化学修饰电极
纳米技术在化学修饰电极中的应用及最新进展-李俊.
![纳米技术在化学修饰电极中的应用及最新进展-李俊.](https://img.taocdn.com/s3/m/154d1495680203d8ce2f24c3.png)
纳米技术在化学修饰电极中的应用及最新进展1. 纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。
纳米技术侧重于纳米材料的制备、研究方法和技术以及应用研究。
2. 纳米材料定义:用纳米级别的微粒制成的材料就是纳米材料。
基本特性:量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。
该效应会导致纳米粒子磁、光、声、热、电以及超导电性与宏观特性有着显著不同。
小尺寸效应:当物质体积减小时,会使物质本身的特性发生变化或者物质本身的性质不变而仅与其体积大小密切相关的性质发生变化。
该效应会使得物性有所改变。
表面效应:当粒子的直径逐渐接近原子的直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表面能和表面结合能都发生很大的变化。
该效应可增加材料的化学活性、降低熔点等。
量子隧道效应:纳米颗粒的尺寸变小,使其与实际空间尺寸相关的势垒厚度减小,导致隧道贯穿的几率增大,而由此引起纳米材料性质改变的效应。
界面效应:随着纳米材料的粒径减小,界面原子所占比例迅速增大,巨大的纳米材料界面处的原子排列混乱,表面原子配位严重不足,界面上存在大量缺陷,这就导致表面活性增加,晶格显著收缩,晶格常数变小,从而表现出良好的韧性与一定的延展性,与界面状态有关的吸附、催化、扩散、烧结等物理、化学性质将与传统的大颗粒材料显著不同。
3. 纳米材料与化学修饰电极3.1化学修饰电极的含义化学修饰电极是通过化学修饰的方法在电极表面进行分子设计,将具有优良化学性质的分子、离子和聚合物等固定在电极表面,形成某种微结构,从而赋予电极某种特定的化学和电化学性质,以便高选择性地进行所期望的反应,在提高选择性和灵敏度方面具有独特的优越性。
化学修饰电极的研究进展
![化学修饰电极的研究进展](https://img.taocdn.com/s3/m/797cbb1659eef8c75fbfb32f.png)
中 : A
文章编号 :0 6 4 1 ( 0 0)3 0 4 — 1 10 - 3 12 1 0 — 0 5 0
用展 示 了较 宽的领域 , 而且有其 独特 的优 点: 化学修饰 电极 电催 化 化 学 修 饰 电极 的 来 源 和 兴 起 与 整 个 化 学 和 其 它学 科 特 别 是 电 可 以 将 催 化 剂 与 反 应 物 、 物 容 易 地 分 开 ; 以 随 意 地 调 节 电极 电 产 可 化 的研 究 密 切 相 关 。分 子 水 平 上 进 行 电极 修 饰 的 尝试 开 始于 6 ~ 0 位 的大小和正负 , 07 方便地 改变 电化学反应 的方向、 速率和 选择性; 化 年 代 初 , 国 加 州理 工 学 院 FCA sn- 展 了有 关 吸 附 的化 学基 础 学 修 饰 电极 电催 化 较 常 规 电催 化 节 省 催 化 剂 , 且 电极 表 面 具 有 高 美 ..no t J 发 并 及吸 附层 结构类型 的较 为系统的一般理论 , 在他 的工作 中, 研究 了 活性 中心。 尤其是用聚合物膜 固定催化剂可 以在 电极表面实现三维 大量配位化合 物的电化学行 为, 从此 电化学工作者便开始 了一套 制 的均 相 催 化 , 应 物 在 聚 合 物 膜 内可 充 分 地 与 催 化 剂 接 触 , 变 了 反 改 备 和 控 制 电极 表面 物质 的规 则 。17 9 3年 ,a e和 H b a Ln u b r 次 有 目 常规界面 电催化 的反应维数 , d首 提高了催 化效 率I1 8。 - 9 的地 改 变 电极 表面 结 构 从 而 控 制 电化 学 反 应 过 程 他 们 把 具 有 不 。 22在 电化 学 发 光 中 的应 用 . 同尾 端 基 团 的 多 烯 烃 化 合 物 强 吸 附 在 电极 表 面 上 发 现 发 现 通 过 强 2 0世纪 9 O年代 初 ,刘 忠范 等人深入研 究了偶 氮苯衍 生物 L B 并 吸 附 的 方 法将 烯 属 基 团 引入 洁 净 的 铂 电极 表 面 可 大 大 改 变 电极 的 单 分 子 膜 独 特 的光 电化 学 响 应 , 提 出 了 这 种 高 度 有 序 的分 子 组 装 电化 学 行 为 ,说 明 了吸 附在 电极 表 面 上 的基 团 能 够 发 生 表 面 配 合 体 系在 超 高 度 信 息 存 储 等 分 子 电子 学 领 域 的 应 用 前 景 。 应, 并且 借 改 变 电极 电位 可调 控 其 配合 能 力 。 为 此 他 们 认 为 在 电极 2 . 3在 电池 电极 上 的应 用 表面预置一定 的辅助基 团是 完全可能的 ,指 出了化学修饰 电极萌 电极材 料种类的稀 少 , 电池研制 中一 个大 问题 , 化学修饰 是 而 芽。 电极 的 出现 为 新 电池 的 研 究 提 供 了新 选 择 。 17 9 5年 , ie 和 Mury分 别 报 道 了 根 据 人 为 设 计 对 电极 面 Mlr l r a 2 . 配 位 化 学 研 究 的 应 用 4对 进 行 化 学 修 饰 的 研 究 使 化 学 修 饰 电极 成 功 的 走 出 了第 一 步 15 3I -。 化学修饰 电极研究络合 物具有 电信号 的灵敏 和直接反应 特性 Mlr ie 等把光活 性分子 S 苯丙氨酸 甲酯键合 到碳 电极 上 , l 一 制出 “ 手 的优点。可从两种方式来进行研 究, 一是直 接把 络合物修饰到 电极 征性电极 ” 这种手征性修饰 电极亲一种旋 光异构物而疏另一种。 当 上 或先制备某 种功 能团的修饰 电极 , 以便吸附溶液中的络离子 。 J 25在 分 析 化 学 中的 应 用 . 用此 电极 进 4 乙酰吡 啶的电解 时 ,可 由非旋光性反应物得 到手性 一 产物光活性醇。这次研究是在 碳电极表 面用不对称试剂直接衍生 , () 1 电化 学 传 感 器 ;2) 伏 安 分析 、 ( 在 电位 溶 出 中 的 应 用 :3) ( 在 成 功制备 了手性 电极 , 并且在 工作 中首次显 示通 过 电极修饰 , 电极 流 动 体 系 中 的 应 用 ;4 在 光 电联 合 技 术 中 的 应 用 ;5) 生 物 传 感 () ( 在 反应 可 以有 选 择 性 的 进 行 。在 此 同 时 Mur 1J 研 究 出用 共价 键 器 中 的应 用 。 r y /组 a ̄\ 合 进 行 电 极 表 面 修 饰 的通 用 方 法 ,并 首 次 提 出化 学 修 饰 电极 的 命 用修 饰 电极 应 用 到 电化 学 分 析 方 法具 有 分 析 速 度 快 , 操作 简便 名 。 他 们 将硅 烷 化 法 用 于 修 饰 具 有 表 面 活 性 羟 基 的二 氧 化 锡 极 电 易行 , 本 低 , 剂 用 量 少 , 测 灵 敏 度 高 等 特 点 , 更 好 的 选 择 性 , 成 试 检 有 极 , 现 将 经 氧 化 的 大 多 数 金 属 电极 ( P、 u) 入 到 酸 溶 液 中 所 以修饰 电极 有一定 的应用前景。 发 如 tA 浸 时 , 往会产生羟基 , 往 而且 对 烷 氧 基 硅 烷 和 氯代 硅 烷 都 呈 反 应 活 性 。 参考文献 : 被 硅 烷 化 了 的 电极 表 面 可 进 一 步 结 合 上 多 种 氧 化 还 原 体 。 ury等 Mr a 【]..no .P y.h m. 8 ,43 3 . 1FCA snJ hs e 1 0 8 :3 6 . C 9 【] ..a eA..u br , lc oh m sy f hmi re moeue. 2RFL n , TI b ad Eet c e i r o e e s b d l r t o l ls. c I 的这一 系列研 究说明 , 电极表面可按设 计进行人工修 饰 , 予 电极 赋 a tn sc n e td t lcrd s tru h oei c s b t e t JPh sCh m. n t 更 优 良或特 定 的功 能 , 而 使 电 化学 获得 了很 有 意 义 的进 展 。 这 些 Re ca t o n ce o ee to e h o g lf i u siu ns,. y . e , 从 17 7 1 0 . 9 3, 7: 4 1 早 期 的 工作 在 全 世 界 范 围 内引 起 了很 大 的影 响 , 是 也 暴 露 了这 些 但 [].. tis . B hig EK r , .. l rC i l l t d .A C e 3BFWakn .R.e l , .ai LLMie, hr e r eJ m.h J n v l a e co . 早 期 工作 的局 限性 , 过 这 些 方法 制 备 的修 饰 电极 步 骤 繁 琐 而 且 寿 m.o .1 7 9 3 4 通 S c , 9 5, 7: 5 9. 命 很短 , 实 际 的 电化 学体 系 中 , 饰层 失 活较 快 。 在 修 [1.. ssLWerRW. r y C e e ym df dt xd lcrd 4PRMoe , . i, . Mur ,h mi o ie noieeet a  ̄l i i o 我 国对化学修饰 电极 的研 究起步也很 早 , 绍俊[ 1 8 年 , e An 1 e , 9 5, 7: 8 2 董 6 9 1 , a. m. 1 7 4 1 8 . 1 在 Ch 便 发表 了关 于 化 学 修 饰 电极 的 综 述 文 章 , 之后 每 年 均 有 大 量 论 文 发 【J . Mu ry i ” leraayia h mi r ” B A. B r Ma cl 5R W. ra , n E e t rl c l o t C e s y , y J ad, r e t . 表 。如 18 年 第 一 届 全 国 电分 析 化 学 学 术 会 议 中 有 关 化 学 修 饰 电 De k r 91 k e ,Ne r . 9 4, 3: 91 w Yo k 1 8 1 1 . 极 的论文仅 1 ,而 1 8 年第五届全国 电分析化学学 术会议中论 篇 91 [] 6董绍俊. 化学通报 ,�
电化学修饰电极
![电化学修饰电极](https://img.taocdn.com/s3/m/81b6e255f8c75fbfc67db263.png)
化学修饰电极的制备是化学修饰电极得以开展研究的关 键性步骤。修饰方法的设计合理性与否、操作步骤及优劣程 度对化学修饰电极的活性、稳定性和重现性有直接影响,因 此是化学修饰电极研究和应用的基础。
电化学聚合法则是一种利用电化学氧化还原引发, 使电活性的单体就地在电极表面发生聚合,生成聚 合物膜而达到修饰目的的方法。这类电活性单体大 多含有乙烯基、羟基和氨基的芳香化合物以及杂环 、稠环多核碳氢化合物和冠醚类化合物等。这种方 法主要被用来制备各种聚合物修饰电极。
电化学氧化法是利用电化学氧化作用使反应物在电 极表面生成特定的产物,该产物最终通过吸附、组 装或共价键合等作用修饰电极表面,从而制备化学 修饰电极的一种方法。用该方法制备修饰电极的报 道还不是很多。
这是一个紧 密堆积的无针孔 的膜(表面覆盖 率 约 为 9×10 - 10mol/cm2 ) 并 阻 碍组分向电极表 面的传质。
金基底上自组装膜的形成
堆积和有序受到许多因素的影响,如碳链长度、 端基、溶剂、浸泡时间或基底形貌。随链长的减小 (n<10),堆积密度和覆盖率降低,无序度增加
。这样的以及其他的结构无序性和结构欠缺(例如 针孔),常常导致性能降低。由烷基硫醇混合物形 成的共组装单层膜能够在膜的构架上获得膜的组成 上和形貌上的变化。根据共组装的两种硫醇的差别 ,能够选择性地除去其中的一个组分(例如通过还 原性解吸)。
具体方法为:
(A)将电极浸入修饰液中,取出后使附着于电极表面的溶 液干固成膜;
(B)用微量注射器把一定已知量的修饰液注射到 电极表面,然后于固成膜;
化学修饰电极
![化学修饰电极](https://img.taocdn.com/s3/m/2ccda609227916888486d720.png)
这种电子转移媒介体引起的电催化反应如图所示。 这里,修饰层中媒介体(聚甲苯胺蓝O)的氧化态与 溶液中待测物的还原态(NADH,还原型烟酰胺腺 嘌呤二核苷酸)反应后,再生出媒介体的还原态, 即修饰剂催化了溶液中NADH的氧化,因为 NADH在裸电极上的直接电氧化需要更正的过电 位。二茂铁、二酚类化合物也是典型的电子转移 媒介体和修饰剂,可用于催化一些直接电化学活 性不佳的被测物质的氧化还原反应。在电分析化 学中,一般认为化学修饰电极上的电催化是用来 放大检测信号,其催化电流往往与被测物浓度成 正比。
化学修饰电极已广泛用于无机、有机和生 化物质的分析检测,也是研究分离和合成 化学的重要实验平台。例如,在环境和食 品分析中,常用于重金属离子及亚硝酸盐 等多种污染物的高敏检测;在生物分析方 面,用于蛋白质、DNA、神经递质以及代 谢调控分子的检测和传感。
Sabahudin Hrapovic等使用不同的金属纳 米材料(Pt、Au、Cu)与溶于Nafion的单壁 碳纳米管和多壁碳纳米管制备得到复合型 传感器,通过吸附溶出伏安法来检测三硝 基甲苯TNT和其他硝基苯类化合物。 华南师范大学的杨勤燕通过简单的绿色无 污染方法制备了铂纳米粒子包覆的金纳米 孔膜及其双金属纳米复合膜修饰电极,并 成功应用于对大肠杆菌的快速检测。 其它文献也表明各类化学修饰电极对食品 中肾上腺素、抗坏血酸、多巴胺及细胞色 素C等也是一种高效灵敏的分析方法。
方式,形成化学键或生成表面配位化合物等物质,从而发生
的吸附。
(3)基于氢键、亲疏水作用力、-堆积力的吸附。这些吸附 也属于物理吸附的范畴。通过氧化还原或研磨等简单的电极
处理方式,在金属电极表面可产生-OH等含氧基团,而碳电
极表面则可产生-OH、C=O、-COOH等含氧基团,这些含氧 基团可通过氢键去捕集溶液中的相应组分。导电碳材料具有 碳原子的共轭结构,故碳基电极可通过-堆积力去吸附含 有苯环类似结构的分子。另外,表面处理干净的碳电极具有
化学修饰电极的制备方法
![化学修饰电极的制备方法](https://img.taocdn.com/s3/m/ae95e7220066f5335a81215f.png)
石墨体系电极的化学修饰过程
石墨体系电极的化学修饰过程
• 已知处于含氧气氛中的石墨,其表面上常 有一COOH、一CO、一OH、一内酯等基 团存在。电极预处理多用空气氧化法来导 人含氧基,但其浓度不高,而且只在与碳 层垂直的棱面上产生,在与碳层平行的基 面无反应。若用高锰酸钾、重铬酸钾、浓 硝酸及过氯酸钠等做湿法氧化处理,就能 导人相当量的含氧基(0~10一9克分子/厘米 2)。此法手续简便,但存在试剂沾污不易清 除的缺点。
• 最好采用氧等离子体处理(或先用氢等离子体刻蚀后再与 氧接触,或与微波产生的原子态的氧反应),导入的含氧 基浓度较高,速度快,也无沾污而且重现性也好。为进一 步提高相同的含氧基的浓度,还可在氧化后再用还原剂, 如氯化锂铝、硼化氢、硼氢化钠、硫代硫酸钠等进行还原 处理,使石墨表面的含氧基均变为-OH基,提供了高浓度 的为键合反应的基团。常用硝化剂如混合酸处理,也可在 电极表面上直接导人胺基,或先用氢等离子体清洁石墨表 面,再与含一NH2的试剂反应;甚至还可用氨等离子体直 接向电极表面导入胺基。 • 此外,将碳纤维在真空中加热到1000℃以上,清除氧 化物就会使电极表面活化,冷却到室温后,与溴化乙烯或 卤化丙烯相接触而导入卤基。
化学修饰电极(CME)——共价 键结法。在电极表面上欲得到高 浓度的功能团,首要的是向电极表面引入可供键合的基团。 • 修饰方法一般分为二步进行:第一步是电极表面的预 处理,第二步是做表面有机合成,最后把目的功能团键合 于电极上。 • 用共价键合法制各化学修饰电极的性能稳定,但在金 属表面形成的修饰膜是单分子层。
• •
下:
金属或金属氧化物电极进行化学键合法修饰的方法如
将电极表面经过如上所述的适当化学前处理引入一 OH基团。然后使电极表面的-OH基团与有机硅化合物作 用,把含官能团R的化学活性物质键合到电极表面。再将电 活性基团与有机硅化合物中的官能团R作用修饰到电极上 去。或预先使有机硅试剂与电活性物质结合后,再用上法 键合到电极上去,达到修饰的目的。另外也可以通过含电 活性物质的试剂与电极表面一OH基团的直接化学反应结 合到电极表面,修饰过程如图所示。
电化学界面
![电化学界面](https://img.taocdn.com/s3/m/1bfdb7747f1922791788e891.png)
电化学界面传统的电化学研究于在(裸电极/ 电解液)界面上,从“青蛙实验”,Faraday电解定律,Tafel经验公式,到Nerst方程,电极过程动力学,乃至建立起界面双电层模型,20世纪70年代之前,如何赋予电极更优良或特定的功能还鲜为人知。
而在1975年Miller(米勒)等人报道按人为设计对电极表面进行化学修饰,标志着化学修饰电极的问世之后,单纯的裸电极/电解液界面的电化学概念有了巨大发展。
本文将着重介绍化学修饰的基本特征和应用;同时介绍离子选择性电极的基本特征和应用,以及电化学在生物体中的某些应用。
一化学修饰电极与电化学中其他电极的概念相比,化学修饰电极zui突出的特性是,在电极表面接着或涂敷了具有选择性化学基团的一层薄膜(从单分子到几个微米)。
它是按人们意图设计的,并赋予了电极某种预定的性质,如化学的,电化学的,光学的、电学的和传输性等。
化学修饰电极的表面性质比离子选择性电极要宽广得多,它概括了有意图设计的zui高形式:设计相界面、设计在电极表面和电极之间的膜中分配和传输性质。
化学修饰电极与离子选择性电极二者的不同点还在于,前者是利用电荷转移来进行实验测定或研究,而后者是测定相间电势。
因此,1989年IUPAC对化学修饰电极的定义是:化学修饰电极是由导体或半导体制作的电极,在电极的表面涂敷了单分子的,多分子的、离子的或聚合物的化学物质薄膜,借Faraday 反应(电荷消耗)而呈现出此修饰薄膜的化学的、电化学的以及/或光学的性质。
近30年来化学修饰电极领域的研究在国际上一直受到很大关注。
美、英、法、日、德等国家都出现有代表性的研究组,国内有中科院长春应用化学所大量开展了这方面研究。
随后许多高校也开展这方面的工作。
这是因为化学修饰电极代表了电极/电解液界面的一种新概念。
以聚合物膜修饰电极为例,它的界面要比传统溶液电化学情况复杂得多,它包括了膜/电极、电极/溶液、膜/溶液三个界面,其电荷传输机理也主要包括下列几个过程:①电极与聚合物膜内电活性氧化还原物质间的电子转移反应(即电极反应);②膜内电荷与物质的移动;③膜内固定的电活性物质与溶液本体相中的氧化还原活性物质间的电子交换反应等。
第三章 化学修饰电极1
![第三章 化学修饰电极1](https://img.taocdn.com/s3/m/c6b4b3dbe009581b6ad9eb20.png)
1
0.68 0.64 0.60
0.6
0.4
0.2
0.0
-0.2
-0.4
4
Potential/V vs SCE
Potentail/V vs SCE
6 3 4
0
5
1
A
1.5
+
blank on a bulk Au electrode luminol on a bulk Au electrode blank on a self-assembled electrode luminol on a self-assembled electrode
2. 化学法和电化学法处理
化学的和电化学的处理,是最常用来清洁,活 化电极表面的手段。
电化学法常用强的矿物酸或中性电解质溶液, 有时也用配位作用弱的缓冲溶液在恒电位,恒电流 或循环电位扫描下极化,可获得氧化的、还原的或 干净的电极表面。
鉴定电极表面是否清洁的方法
对于碳电极,采用观测 Fe(CN)63- 在中性电解质 水溶液中的伏安曲线的方法。在1×10-3 mol/L的 K3Fe(CN)6 磷酸盐缓冲溶液中扫描,直到出现可 逆的阴极和阳极峰。 对于铂电极,在稀硫酸中进行循环电位扫描,观 察氢和氧的电化学行为,即出现了氢和氧的各自 的吸附和氧化峰就表示表面已清洁。
化学修饰电极的表征电化学法电化学法光谱电化学法光谱电化学法波谱法波谱法能谱法能谱法显微学法显微学法石英晶体微天平法石英晶体微天平法通过研究电极表面修饰剂发生相关的电通过研究电极表面修饰剂发生相关的电化学反应的电流电量电位和电解时间等化学反应的电流电量电位和电解时间等参数的关系来定性定量的表征修饰剂的电参数的关系来定性定量的表征修饰剂的电极过程和性能
电化学水处理电极
![电化学水处理电极](https://img.taocdn.com/s3/m/8b41c4365bcfa1c7aa00b52acfc789eb172d9e08.png)
电化学水处理电极
电化学水处理使用的电极通常为化学修饰电极,通过在电极表面进行分子设计,将具有良好特性的分子、离子、聚合物固定在电极表面,从而改变电极和电解液界面的微结构,使电极具有良好的电催化性能。
常用的电化学水处理电极有金属氧化物涂层电极,如钛基涂层电极(Dimensionally Stable Anodes,DSA,尺寸稳定阳极)。
这种电极以耐腐蚀性强的金属钛为架构,并在其表面涂覆具有电催化活性的金属氧化物,因此具有耐腐蚀性强、材料消耗低、阳极不会溶解而对处理水造成污染、寿命长、电流效率高、电催化性能强等特点,对水中的有机无机污染物均具有较好的清除效果。
此外,电化学水处理技术主要分为直接电解和间接电解。
直接电解是指污染物在电极上直接被氧化或者还原,包括阳极过程和阴极过程。
间接电解则是利用电化学所产生的氧化还原物,作为相应的反应剂或者催化剂,将污染物进行一定程度上的转化。
槲皮素化学修饰碳糊电极循环伏安法测定抗坏血酸
![槲皮素化学修饰碳糊电极循环伏安法测定抗坏血酸](https://img.taocdn.com/s3/m/7862b820ef06eff9aef8941ea76e58fafab045ea.png)
槲皮素化学修饰碳糊电极循环伏安法测定抗坏血酸陈明俊【摘要】Quercetin modified carbon paste electrode was prepared. As shown by the result of CV study on the electrochemical behavior of ascorbic acid(AA)at this modified electrode, a sensitive quasi-reversible oxidation peak was observed at +0. 39 V (vs. SCE) in phosphate buffer medium of pH 4. 5. It was found that the charge transfer process on the modified electrode was controlled by adsorption. Linear relationship between values of oxidation peak current and concentration of AA was kept in the range of 5.0×10^-6~5.0×10^-4mol·L^-1, with detection limit (3S/N) of 2.5×10^-6mol·L^-1. The modified electrode was used in the determination of AA in vitamin C tablets, giving values of recovery in the range of 96%-104%.%制备了槲皮素化学修饰碳糊电极,并研究了抗坏血酸在该修饰电极上的电化学行为。
循环伏安法研究发现:在pH4.5的磷酸盐缓冲介质中,抗坏血酸在+0.39V(vs.SCE)处产生一个灵敏的准可逆氧化峰,电极反应受吸附控制。
化学修饰电极在分析化学中的作用
![化学修饰电极在分析化学中的作用](https://img.taocdn.com/s3/m/2ba8b7ff3086bceb19e8b8f67c1cfad6195fe9c7.png)
化学修饰电极在分析化学中的作用
电极作为电化学过程中重要的实验装置,依赖于其可仅用少量电流进行大量反应的能力,改变现有的分析化学方法。
近年来,随着研究人员不断挑战,化学修饰电极技术已经得到了快速发展。
学修饰电极(CMEs)是一种利用有机分子与元素结合形成一个有用的分析电极材料的过程。
化学修饰电极技术中,所改变的是电极表面,而不是整个电极体。
是一种将有机分子或高分子直接定向修饰到电极表面形成电极界面的技术,可以提高电极的电化学响应特性,在分析化学中发挥重要作用。
化学修饰电极具有多种特点,它可以提供灵敏度、特异性和选择性,并有利于控制电极表面的活性化合物的稳定性。
使得CMEs开发出了各种分析技术,可以在微环境中测量微量物质,如金属离子,药物和抗生素等基因表达产物。
学修饰电极技术具有许多优势,例如可快速鉴定定位活性位点,可控制微环境,可检测微量分子,并提供灵敏度和特异性的分析。
时,它可以使得分析过程更快,更有效,更准确。
化学修饰电极技术应用广泛,它可以用于生命科学、环境科学和材料科学等领域,以及临床医学、药剂学和毒理学研究中。
例如,可以使用化学修饰电极技术来检测微量金属离子,以及生物样品中有毒物质,也可以用于生物传感器研究,以及抗菌性蛋白和抗生素活性的研究等。
且,化学修饰电极技术还可以应用于生物分子的膜片识别和结构分析,以及生物及有机分子的测定,可以精确地对生物及有机
分子进行分析。
总之,化学修饰电极在分析化学中发挥了重要作用,可以提供高精度的分析,为解决当前科学问题提供有效的手段,这是一项具有重要意义的技术。
着研究的深入,未来化学修饰电极技术的应用前景可期,将在更多领域开展更广泛的应用。
化学修饰电极化学修饰电极
![化学修饰电极化学修饰电极](https://img.taocdn.com/s3/m/cf989a3352ea551810a687c1.png)
(1)吸附修饰电极
吸附方式: 平衡吸附 静电吸附 LB膜吸附
单层吸附膜
复合膜
LB膜:不溶于水的表面活性物质在水面上形成排列有序 的单分子膜 (Langmuir–Blodgett,LB膜); SA膜:依靠S原子与金之间的作用,硫化物(–SH,SO2等) 在金电极表面形成有序的单分子膜,称为自组装膜(self assembing, SA膜)。
脑神经组织中多巴胺、儿茶胺的实时监测。
2020/1/16
微电极
2020/1/16
4.4.3 生物电化学分析 Bioelectrochemical Analysis
1. 活体伏安分析
1973年 Adams将直径1mm 石墨电极插入大白鼠的大脑尾 核部位,测定多巴胺,获得第 一张活体循环伏安图。
药物在活体中浓度变化、分 解、作用的监测;
通过微电极与超微电极实 现无损伤分析。
2020/1/16
2. 免疫伏安分析
1979年,Heineman等提出; 利用抗原与抗体间特定选择性建立的高选择性分析法。
3. 生物电化学传感器
酶传感器、生物组织传感器、免疫传感器; 测定乙肝的免疫传感器。
2020/1/16
4.4.4 光谱电化学分析
以电化学产生激发信号,以光谱技术测量物质变化的 分析方法。充分利用了电化学方法容易控制物质的状态、 光谱法有利于物质识别的特点。
4.4.1 化学修饰电极
化学修饰电极:
利用化学或物理的方法,将特定功能的分子、离子、 聚合物等固定在电极表面,实现功能设计。
基体材料:碳(石墨)、玻璃、金属等。
1.化学修饰方法
(1)吸附型修饰电极 将特定官能团分子吸附到电极表面。
(2)共价键合型修饰电极 通过化学反应键接特定官能团分子或聚合物。
(整理)化学修饰电极
![(整理)化学修饰电极](https://img.taocdn.com/s3/m/af2c25ad6f1aff00bed51eb1.png)
化学修饰电极化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是目前最活跃的电化学和电分析化学的前沿领域。
化学修饰电极是在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物设计固定在电极表面,使电极具有某种特定的化学和电化学性质。
化学修饰电极扩展了电化学的研究领域,目前已应用于生命、环境、能源、分析、电子以及材料学等诸多方面。
一、研究修饰电极的实验方法:目前,主要应用电化学和光谱学的方法研究修饰电极,从而验证功能分子或基团已进入电极表面,电极的结构如何,修饰后电极的电活性、化学反应活性如何,电荷在修饰膜中如何传递等。
1、电化学方法:通过测量化学反应体系的电流、电量、电极电位和电解时间等之间的函数关系来进行研究的,用简单的仪器设备便能获得有关的电极过程动力学的参数。
常用的方法有循环伏安法1,2,微分脉冲伏安法3,4,常规脉冲伏安法5-8,计时电流法,计时库仑法,计时电位法以及交流伏安法和旋转圆盘电极法。
2、光谱法:能够在分子水平上研究电极表面结构的微观特性,如数量,空间,与电极材料成键的类型,平均分子构象,表面粗糙度对结构的影响,聚合物的溶胀,离子含量,隧沟大小,聚合物结构中的流动性等,这些对于修饰电极的应用是十分重要的。
研究化学修饰电极的常用表面分析方法有X光电子能谱(XPS)9-11、俄歇电子能谱(AES)12-14、反射光谱(Vis-UV15,16, 红外反射光谱17)、扫描电镜(SEM)18-20、光声及光热光谱等。
二、化学修饰电极的分类:一般分为吸附型、共价键合型、聚合物型三大类。
1、吸附型:用吸附的方法可制备单分中层,也可以制备多分子层修饰电极。
将修饰物质吸附在电极上主要通过四种方法进行:平衡吸附型,静电吸附型,LB膜吸附型,涂层型。
平衡吸附型21-25:在电解液中加入修饰物质,它们就会在电极表面形成热力学吸附平衡。
强吸附性物质,如高级醇类、硫醇类、生物碱等在电解液中以10-3~10-5mol/L低浓度存在时,有时能生成完整的吸附单分子层,一般则形成不完全的单分子层。