激光光学论文

激光光学论文
激光光学论文

摘要:

激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的亮度约为太阳光的100亿倍。

激光的原理早在 1916 年已被著名的美国物理学家爱因斯坦发现,但直到 1960 年激光才被首次成功制造。激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。

关键字:激光激光器起源发展

一、激光的起源

激光的理论基础起源于大物理学家爱因斯坦,1917年爱因斯坦提出了一套全新的技术理论‘受激辐射’。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。

1958年,美国科学家肖洛(Schawlow)和汤斯(Townes)发现了一种神奇的现象:当他们将氖光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激发时,都会产生这种不发散的强光--激光。他们为此发表了重要论文,并获得1964年的诺贝尔物理学奖。

1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。

1960年7月7日,梅曼宣布世界上第一台激光器由诞生,梅曼的方案是,利用一个高强闪光灯管,来刺激红宝石。由于红宝石其实在物理上只是一种掺有铬原子的刚玉,所以当红宝石受到刺激时,就会发出一种红光。在一块表面镀上反光镜的红宝石的表面钻一个孔,使红光可以从这个孔溢出,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。

前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。半导体激光器的结构通常由p层、n层和形成双异质结的有源层构成。其特点是:尺寸小、p合效率高、响应速度快、波长和尺寸与光纤尺寸适配、可直接调制、相干性好。

激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。

现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标

志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。

二、激光器的发展史

激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。

激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。

此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。

如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大

微波的设计。

然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用

分子和原子体系作为微波辐射相干放大器或振荡器的先例。

汤斯等人研制的微波激射器只产生了1.25厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。

此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。

1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。“梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。

尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。

1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。

由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上

除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。

今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。

三、参考文献

[1]陆同兴、路轶群编著,《激光光谱技术原理及应用》,中国科学技术大学出版社,2009.7

[2]苏州大学,《物理教师》,江苏苏州,1988.9

[3]激光-百度百科,https://www.360docs.net/doc/c016669259.html,/view/2695.htm#7

工程光学设计

摘要 摘要:设计三片库克照相物镜,给出三片镜子的结构参数按照设计要求合理设计。近轴光路追迹求出设计系统的焦距和后焦距。然后利用zemax光学设计软件仿真验证设计结果。 关键词:照相物镜;光学设计 设计要求: 设计要求:采用三片库克(cookie)结构,D/f=1/5,半像面尺寸:18mm 半视场角:20°设计波长:0.486um、0.587um、0.656um,口径D:10mm 计算:系统焦距f,,后焦距(BFL) 第一章绪论 我们设计光学系统采用光线模型方法,即利用几何光学和光学工程中涉及到的基本方法、基本公式设计三片库克照相物镜。利用光线模型设计光学系统是非常重要的方法。曾经有位美国学者在回答有关光线和波动理论应用问题时,睿智的说;“你用光线理论设计照相机镜头,尽管是近视理论,但你用一个星期可以完成;然而你若用衍射理论设计照相机镜头,虽然你用的理论很严格,也去你一辈子才能设计出一个镜头。”可见用几何光学和工程光学中的光线模型设计光学系统是多么的重要。而近轴光线的追迹公式又是利用光线理论设计光学系统的基础。 根据近轴光学公式的性质,它只能适用于近轴区域,但是实际使用的光学仪器,无论是成像物体的大小,或者由一物点发出的成像光束都要超出近轴区域。 这样看来,研究近轴光学似乎没有很大的实际意义。但是事实上近轴光学的应用并不仅限于近轴区域内,对于超出近轴区域的物体,仍然可以使用近轴光学公式来计算平面的位置和像的大小。也就是说把近轴光学公式扩大应用到任意空间。对于近轴区域以外的物体,应用近轴光学公式计算出来的像也是很有意义的: 第一,作为衡量实际光学系统成像质量的标准。根据共轴理想光学系统的成像性质:一个物点对应一个像点;垂直于光轴的共轭面上放大率相同。如果实际共轴球面系统的成像符合理想则该理想像的位置和大小必然和用近轴光学公式计算所得结果相同。因为它们代表了实际近轴光线的像面位置和放大率。如果光学系统成像不符合理想,当然就不会和近轴光学公式计算出的结果一致。二者间的差异显然就是该实际光学系统的成像性质和理想像间的误差。也就是说,可以用它作为衡量该实际光学系统成像质量的指标。因此,通常我们把用近轴光学公式计算出来的像,称为实际光学系统的理想像。 第二,用它近似地表示实际光学系统所成像的位置和大小。在设计光学系统或者分析光学系统的工作原理时,往往首先需要近似地确定像的位置的大小。能够满足实际使用要求的光学系统,它所成的像应该近似地符合理想。也就是说,它所成的像应该是比较清晰的,并且物像大体是相似的。所以,可以用近轴光学公式计算出来的理想像的位置和大小,近似地代表实际光学系统所成像的位置和大小。由此可见近轴光学系统具有重要的实际意义,它在今后的研究光学系统的成像原理时经常用到。

光电技术 论文

专业概述 信息显示与光电技术作为信息科学技术的重要基础,在全球范围内发展迅猛,并已形成经济支柱性重大产业,我国已将其列入二十一世纪重点发展的技术与产业之一。信息显示技术与光电技术已成为综合学科交叉的新理论和新技术的结合,涉及到光学薄膜电子学、材料学、制造学、半导体电子学、大面积电子学、微电子集成系统学、真空微电子学、光电子学、信息系统等诸多领域,是推动电视、计算机、通信、网络、多媒体、教育、交通、广告、导航、军事、仪器仪表、测量、照明等高速发展的原动力。当前我国对信息显示与光电技术专业的毕业生需求正逐年增加,人才供不应求,并预计这种需求将保持持续增长趋势。 2培养目标 信息显示与光电技术专业学生主要学习信息显示与光电技术的基础理论和专业知识,受到科学实验与科学思维的基本训练,除具有良好的科学素质外,还将掌握新型显示器件及驱动电路的设计、制造及测试所必需的基本理论和方法,具有电路分析、工艺分析、器件性能分析和驱动电路设计的基本能力。 本专业培养具有光电材料与器件基本知识,掌握信息储存、显示、传输、以及驱动电路的设计和光电测试的基本理论和方法,具有信息显示实现、器件性能分析和设计、驱动电路设计的基本能力,具备信息显示与光电技术的基础理论和实际应用能力的高级工程技术应用型人才。毕业生能够胜任在现代通信、电子信息显示、半导体器件、光电成像、传感器、太阳能电池、半导体照明等相关企业从事技术工作,事业单位和其他社会组织中从事业务管理的高级工程技术岗位。 [1] 3主干课程 基础物理、工程光学、工程制图、工程计算与仿真、材料分析基础、信息显示技术、显示器件驱动电路设计、真空技术、光电材料与器件、发光原理基础、阴极电子学、电子光学及应用、液晶显示技术、有机电子材料与器件、固体摄像技术、纳米材料与器件、真空微电子学、视频接口技术、普通化学、C语言、半导体物理与器件、单片机应用基础、光电成像物理、可视化程序设计、信号与系统、光电电路设计与应用、光电测试技术、半导体光电子学、信息传送与接收技术、LED显示技术等。

光学设计软件Zemax在《工程光学》课程教学中 的应用

Advances in Education教育进展, 2019, 9(2), 108-112 Published Online March 2019 in Hans. https://www.360docs.net/doc/c016669259.html,/journal/ae https://https://www.360docs.net/doc/c016669259.html,/10.12677/ae.2019.92023 Application of Optical Design Software Zemax in Engineering Optics Course Teaching Yiqing Cao*, Zhijuan Shen, Zhixia Zheng School of Mechanical and Electronic Engineering, Putian University, Putian Fujian Received: Feb. 12th, 2019; accepted: Feb. 26th, 2019; published: Mar. 5th, 2019 Abstract Engineering Optics course is the core course of the control technology and instrument, and has the characteristics of more formulas and fairly theoretical; it plays a very important role in the pro-fessional learning. The traditional method of teaching of the course pays attention to the deriva-tion of the formula and the explanation of the abstraction, and thus students have a great difficulty in understanding and mastering. In order to adapt to the transformation of the university to the practical undergraduate university, and train the professional talents with strong practical ability and self-study ability, Zemax software is applied to the process of the explaining the important knowledge of Engineering course. According to the method of Zemax software simulation, the students’ understanding of optical knowledge and the practical application ability of the know-ledge are improved, and improve the teaching quality and meet the training goal of the practical talents. Keywords Zemax, Engineering Optics, Practical Talents, Aberration 光学设计软件Zemax在《工程光学》课程教学中的应用 曹一青*,沈志娟,郑志霞 莆田学院机电工程学院,福建莆田 收稿日期:2019年2月12日;录用日期:2019年2月26日;发布日期:2019年3月5日 *通讯作者。

光学设计

大连民族学院 工程光学课程设计(论文)平行光管物镜设计 学院(系):物理与材料工程学院 专业:光电子技术科学 学生姓名:任增鑫 学号:2010053216 指导教师:芦永军 完成日期:2013-11-18 大连民族学院

摘要 平行光管是通过它取得来自无限远的光束,此光束谓之平行光。是装校调整光学仪器的重要工具,也是光学量度仪器中的重要组成部分,配用不同的分划板,连同测微目镜头,或显微镜系统,则可以测定透镜组的焦距,鉴别率,及其他成像质量。将附配的调整式平面反光镜固定于被检运动直的工件上,用附配于光管的高斯自准目镜头,通过光管上的高斯目镜观察,可以进行运动工件的直线性检验。在实际成像过程中,物体成的像应该与设计的光学系统一致,达到设计要求的放大倍数。所以,可以通过近轴光学公式计算出理想成像的位置和大小,近似地代表实际光学系统中所要求成的像的位置和大小。近轴光学公式对于工程光学设计有着重要的意义和作用,根据近轴光学公式的性质,它只能适用于近轴区域,但是实际使用的光学仪器,无论是成像物体的大小,或者由一物点发出的成像光束都要超出近轴区域。平行光管物镜物镜采用双胶合结构。双胶合结构能够很好的校正几种初级像差,而且结构简单,所以大多用此结构进行设计。 关键词:平行光管物镜;微小角度;近轴光学公式;双胶合结构

目录 摘要...........................................................................................I 设计要求: (2) 第一章绪论 (2) 第二章Zmeax光学设计软件简介 (3) 第三章平行光管物镜参数的手工计算 (5) 第四章课程设计结果Zmeax验证 (7) 致谢 (9)

工程光学课程设计

课程设计说明书 课程设计名称:工程光学课程设计 课程设计题目:三片式数码物镜的优化设计学院名称:理学院 专业班级:光电信息科学与工程激光一班学生学号:1409090119 学生姓名:夏志高 学生成绩: 指导教师:梁春雷 课程设计时间:2016/06/27 至2016/07/03

课程设计任务书 一、课程设计的任务和基本要求 1.查阅相关资料,光学设计的基本概念、光学玻璃的相关知识和软件的使用。 2.学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。 3.本课题要求设计出一个三片式数码照相物镜,要求的光学特性为:mm f 6=', 41='f D ,ο502=ω;像质主要以调制传递函数MTF 衡量,具体要对于低频(17lp/mm), 视场中心的MTF ≥0.9,视场边缘的MTF ≥0.80;对于高频(51lp/mm),视场中心的MTF ≥0.3,视场边缘的MTF ≥0.20,另外,最大相对畸变dist ≤4%。该物镜对d 光校正单色像差,对F 、C 光为校正色差。 4.学习使用ZEMAX 进行数据录入和报表输出,分析各种初级像差并设置优化函数;设计三片式数码照相物镜并优化,对像差做简单的分析之后,撰写课程设计论文。 5.课题设计(论文)难度适中,工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。 6.综述简练完整,有见解;立论正确,论述充分,结论严谨合理;文字通顺,技术用语准确,符号统一,编号齐全,书写工整规,图表完备、整洁、正确;论文(设计)结果有一定的参考价值。 二、进度安排 1.6月27日:了解光学设计的基本概念、光学玻璃的相关知识和软件的使用。以单透镜的设计为例学习数据的录入,基本概念和设计思想在软件中的实现,初步掌握ZEMAX 的分析工具和数据含义及输出。 2.6月28日至6月29日:学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。 3.6月30日:学习查找文献资料,选择合适的数码物镜初始结构,用缩放法进行缩放,缓慢调整有关参数并优化,并最终得到比较好的设计参数。学习光学玻璃材料知识,通过选择合适的玻璃,校正像差。 4.7月1日:整理思路,撰写课程设计论文,论文中要体现像差概念和评价、体现zemax 评价函数的构造及优化过程像差的变化;检查格式,符合课程设计论文格式要求。 5.7月2日至7月3日:课程设计答辩并上交论文;

工程光学课程设计说课材料

工程光学课程设计

课程设计说明书 课程设计名称:工程光学课程设计 课程设计题目:三片式数码物镜的优化设计学院名称:理学院 专业班级:光电信息科学与工程激光一班学生学号: 1409090119 学生姓名:夏志高 学生成绩: 指导教师:梁春雷 课程设计时间: 2016/06/27 至 2016/07/03

课程设计任务书 一、课程设计的任务和基本要求 1.查阅相关资料,光学设计的基本概念、光学玻璃的相关知识和软件的使用。 2.学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。 3.本课题要求设计出一个三片式数码照相物镜,要求的光学特性为:mm f6 =',ω;像质主要以调制传递函数MTF衡量,具体要求是对于低频 D,ο 1 ='f 4 50 2= (17lp/mm),视场中心的MTF≥0.9,视场边缘的MTF≥0.80;对于高频(51lp/mm),视场中心的MTF≥0.3,视场边缘的MTF≥0.20,另外,最大相对畸变dist≤4%。该物镜对d 光校正单色像差,对F、C光为校正色差。 4.学习使用ZEMAX进行数据录入和报表输出,分析各种初级像差并设置优化函数;设计三片式数码照相物镜并优化,对像差做简单的分析之后,撰写课程设计论文。 5.课题设计(论文)难度适中,工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。 6.综述简练完整,有见解;立论正确,论述充分,结论严谨合理;文字通顺,技术用语准确,符号统一,编号齐全,书写工整规范,图表完备、整洁、正确;论文(设计)结果有一定的参考价值。 二、进度安排 1.6月27日:了解光学设计的基本概念、光学玻璃的相关知识和软件的使用。以单透镜的设计为例学习数据的录入,基本概念和设计思想在软件中的实现,初步掌握ZEMAX的分析工具和数据含义及输出。 2.6月28日至6月29日:学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。 3.6月30日:学习查找文献资料,选择合适的数码物镜初始结构,用缩放法进行缩放,缓慢调整有关参数并优化,并最终得到比较好的设计参数。学习光学玻璃材料知识,通过选择合适的玻璃,校正像差。 4.7月1日:整理思路,撰写课程设计论文,论文中要体现像差概念和评价、体现zemax评价函数的构造及优化过程像差的变化;检查格式,符合课程设计论文格式要求。

[财务_工程]工程光学论文基于谐波检测技术的乙炔气体浓度测量系统

基于谐波检测技术的乙炔气体浓度测量系统 (工程光学:郝蕴绮) 王翔宇 摘要:基于乙炔气体近红外吸收的机理,研究了一种以DFBLD为光源的高灵敏度光谱吸收型乙炔气体多点检测系统。采用光源调制实现气体浓度的谐波检测,利用二次谐波与一次谐波的比值来消除光路干扰。采用空分复用技术实现多点气体浓度的检测,使多个传感器共用一个光源,降低了成本。建立了谐波检测的数学模型,给出了乙炔气体的测量结果。测试结果表明:系统灵敏度和稳定性高,重复性好,适应性强。 关键词:气体传感器;乙炔;多点检测;谐波检测 引言 光纤气体传感器灵敏度高,动态范围大,防电磁干扰,防燃防爆,不易中毒,适合于长距离在线测量。但由于光源造价一般很高,限制了它的大规模使用。乙炔()是变压器油中的故障特征气体,实时、准确地监测气体浓度对保障生产、生活的安全十分重要。基于空分复用技术,将气体传感器组成网络,实现对气体浓度的多点测量,使多个传感器共用一个光源,降低了成本。采用分布反馈式半导体激光器(DFBLD)作为光源,通过对光源的调制实现对气体的二次谐波检测,通过二次谐波与一次谐波的比值作为系统的输出,克服了现有仪器受光路干扰较大的缺点,并且比以往采用LED作为光源的差分检测方式具有更高的灵敏度。 l基本原理 当一束光强为的输入平行光通过图1所示的气室时,如果光源光谱覆盖1

个或多个气体吸收线,光通过气体时发生衰减,根据Beer—Lambert定律,输出光强与输入光强和气体浓度之间的关系为 (1) 式中为气体吸收系数,即气体在一定频率处的吸收线型;L为吸收路径的长度;c为气体浓度。 为了产生谐波信号,在激光器的直流工作电流上叠加1个角频率为的正弦信号。由于可调谐激光器的输出频率是注入电流的函数,所以注入电流经正弦调制之后,激光器的输出频率和输出光强也将受到相应的调制变成了随频率矿而变化的时变参数 (2) (3) 式中:为光源未经调制时的中心频率;为频率调制幅度;为光强调制系数,,为电流调制频率。 将式(2)、式(3)代入式(1),在近红外波段,气体的吸收数很小,满足,光强的调制幅度也很小,即,<<1;这样就可以运用近似公式,并且可以忽略高阶小项,则可为 (4) 气体压力接近101.325kPa时,可以用Lorenz曲线描分子的吸收谱线型 (5) 式中:为纯气体在吸收线中心的吸收系数;和分别为对应吸收峰的中心频率和吸收线半宽。 当光源输出中心波长被精确地锁定在气体吸收峰上时,=,式(4)变为

工程光学论文

河南大学物理与电子学院 浅谈光学的发展与应用 学号:2009687089 姓名:酷微度 专业:测控技术与仪器 日期:2011年06月11日

摘要:光学工程是一门历史悠久而又年轻的学科。它的发展表征着人类文明的进程。它的理论基础——光学,作为物理学的主干学科经历了漫长而曲折的发展道路。在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。它包含了许多重要的新兴学科分支,如激光技术、光通信、光电显示、光电子和光子技术等。这些分支不仅使光学工程产生了质上的跃变,而且推动建立了一个规模迅速扩大的前所未有的现代光学产业和光电子产业。 关键字:工程光学,应用,发展,仪器,技术 一、工程光学的发展 光学是一门古老而又年轻的学科。其悠久的历史几乎和人类文明史本身一将久远;近半个世纪以来它又以令人惊叹的发展速度、奇迹般层出不穷的研究成果、以及所蕴含的巨大潜力和希望,使自己跻身于现代科学技术的前沿。 1.几何光学时期 这一时期可以称为光学发展史上的转折点。在这个时期建立了光的反射定律和折射定律,奠定了几何光学的基础。同时为了提高人眼的观察能能力,人们发明了光学仪仪器,第一架望远镜的诞生促进了天文

学和航海事业的发展,显微镜的发明给生物学的研究提供了强有力的工具。 2.波动光学时期 19世纪初,波动光学初步形成,其中托马斯〃杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。 3.量子光学时期 19世纪末到20世纪初,光学的研究深入到光的发生、光和物质相互作用的围观机制中。光的电磁理论主要困难是不能解释光和物质相互作用的某些现象,例如,炽热黑体辐射中能量按波长分布的问题,特别是1887年赫兹发现的光电效应。 4.现代光学时期 从20世纪中叶起,随着新技术的出现,新的理论也不断发展,已逐步形成了许多新的分支学科或边渊学科,光学的应用十分广泛。几何光学本来就是为设计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也越来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构、分子结构等)方面曾起了关键性的作

工程光学论文

电气与自动化工程学院工程光学课题论文 课题:数码相机的成像原理分析 姓名 mmm 所在学院 专业班级 学号 指导教师 日期 常熟理工学院

数码相机的成像原理分析 摘要:简要回顾一下数码相机特点及基本组件,了解数码相机与普通相机的区别,进而探究数码相机的成像原理。说明对数码相机在光学方面的应用已取得重大进展,但无论是具体实际问题还是研究方法等方面都需要系统深入的研究。 关键词:数码相机;成像原理;光学原理 1 引言 随着中国国民人均收入的增加,人们的消费水平也得到相应的提高,从而在物质享受方面的投入也随之增加。数码相机已经走下高高的价格神坛,摘去了高贵的桂冠,众多的家庭把购买数码相机纳入了自己的日程,进而人们可以利用数码相机来进行定位。 数码相机是一种集光、机、电为一体的数字化产品, 集成了影像信息的采集、转换、储存、传输等部件,可方便地传输至计算机内处理。和专业的测量型相机相比,数码相机镜头畸变大,没有框标,内定向元素也是未知的.但由于使用上的便利和价格优势,以及影像后处理的快捷、方便、适阳性,数码相机受到越来越多的专业技术人员的关注.数码相机的数字摄影测量技术在工业制造、土木工程、医学、考古、地理测绘等行业的应用越来越广泛。 随着现代交通的日益发展,形形色色的道路交通监管设备已经成为交通、管理的必备设施,这些设备通常被形象的称为“电子警察”,因此数码相机定位在交通监管(电子警察)方面也有广泛的应用。 2 数码相机的基本介绍 2.1 数码相机的特点及基本部件 数码相机是由镜头、CCD、A/D(模/数转换器)、MPU(微处理器)、内置存储器、LCD(液晶显示器)、PC卡(可移动存储器)和接口(计算机接口、电视机接口)等部分组成。无论是哪种款式的相机,大都包括图1-1、图1-2出示的基本组件。 图1-1 数码相机正面

光学发展简史论文

光学发展简史论文 课程工程光学基础 姓名杨宏达 专业软件工程 学号120521226 学院计算机科学技术学院二0一四年五月

目录 简介 1萌芽时期 2 1.1中国光学萌芽及发展 2 1.1.1对光的直线传播的认识 2 1.1.2光的反射和镜的利用 3 1.1.3对大气光学现象的探讨 3 1.1.4对成影现象的认识 5 1.2西方光学及萌芽 6

2几何光学时期 6 3波动光学时期7 4量子光学时期8 5现代光学时期9 6参考文献10

关键词:光学、萌芽、几何、波动、量子、现代光学 简介 光是一种重要的自然现象,我们所以能够看到客观世界中五彩缤纷、瞬息万变的景象,是因为眼睛接收物体发射、反射或散射的光。据统计,人类感官收到外部世界的总信息量中,至少有90%以上通过眼睛。光学是一门古老而又年轻的学科。其悠久的历史几乎和人类文明史本身一样久远;近半个世纪以来它又以令人惊叹的发展速度、奇迹般层出不穷的研究成果、以及所蕴含的巨大潜力和希望,使自己跻身于现代科学技术的前沿。在全面展开对光学基本知识的讨论之前,让我们简短地回顾人类获得今天的知识所走过的路程,以便对它的全貌有一概括的了解。尽管这种介绍只能是相当粗糙而简略的。 它是物理学中最古老的一个基础学科,也是当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切的认识总部走向较完善和较确切认识的过程。它的不少规律和理论是直接从从欧美和生产实践中总结出来的,也有相当多的发现来自长期的系统的科学实验。光学的发展为生产技术提供了许多精密、快速的实验手段和重要的理论依据;而圣餐技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。光学的发展大致可换分为5个时期:一、萌芽时期;二、几何光学时期; 三、波动光学时期;四、量子光学时期;五、现代光学时期。 1.萌芽时期 1.1中国光学萌芽及发展 中国古代对光的认识是和生产、生活实践紧密相连的。它起源于火的获得和光源的利用,以光学器具的发明、制造及应用为前提条件。根据书籍记载,中国古代对光的认识大多集中在光的直线传播、光的反射、大气光学、成像理论等多个方面。 1.1.1对光的直线传播的认识 早在春秋战国时《墨经》已记载了小孔成像的实验:“景,光之人,煦若射,下者之人也高;高者之人也下,足蔽下光,故成景于上,首蔽上

工程光学论文--基于谐波检测技术的乙炔气体浓度测量系统

基于谐波检测技术的乙炔气体浓度测量系统 (工程光学:郝蕴绮) 王翔宇 摘要:基于乙炔气体近红外吸收的机理,研究了一种以DFB LD 为光源的高灵敏度光谱吸收型乙炔气体多点检测系统。采用光源调制实现气体浓度的谐波检测,利用二次谐波与一次谐波的比值来消除光路干扰。采用空分复用技术实现多点气体浓度的检测,使多个传感器共用一个光源,降低了成本。建立了谐波检测的数学模型,给出22H C 了乙炔气体的测量结果。测试结果表明:系统灵敏度和稳定 性高,重复性好,适应性强。 关键词:气体传感器;乙炔;多点检测;谐波检测 引言 光纤气体传感器灵敏度高,动态范围大,防电磁干扰,防燃防爆,不易中毒,适合于长距离在线测量。但由于光源造价一般很高,限制了它的大规模使用。乙炔(22H C )是变压器油中的故障特征气体,实时、准确地监测22H C 气体浓度对 保障生产、生活的安全十分重要。基于空分复用技术,将气体传感器组成网络,实现对22H C 气体浓度的多点测量,使多个传感器共用一个光源,降低了成本。 采用分布反馈式半导体激光器(DFBLD)作为光源,通过对光源的调制实现对气体的二次谐波检测,通过二次谐波与一次谐波的比值作为系统的输出,克服了现有仪器受光路干扰较大的缺点,并且比以往采用LED 作为光源的差分检测方式具有更高的灵敏度。 l 基本原理 当一束光强为0I 的输入平行光通过图1所示的气室时,如果光源光谱覆盖1 个或多个气体吸收线,光通过气体时发生衰减,根据Beer —Lambert 定律,输出光强)(t I 与输入光强)(0t I 和气体浓度之间的关系为 []cL v t I t I t )(exp )()(α-= (1) 式中)(v α为气体吸收系数,即气体在一定频率v 处的吸收线型;L 为吸收路径的长度;c 为气体浓度。

光学论文--折反射望远镜

折反射望远镜构造 望远镜的发展经历了约400年的时间,现在它已在科学研究和生活的方方面面发挥着重要的作用。1608年荷兰人汉斯·利伯希发明了第一部望远镜。随之而来的是折射望远镜、反射望远镜和折反射式望远镜的相继产生。德国人史密特首先于1938年制作了第一部折反射式望远镜。折反射望远镜系统的特点是便于校正轴外像差。以球面镜为基础,加入适当的折射元件,用以校正球差,得以取得良好的光学质量。由于折反射望远镜具有视场大、光力强等特点,适合于观测延伸(彗星、星系、弥散星云等)天体,并可进行巡天观测,较适合天文爱好者使用。本文通过探究折反射式望远镜的构造、阐明其光学结构原理从而加强折反射望远镜在啊日常生活的中应用,为今后的技术创新提供助力。 关键词:望远镜;凸透镜;凹透镜;折射式;反射式;折反射式 0. 引言 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。望远镜可大致分为折射望远镜、反射望远镜和折反射式望远镜三种.应用最广泛的有施密特望远镜(美国Meade 12”LX200SC),施密特—卡塞格林系统(南京天仪中心的KP300S),马克苏托夫与马克苏托夫—卡塞格林望远镜(南京御夫天文科教仪器厂生产的Φ160mm等系列)四种类型。 1.折反射式望远镜 1.1.折、反射式望远镜的基本光学原理 天文望远镜由物镜和目镜组成,接近景物的凸形透镜或凹形反射镜叫做物镜,靠

近眼睛那块叫做目镜。 远景物的光源视作平行光,根据光学原理,平行光经过透镜或球面凹形反射镜便会聚焦在一点上,这就是焦点。焦点与物镜距离就是焦距。再利用一块比物镜焦距短的凸透镜或目镜就可以把成像放大,这时观察者觉得远处景物被拉近,看得特别清楚。 O=物镜 E=目镜 f =焦点 fo=物镜焦距 fe=目镜焦距 D=物镜口径 d =斜镜 折射镜是由一组透镜组成,反射式则包括一块镀了反光金属面的凹形球面镜和把光源作90 °反射的平面镜。两者的吸光率大致相同。 1.2. 折、反射式望远镜各自的优缺点 1.2.1.优点阐明 折射望远镜的优点有影像稳定、可进行彗像差矫正、保养方便等。折射式望远镜镜筒密封,避免了空气对流现象,可以利用不同的透镜组合来矫正彗像差(Coma),其主镜密封,不会被污垢空气侵蚀,基本上不用保养。反射望远镜的优点有消色差、镜筒短、价钱便宜等。反射式望远镜使任何可见光均聚焦于一点,而且通常镜筒长度只有主镜直径八倍,所以比折射镜筒约短两倍。短的镜筒操作

光学发展与光学工程

光学发展与光学工程 1122110307 江世凯 关键词:光、发展、光学工程、前景 简介: 学习物理光学、傅里叶光学、薄膜光学和激光原理以及在网上查阅一些资料,使我对光学发展和光学工程专业有了进一步的认识。 光学是一门古老而又年轻的科学,其悠久的历史几乎和人类文明史本身一样久远,近半个世纪以来,它又以惊人的发展速度、奇迹般层出不穷的科研成果、以及所蕴含的巨大的潜力和希望,是自己跻身于现代科学技术的前沿,具有强大的生命力和不可估量的发展前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切得认识逐步走向完善和较确切认识的过程,大致可分为5个时期:一、萌芽时期;二、几何光学时期;三、波动光学时期;四、量子光学时期;五、现代光学时期。 光学工程是以光学为主,并与信息科学、能源科学、材料科学、生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。 一、光学发展 《圣经》里说:要有光!于是有了光。大地有了一片光明,人间充满无限欢腾。可是人们有一个极其困惑的问题——光是什么?千百年来,无数学者哲人深深陷入这个问题苦苦思索,这个问题的答案几乎囊括了人类史上最聪明的智慧。特别是十七世纪后半叶至本世纪初,科学家们争论了长达三百多年的时间,这场富有戏剧性学术大辩论,参与的人数之多,时间之久,辩争之激烈,不但在光学发展史上是绝无仅有的,即使在整个自然科学发展史上也是极为罕见的。 1.萌芽时期 光学作为物理学的最早分支,与古老的力学一样,我国古人对光学的认识和研究都走在了世界的前列。我国的光学的起源可以追溯到二、三千年前。战国时代哲学家墨翟所著《墨经》中,有关于小孔成像现象、平面镜、凸面镜、凹面镜等等的叙述。战国时代哲学家淮南子发明了用以取火的器皿“阳燧”。宋时期沈括(1031——1095)的名著《梦溪笔谈》中记载了关于凸面镜的成像,以及关于日食、月食的起因和预报。

相关主题
相关文档
最新文档