跳KEY2RETKEY2: LCALL DISP ;刷新显示JB P3.6,KEYOUT ;K2=1跳KEYOUTWAIT22: JNB P3.6,W AIT21 ;K2=0跳W AIT21INC 7BH ;K2=1,通道号+1MOV A,7BHCJNE A,#08H,KEYOUT11KEYOUT11: JC KEYOUT1 ;C=1跳KEYOUT1MOV 7BH,#00H ;通道号≥8,7BH清0 KEYOUT1: RETWAIT21: LCALL DISP ;刷新显示AJMP W AIT22END(五)设计体会:通过实验了解了A/D0809的作用以及其的接口作用,C52在整个实验做得作用了解锁存器的型号及作用,还有编程语言相互嵌套的强大魅力,同时也意识到自己知识的匮乏,对以后的学习是种无形的激励,总之这次实验我受益匪浅。