图像分割常用方法综述[文献综述]

合集下载

图像分割文献综述

图像分割文献综述

文献综述图像分割就是把图像分成各具特色的区域提取感兴趣目标的技术和过程。

它是由图像处理到图像分析的关键步骤,是一种基本的计算机视觉技术。

图像分割起源于电影行业。

伴随着近代科技的发展,图像分割在实际中得3到了广泛应用,如在工业自动化、在线产品检验、生产过程控制、文档图像处理、遥感和生物医学图像分析、以及军事、体育、农业工程等方面。

总之,只要是涉及对对象目标进行特征提取和测量,几乎都离不开图像分割。

所以,对图像分割的研究一直是图像工程中的重点和热点。

自图像分割的提出至今,已经提出了上千种各种类型的分割算法。

由于分割算法非常多,所以对它们的分类方法也不尽相同。

我们依据使用知识的特点与层次,将其分为基于数据和基于模型两大类。

前者是直接对当前图像的数据进行操作,虽然可以利用相关的先验信息,但是不依赖于知识;后者则是直接建立在先验知识的基础上,这类分割更符合当前图像分割的技术要点,也是当今图像分割的主流。

基于数据的图像分割算法多数为传统算法,常见的包括,基于边缘检测,基于区域以及边缘与区域相结合的分割方法等等。

这类分割方法具有以下缺点,○1易受噪声和伪边缘影响导致得到的边界不连续,需要用特定的方法进行连接;○2只能提取图像局部特征,缺乏有效约束机制,难以获得图像的全局信息;○3只利用图像的底层视觉特征,难以将图像的先验信息融合到高层的理解机制中。

这是因为传统的图像处理算法都是基于MIT人工智能实验室Marr提出的各层相互独立、严格由低到高的分层视觉框架下进行的。

由于各层之间不存在反馈,数据自底向上单向流动,高层的信息无法指导底层特征的提取,从而导致底层的误差不断积累,且无法修正。

基于模型的分割方法则可以克服以上缺陷。

基于模型的分割方法可以将分割目标的先验知识等有用信息融合到高层的理解机制之中,并通过对图像中的特定目标对象建模来完成分割任务。

这是一种自上而下的处理过程,可以将图像的底层视觉特征与高层信息有机结合起来,因此更接近人类的视觉处理。

基于UNet结构改进的医学影像分割技术综述

基于UNet结构改进的医学影像分割技术综述

2、UNet模型改进的技术原理和 实现方法
2.1增加网络深度
增加网络深度是提高UNet模型性能的一种有效方法。通过增加编码器和解码 器的层数,可以使得模型具有更强的特征提取能力和更细致的空间信息捕捉能力。 然而,增加网络深度也会带来计算量和参数量增加的问题。一些研究通过使用轻 量级的网络结构(如MobileNetV2、ShuffleNetV2等)来平衡网络深度和计算效 率。
然而,UNet结构仍存在一些问题和不足,需要进一步改进和完善。因此,本 次演示将综述基于UNet结构改进的医学影像分割技术,以期为相关研究提供参考 和借鉴。
文献综述
UNet结构是一种全卷积网络架构,最早由Jens Petersen等人提出,并广泛 应用于医学影像分割任务。UNet结构由编码器和解码器两部分组成,通过跳跃连 接的方式将编码器中的低级特征图传递给解码器中的相应位置,从而保留更多的 空间信息。然而,传统的UNet结构仍存在一些问题和不足,如上下采样过程中的 信息丢失、梯度消失等问题。针对这些问题,研究者们提出了许多改进方法。
总之,U-Net是医学图像分割领域的一种强大工具,其表现出的特性和性能 在许多医学图像处理任务中取得了显著的成功。尽管仍存在一些挑战,如鲁棒性 和资源限制问题,但随着新技术的不断发展,我们有理由相信这些问题会被逐步 解决。未来对于U-Net及其变体的进一步研究,将为医学图像分割提供更准确、 更有效的方法。
U-Net在医学图像分割任务中表现出极佳的性能。例如,在分割CT图像中的 肺组织、MRI图像中的脑组织、X光图像中的骨骼等任务中,U-Net都能够取得超 越传统图像处理算法的性能。同时,通过引入不同的改进策略,如残差连接、注 意力机制、多尺度特征融合等,可以进一步增强U-Net的性能。

图像分割综述

图像分割综述

摘要图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。

在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。

在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。

关键词:图像分割;边界;区域;水平集;马尔科夫AbstractImage segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.Keywords: Image segmentation; Border; Area;Level-set;Markov第1章引言1.1 图像分割的背景和重要作用图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的应用领域,而理解图像的第一步就是图像的分割。

图像分割方法

图像分割方法

图像分割方法图像分割是计算机视觉领域中的一个重要问题,它旨在将图像分成具有语义信息的区域。

图像分割在许多应用中都扮演着重要的角色,比如医学图像分析、自动驾驶、图像检索等。

针对不同的应用场景,有多种图像分割方法被提出并应用于实际问题中。

本文将介绍几种常见的图像分割方法,并对它们的原理和特点进行简要的分析。

1. 阈值分割。

阈值分割是一种简单而有效的图像分割方法。

其基本思想是将图像的灰度值按照设定的阈值进行划分,从而将图像分成不同的区域。

对于灰度图像,可以根据像素的灰度值与设定的阈值进行比较,将像素分为目标和背景两类。

阈值分割方法简单易行,但对光照变化和噪声敏感,对于复杂背景和多目标分割效果有限。

2. 边缘检测分割。

边缘检测分割是一种基于图像边缘信息的分割方法。

其基本思想是利用图像中目标与背景之间的边缘信息进行分割。

常用的边缘检测算子有Sobel、Prewitt、Canny等。

通过检测图像中的边缘信息,可以将图像分成具有明显边界的区域。

边缘检测分割方法对光照变化和噪声具有一定的鲁棒性,但在边缘连接处容易出现断裂和断点。

3. 区域生长分割。

区域生长分割是一种基于像素生长的分割方法。

其基本思想是从种子点开始,根据一定的生长准则逐步将与种子点相邻且满足条件的像素加入到同一区域中,直到满足停止准则为止。

区域生长分割方法适用于具有明显区域特征的图像,对于光照变化和噪声具有一定的鲁棒性,但对于种子点的选择和生长准则的确定比较敏感。

4. 基于深度学习的分割方法。

随着深度学习技术的发展,基于深度学习的图像分割方法逐渐成为研究热点。

深度学习模型如FCN、U-Net等在图像分割领域取得了显著的成果。

这些方法利用卷积神经网络对图像进行端到端的学习,能够有效地提取图像的语义信息,对于复杂背景和多目标分割效果较好。

总结。

图像分割是计算机视觉领域中的重要问题,有许多方法可以用来实现图像分割。

不同的方法适用于不同的应用场景,具有各自的特点和局限性。

图像分割的常用方法

图像分割的常用方法

图像分割的常用方法
1. 阈值分割:根据像素灰度值与预设阈值之间的大小关系将图片分成黑白两个部分,常用于二值化处理。

2. 区域生长:利用像素之间的空间连通关系,从种子像素开始,将与其相邻的像素逐步合并成同一个区域。

3. 全局图像分割:将图像分成多个颜色或灰度级别,然后根据图像亮度、颜色、纹理、空间信息等特征进行分类,常用于分类、检测、识别等任务。

4. 模型分割:使用先前训练好的模型对图像分类和分割。

例如,利用卷积神经网络(CNN) 对图像进行分类和分割。

5. 基于图的分割:将图像转换成图形结构,建立节点之间的连接关系,通过图形算法对图形进行分割。

6. 边缘检测:检测图像中的边缘线条并将其分割出来,常用于目标检测和识别。

7. 水平集分割:该方法使用曲线(水平集) 对图像进行分割,可以在不同曲线之间自由地移动,因此在较复杂的图像中可以得到更好的分割效果。

图像分割技术研究综述

图像分割技术研究综述

图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。

本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。

图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。

图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。

例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。

根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。

1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。

基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。

2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。

这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。

3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。

这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。

4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。

常用的模型包括参数化模型和非参数化模型两类。

这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。

5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。

这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。

近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。

最全综述图像分割算法

最全综述图像分割算法

最全综述图像分割算法重磅干货,第一时间送达图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。

所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。

简单的说就是在一副图像中,把目标从背景中分离出来。

对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。

关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。

虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。

本文对于目前正在使用的各种图像分割方法进行了一定的归纳总结,由于笔者对于图像分割的了解也是初窥门径,所以难免会有一些错误,还望各位读者多多指正,共同学习进步。

传统分割方法这一大部分我们将要介绍的是深度学习大火之前人们利用数字图像处理、拓扑学、数学等方面的只是来进行图像分割的方法。

当然现在随着算力的增加以及深度学习的不断发展,一些传统的分割方法在效果上已经不能与基于深度学习的分割方法相比较了,但是有些天才的思想还是非常值得我们去学习的。

1.基于阈值的分割方法阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。

因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。

阈值法特别适用于目标和背景占据不同灰度级范围的图。

图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。

图像处理文献综述

图像处理文献综述

文献综述近年来,随着计算机视觉技术的日益发展,图像处理作为该领域的关键方向受到越来越多研究人员的关注与思考。

在现在的日常生活中,由于通信设备低廉的价格和便捷的操作,人们越来越喜欢用图像和视频来进行交流和分享,消费性的电子产品在消费者中已经非常普遍,例如移动手机和数码相机等等。

在这个纷繁多变的世界,每天都有数以万计的图像产生,同时信息冗余问题也随之而来。

尽管在一定的程度上,内存技术的增加和网络带宽的提高解决了图像的压缩和传输问题,但是智能的图像检索和有效的数据存储,以及图像内容的提取依然没有能很好的解决。

视觉注意机制可以被看做是人类对视觉信息的一个筛选过程,也就是说只有一小部分重要的信息能够被大脑进行处理。

人类在观察一个场景时,他们往往会将他们的注意力集中在他们感兴趣的区域,例如拥有鲜艳的颜色,光滑的亮度,特殊的形状以及有趣的方位的区域。

传统的图像处理方法是将整幅图像统一的处理,均匀的分配计算机资源;然而许多的视觉任务仅仅只关系图像中的一个或几个区域,统一的处理整幅图像很明显会浪费过多的计算机资源,减少处理的效率[1,2]。

因此,在计算机视觉领域,建立具有人类视觉系统独特数据筛选能力的数学模型显得至关重要。

受高效的视觉信息处理机制的启发,计算机视觉领域的显著性检测应运而生。

图像显著性检测是通过建立一定的数学模型,让计算机来模拟人类的视觉系统,使得计算机能够准确高效的定位到感兴趣的区域。

一般来说,一个信号的显著性可以表示为其和周围环境的差异性。

正是因为这个信号和周围的其他信号的迥异性,使得视觉系统不需要对环境中的所有感兴趣的区域进行逐个的扫描,显著的目标会自动从环境中凸显出来。

另外,一些心理学研究表明人类的视觉机制不仅仅是由低级的视觉信号来驱动的,基于记忆、经验等的先验知识同样能够决定场景中的不同信号的显著性,而这些先验知识往往是和一些高层次的事件以及视觉任务联系在一起的。

基于当前场景的视觉显著性机制是低级的,慢速的。

图像分割方法综述【文献综述】

图像分割方法综述【文献综述】

文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。

活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。

鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。

最后指出了图像分割的算法还有一些进一步优化的研究发展方向。

关键词:图像分割,参数活动轮廓模型,几何活动轮廓模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。

其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。

图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。

水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。

一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。

2、整体性。

能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。

3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。

图像处理文献综述【范本模板】

图像处理文献综述【范本模板】

信息工程学院毕业设计文献综述姓名:学号:专业:班级:此栏为论文题目作者姓名:(塔里木大学信息工程学院**系**班,电话号码)摘要:在图像处理中,图像滤波起着重要作用。

它可以有效地抑制(平滑)各种噪声、保持边缘信息,从而改善后续处理工作的质量(如提高图像分割精度等)。

图像滤波的方法有很多,比如说中值滤波、均值滤波、高斯滤波、维纳滤波等,中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,均值滤波是把每个像素都用周围的8个像素来做均值操作,高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,本文着重对中值滤波、均值滤波和高斯滤波进行分析,进一步了解它们的原理、特点、改进的算法及其应用.关键词:图像;滤波;中值滤波;均值滤波;高斯滤波一、引言图像滤波就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。

[1]对图像滤波的要求是,既能滤除图像中的噪声又能保持图像的细节。

[2]由于噪声和图像细节的混叠,所以在图像滤波中,图像的去噪与细节的保留往往是一对矛盾。

数字图像滤波技术是20世纪60年代发展起来的一门新兴学科,随着图像滤波理论和方法的进一步完善,[3]使得数字图像滤波技术在各个领域得到了广泛应用,并显示出广阔的应用前景。

面对数字化时代的来临,图像滤波知识显得越来越重要,实际上图像滤波已经渗透到计算机、电子、地质、气象、医学等诸多领域.二、正文1、**的发展状况图像滤波的发展大致经历了初创期、发展期、普及期和实用化期4个阶段.初创期开始于20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理.[5]在这一时期,由于图像存储成本高、处理设备昂贵,其应用面很窄。

进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。

医学图像分割文献综述

医学图像分割文献综述

前言随着科学技术的发展,生物切片图像在生命科学、医学、农业等领域得到越来越广泛的应用。

通过对切片图像进行图形、图像处理,可以从图像中提取有意义的目标.并重建出三维模型.为人们提供便利。

与其他图像相比,生物切片图像具有颜色相近、灰度不均匀、边缘复杂等特点,增加了图像分割的难度。

常用的图像分割方法有阈值法、基于边缘的方法、基于区域生长的方法等。

对于生物切片图像,传统的分割技术或失败,或需要特殊的处理技术⋯。

新兴的数学形态学技术在滤波去噪、保持轮廓信息等方面有着明显的优势。

因此,形态学常与分割方法相结合,如用形态学改进边缘检测效果,应用于生物组织的纹理分割I,以及生物切片的交互式区域分割等。

本文探讨形态学与阈值方法相结合的模板法。

以实现医学病理切片图像中真皮区域分割2.2医学图像分割概述算法应用与研究图像分割是图像处理中的关键问题,分布的区域,得到的图像称为分割图像,可以给出如下图像分割的定义[1】:它把图像分成若干个按照一个或几个特征均匀表示的是区域信息。

借助集合概念对图像分割令集合R代表整个图像区域,对R的分割可以看着将R分成N个满足以下五个条件的非空子集;Ⅳ①lJRi=Rf=l②Rin母=a,对所有的i和j,f≠J③P(Ri)=TRUE,i--1,2一·N④P(RiA母)=FALSE,i≠J⑤Rf是连通的区域,i=l,2···N条件①指出在对一幅图像的分割应将图像中的每个像素都分进某个子区域中;条件②指出在分割结果中各个子区域是互补重叠的;条件③指出在分割结果中每个子区域都有独特的特性;条件④指出在分割结果中,各个子区域具有不同的特性,没有共同元素;条件⑤指出分割结果中同一个子区域内的像素应该是连通的。

医学图像中包含的内容很多,有些是临床诊断所关心的有用区域,称之为感兴趣区域(Region Of Interest,ROI),有些是不感兴趣的周围环境区域,称之为不感兴趣区域(Region Of Uninterested,ROU)。

图像处理文献综述

图像处理文献综述

文献综述理论背景数字图像中(de)边缘检测是图像分割、目标区域(de)识别、区域形状提取等图像分析领域(de)重要基础,图像处理和分析(de)第一步往往就是边缘检测.物体(de)边缘是以图像(de)局部特征不连续(de)形式出现(de),也就是指图像局部亮度变化最显着(de)部分,例如灰度值(de)突变、颜色(de)突变、纹理结构(de)突变等,同时物体(de)边缘也是不同区域(de)分界处.图像边缘有方向和幅度两个特性,通常沿边缘(de)走向灰度变化平缓,垂直于边缘走向(de)像素灰度变化剧烈.根据灰度变化(de)特点,图像边缘可分为阶跃型、房顶型和凸缘型.、图像边缘检测技术研究(de)目(de)和意义数字图像边缘检测是伴随着计算机发展起来(de)一门新兴学科,随着计算机硬件、软件(de)高度发展,数字图像边缘检测也在生活中(de)各个领域得到了广泛(de)应用.边缘检测技术是图像边缘检测和计算机视觉等领域最基本(de)技术,如何快速、精确(de)提取图像边缘信息一直是国内外研究(de)热点,然而边缘检测也是图像处理中(de)一个难题.首先要研究图像边缘检测,就要先研究图像去噪和图像锐化.前者是为了得到飞更真实(de)图像,排除外界(de)干扰,后者则是为我们(de)边缘检测提供图像特征更加明显(de)图片,即加大图像特征.两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测(de)研究,我们最终所要达到(de)目(de)是为了处理速度更快,图像特征识别更准确. 早期(de)经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等.早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期(de)系统研究,从此有关边缘检测(de)理论方法不断涌现并推陈出新.边缘检测最开始都是使用一些经验性(de)方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显(de)缺陷,导致其检测结果并不尽如人意.20世纪80年代,Marr和Canny相继提出了一些更为系统(de)理论和方法,逐渐使人们认识到边缘检测(de)重要研究意义.随着研究(de)深入,人们开始注意到边缘具有多分辨性,即在不同(de)分辨率下需要提取(de)信息也是不同(de).通常情况下,小尺度检测能得到更多(de)边缘细节,但对噪声更为敏感,而大尺度检测则与之相反.1983年Witkin首次提出尺度空间(de)思想,为边缘检测开辟了更为宽广(de)空间,繁衍出了很多可贵(de)成果.随着小波理论(de)发展,它在边缘检测技术中也开始得到重要(de)应用.MALLAT造性地将多尺度思想与小波理论相结合,并与LoG, Canny算子相统一,有效地应用在图像分解与重构等许多领域中.这些算子现在依然应用于计算几何各个现实领域中,如遥感技术、生物医学工程、机器人与生产自动化中(de)视觉检验、零部件选取及过程控制等流程、军事及通信等.在图像边缘检测(de)过程中老算法也出现了许多(de)问题.经过多年(de)发展,现在已经出现了一批新(de)图像边缘检测算法.如小波变换和小波包(de)边缘检测、基于形态学、模糊理论和神经网络(de)边缘检测等,这些算法扩展了图像边缘检测技术在原有领域中(de)运用空间,同时也使它能够适应更多(de)运用需要.国内外研究现状分析数字图像边缘检测技术在二十世纪六十年代因客观需要而兴起,到二十一世纪初期,它已经处于发展(de)全盛时期.图像边缘检测技术进一步发展(de)另一个原因是计算机硬件(de)开发与软件系统(de)进一步完善,导致数字图像技术(de)精度更高、成本更低、速度更快及灵活性更好.由于数字图像边缘检测包括很多方面,所以该文主要针对图像边缘检测进行研究和分析. 图像(de)边缘检测是图像最基本(de)特征,精度(de)提取出图像边缘可以对图像进行更多方面(de)研究.早期(de)经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等.经典(de)边缘检测算法是对原始图像中像素(de)某小领域来构造边缘检测算子,常用(de)边缘检测算子有Roberts算子、Sobel算子、Prewitt算子Kirsch算子、Laplacian 算子、LOG算子、Canny算子等.虽然这些算法已经提出并应用了很多年,不过任然有其发展空间.近年来随着数学理论以及人工智能(de)发展,又涌现出了许多新(de)边缘检测(de)方法,如小波变换和小波包(de)边缘检测、基于数学形态学、模糊理论和神经网络(de)边缘检测法.小波变换和小波包(de)边缘检测方法:在数字图像边缘检测中,需要分析(de)图像往往结构复杂、形态各异,提取(de)图像边缘不仅要反应目标(de)整体轮廓,目标(de)局部细节也不能忽视,这就需要更多尺度(de)边缘检测,而小波变换具有天然(de)多尺度特征,通过伸缩平移运算对信号进行细化分析,达到高频处时间细分,低频出频率细分.所以,小波变换非常适合复杂图像(de)边缘检测.在Coifman、Meyer、Wickhauser引入小波理论后,小波包分解则更是为精细(de)一种图像分解方法,可以满足不同分辨率下对局部细节进行边缘检测提取(de)需要,尤其是含噪图像,提取图像边缘对抑制图像噪声更好.基于数学形态学(de)边缘检测方法:数学形态学是图像边缘检测和模式识别领域中一门新兴(de)学科,具有严格(de)数学理论基础,现已在图像工程中得到广泛(de)运用.基本思想是用具有一定形态学(de)结构元素去度量和提取图像中(de)对应形状已达到对图像分析和识别(de)目(de).获得(de)图像结构信息与结构元素(de)尺寸和形状都有关系,构造不同(de)结构元素,便可完成不同(de)图像分析.数学形态学包括二值形态学、灰度形态学和彩色形态学,基本变换包括膨胀、腐蚀、开启、闭合四种运算,并由这四种运算演化出开、闭、薄化、厚化等,从而完成复杂(de)形态变换.目前随着二值形态学(de)运用越来越成熟,灰度和彩色形态学在边缘检测中(de)运用也越来越引起人们(de)关注并逐渐走向成熟.由于边缘本身检测本身所具有(de)难度,使研究没有多大(de)突破性(de)进展.仍然存在(de)问题主要有两个:其一是没有一种普遍使用(de)检测算法;其二没有一个好(de)通用(de)检测评价标准.从边缘检测研究(de)历史来看,可以看到对边缘检测(de)研究有几个明显对策趋势:一是对原有算法(de)不断改进;二是新方法、新概念(de)引入和多种方法(de)有效综合利用.人们逐渐认识到现有(de)任何一种单独(de)边缘检测算法都难以从一般图像中检测到令人满意(de)边缘图像,因而很多人在把新方法和新概念不断(de)引入边缘检测领域(de)同时也更加重视把各种方法总和起来运用.在新出现(de)边缘检测算法中,基于小波变换(de)边缘检测算法是一种很好(de)方法.三是交互式检测研究(de)深入.由于很多场合需要对目标图像进行边缘检测分析,例如对医学图像(de)分析,因此需要进行交互式检测研究.事实证明交互式检测技术有着广泛(de)应用.四是对特殊图像边缘检测(de)研究越来越得到重视.目前有很多针对立体图像、彩色图像、多光谱图像以及多视场图像分割(de)研究,也有对运动图像及视频图像中目标分割(de)研究,还有对深度图像、纹理(Texture)图像、计算机断层扫描(CT)、磁共振图、共聚焦激光扫描显微镜图像、合成孔径雷达图像等特殊图像(de)边缘检测技术(de)研究.五是对图像边缘检测评价(de)研究和对评价系数(de)研究越来越得到关注.相信随着研究(de)不断深入,存在(de)问题会很快得到圆满(de)解决.。

图像分割研究综述

图像分割研究综述

编者按:在人类接收的信息中有80%来自视觉或者说为图像(Image)信息,这包括图像、图形(动画)、视频、文本、数据等,这是人类最有效和最重要的信息获取和交流方式。

随着计算机的普及,人们越来越多地利用计算机来帮助人类获取与处理视觉(图像)信息。

图像技术是对视觉图像获取与加工处理技术的总称。

图像技术近年来受到人们广泛的关注,它包括图像的采集获取;图像编码存储和传输;图像的产生、显示与变换;图像的分割,图像的特征提取与测量;图像数据库的建立、索引和抽取;图像的分类、表示和识别;图像的模型匹配;图像的质量评价;图像的解释与理解等。

根据抽象程度和处理方法的不同,图像技术可分为三个层次:图像处理,图像分析和图像理解。

这三个层次的有机结合也可称为图像工程。

图像处理是较低层的操作,主要在图像像素级上进行处理。

比较狭义的图像处理主要包括对图像分割以改善视觉效果,或对图像压缩编码以减少传输时间或存储容量。

图像分析则是进入中层的操作,分割和特征提取把原来以像素描述的图像转变成简洁的非图形式的符号描述。

即图像分析是一个图像进而数据出的处理,数据可以是特征测量的结果,或是基于测量的符号表示。

图像理解也经常被称为计算机视觉,这主要是高层操作。

图像理解进一步研究图像中的目标和它们之间的联系,其处理过程与方法与人类的思维推理往往有不少类似之处。

根据以上所述,本专辑有以下文章:①图像分割研究综述;②视觉计算———人类感知能力的延伸;③数字图像的质量评价;④基于数码相机的图像采集系统;⑤神经递质释放的计算机图像分析系统;⑥计算机视觉技术在智能交能系统中的应用;⑦点光源视景图像的控制与实现图像分割研究综述3Study Surveys on Image Segmentation北京工业大学信号与信息处理研究室(100022) 王爱民 沈兰荪【摘要】图像分割是指将一幅图像分解为若干互不交迭区域的集合,是图像处理与机器视觉的基本问题之一。

图像分割算法研究综述

图像分割算法研究综述

图像分割算法研究综述一、本文概述随着计算机视觉技术的飞速发展,图像分割作为其中的一项关键任务,日益受到研究者的关注。

图像分割是指将数字图像细分为多个图像子区域的过程,这些子区域在某种特性或计算上呈现出一致性,如颜色、纹理、形状或空间关系等。

这些被分割的子区域能够显著简化或改变图像的表示形式,使其更适合于进行高级的图像分析和理解任务,如目标识别、场景理解等。

本文旨在全面综述近年来图像分割算法的研究进展,分析和评价各类算法的性能与特点。

我们将对图像分割的基本概念和常用方法进行介绍,包括基于阈值的分割、基于边缘的分割、基于区域的分割以及基于深度学习的分割等。

接着,我们将对各类算法的优缺点进行深入探讨,并结合实际应用场景,分析其在不同任务中的表现。

本文还将关注图像分割领域的发展趋势,如多模态图像分割、弱监督学习在图像分割中的应用等。

我们期望通过本文的综述,能够为读者提供一个清晰、全面的图像分割算法知识框架,并为未来的研究提供有益的参考和启示。

二、图像分割算法分类图像分割是计算机视觉领域的一项关键任务,旨在将图像划分为具有相似性质的区域。

根据不同的原理和方法,图像分割算法可以大致分为以下几类:基于阈值的分割方法:这是最简单的一类图像分割方法,它根据像素值的差异来设置阈值,从而将图像分为不同的区域。

这种方法对于背景与前景有明显对比的简单图像效果较好,但对于复杂场景或光照不均的图像则可能效果不佳。

基于边缘的分割方法:边缘分割方法主要依赖于检测图像中的边缘信息,即像素值发生剧烈变化的区域。

常用的边缘检测算子有Sobel、Canny等。

这类方法对于具有明显边缘特征的图像效果较好,但容易受到噪声的影响。

基于区域的分割方法:基于区域的分割方法是根据像素的相似性将图像划分为不同的区域。

典型的算法有区域生长和分裂合并。

这类方法对于具有均匀纹理和颜色的图像效果较好,但对于边界模糊或复杂纹理的图像可能效果不佳。

基于深度学习的分割方法:随着深度学习技术的发展,基于卷积神经网络(CNN)的图像分割方法取得了显著的进展。

医学图像分割与分类算法综述

医学图像分割与分类算法综述

医学图像分割与分类算法综述医学图像在现代医疗影像诊断中起着重要的作用。

为了提高医疗诊断的准确性和效率,医学图像分割与分类算法成为研究的热点之一。

本文将综述医学图像分割与分类算法的研究进展,并介绍一些经典的算法方法。

1. 医学图像分割算法医学图像分割是根据医学图像中的不同区域或结构的特征进行像素级的分类。

常用的医学图像分割算法包括阈值法、区域生长法、边缘检测法、基于模型的方法和深度学习方法。

阈值法是最简单和直观的图像分割方法之一。

它基于像素灰度值的阈值将图像分成不同的区域。

但是,阈值选择的准确性对分割结果影响较大,容易受到噪声、光照变化等因素的影响。

区域生长法是基于图像的局部相似性进行分割的方法。

它从一个种子点开始,根据像素的相似性将相邻的像素聚类成一个区域。

区域生长法可以在一定程度上克服阈值法的缺点,但是对于具有复杂结构的图像分割仍然存在一定的挑战。

边缘检测法通过检测图像中各个区域间的边缘信息进行分割。

常用的边缘检测算法包括Canny算法、Sobel算法等。

边缘检测法在图像分割中得到了广泛的应用,但是对于边缘不明显或存在噪声的图像,其准确性和稳定性有待进一步提高。

基于模型的方法是利用已知的医学图像模型进行分割。

这些模型可以是基于统计学的模型,如高斯模型、概率密度模型等,也可以是基于形状的模型,如活动轮廓模型、水平集模型等。

基于模型的方法可以较好地处理具有特定结构或形状的医学图像,但是对于复杂的医学图像分割仍然存在一定的局限性。

深度学习方法是近年来医学图像分割的研究热点。

深度学习算法可以自动学习医学图像的特征表示,从而实现更准确的分割。

常用的深度学习网络包括卷积神经网络(CNN)、循环神经网络(RNN)等。

深度学习方法在医学图像分割领域取得了很大的突破,但是其训练过程复杂,需要大量的训练数据和计算资源。

2. 医学图像分类算法医学图像分类是根据医学图像中的特征将其归类为不同的疾病或病态。

常用的医学图像分类算法包括基于特征的方法和基于深度学习的方法。

图像分割的阈值法综述

图像分割的阈值法综述

图像分割的阈值法综述引言图像分割是计算机视觉领域的一项重要任务,旨在将图像分割成不同的区域或对象。

阈值法是一种常用的图像分割方法,具有算法简单、运算量小、易于实现等优点,因此在工业、医学、军事等领域得到了广泛的应用。

本文将对图像分割的阈值法进行综述,介绍其概念、优缺点、应用现状和发展趋势。

文献综述阈值法是一种基于像素值的图像分割方法,通过设置一个阈值,将像素值划分为不同的类别。

早在1979年,阈值法就已被提出并应用于图像分割领域。

随着技术的发展,各种阈值法模型不断涌现,包括线性阈值法、非线性阈值法、自适应阈值法等。

线性阈值法是最早的一种阈值法,通过将像素值线性地映射到阈值上,将图像分割成两个或多个区域。

常用的线性阈值法包括Otsu’s方法、Mean-Shift方法等。

非线性阈值法则通过非线性映射关系,更加精确地描述像素值的分布情况。

常用的非线性阈值法包括Gamma变换、正态分布模型等。

自适应阈值法则根据图像的局部特征,自适应地设置阈值,以提高图像分割的准确性。

常用的自适应阈值法包括局部阈值法、区域生长法等。

此外,还有基于深度学习的阈值法,如卷积神经网络(CNN)等,通过训练模型学习图像特征,实现更加精确的图像分割。

研究现状目前,阈值法在图像分割中的应用已经非常广泛。

在图像去噪方面,阈值法可以有效地区分噪声和图像信号,从而实现图像的降噪。

在图像降维方面,阈值法可以通过对像素值进行聚类,将图像转换为低维特征表示,从而加速图像处理速度并减少计算复杂度。

然而,阈值法也存在一些局限性。

首先,阈值法的性能对阈值的选择非常敏感,如果阈值选择不合适,可能会导致图像分割效果不佳。

其次,阈值法只能处理静态的图像,对于动态的图像处理效果较差。

此外,对于复杂背景和遮挡等干扰因素,阈值法也难以实现准确的图像分割。

实验设计与结果分析为了验证阈值法在图像分割中的效果,我们设计了一系列实验。

首先,我们选取了不同类型的图像,包括自然场景、人脸、医学影像等,使用不同的阈值法进行分割实验。

医学图像分割方法综述

医学图像分割方法综述
串行边缘检测:要想确定当前像素点是否属于欲检测边缘上一 点,取决于先前像素验证结果。
并行边缘检测:一个像素点是否属于检测边缘上一点取决于当 前正在检测像素点以及该像素点一些相邻像素点。
医学图像分割方法综述
15/36
边缘检测
•怎样确定某一个像素在边缘呢?
医学图像分割方法综述
16/36
边缘是改变发生地方
改进:提升算法自动化程度,同时维持形变模型原有优点; 气球理论,梯度矢量流(GVF)概念等。
医学图像分割方法综述
29/36
Snake function
Esnake
s
1 2
(s)
|
vs
|2
(s)
|
vss
|2 )
Eimage (v(s))ds
a代表弹性势能
b代表弯曲能
医学图像分割方法综述
30/36
理想数字边缘模型
斜坡数字边缘模型
医学图像分割方法综述
一阶倒数 二阶倒数
17/36
• 一幅图像梯度
图像梯度
f
f x
f
y
•梯度方向
•边界强度
医学图像分割方法综述
18/36
怎样得到每个像素梯度
Roberts算子、Prewitt算子、Sobel算子、Canny算子等
Sobel算子介绍:
Sx = (I(i-1,j+1)-I(i-1,j-1) + 2*I(i,j+1)-2*I(i,j-1) + I(i-1,j-1)-I(i+1,j-1))/8 Sy = (I(i-1,j-1)-I(i+1,j-1) + 2*I(i-1,j)-2*I(i+1,j) + I(i-1,j+1)-I(i+1,j+1))/8

图像分割技术综述

图像分割技术综述
摘 要: 图像 分割 是 图像 处 理 中的 一 项 关键 的技 术 , 是 目标识 别 和 图像 解释 的 前提 , 多年 来一 直倍 受关 注 。 目前 , 在 图像 分 割领 域 里 的分割 方法 众 多 , 但 至今 没有 一种 通 用的 方 法 。文章 综 述 了近年 来在 图像 分 割技 术 中 出现 的常 用 方 法及 它们 的 优缺 点 , 并对 图像 分 割技 术 的前 景进 行 了分析 及展 望 。 关键 词 : 图像 分 割 ; 边缘 检 测 ; 图论
1引言
在 对 图像 的研究 和 分析 中 , 人 们 通常 对 图像 中特定 的 、 具有 独特 性 质 的 区域感 兴 趣 ,图像 分 割就是 指 把这 些 区域 提取 出来 的技 术 和 过程 。正 因为 图像 分 割作 为前 沿 学科 充满 了挑 战 , 近年 来 , 吸引 了众 多学 者从 事这 一领 域 的研究 。图像 分割 技术 在航 空航天 、 生 物医学 工 程、 工业 检测 、 机 器人 视觉 、 公 安 司法 、 军事 制导 、 文 化艺 术 、 地理 测 绘 等领 域 受到 广泛 重 视 , 并 取得 了重大 的开 拓性 成 就 , 使 其成 为一 门引 入 注 目且前景 广 阔的新 型学科 。 2 传统 的 图像 分 割技术 图像分 割 一般 根据 要解 决 的 问题将 图像 细分 为 感兴 趣对 象 的集 合, 其分割方法的种类已达上千种 。 传统的图像分割技术多为基于图 像局部特征 的图像分割方法,是根据图像 局部区域中像元的特征来 实 现 图像分 割 的方法 。 2 . 1基 于阈值 的 图像 分 割技术 阈值 分割 法是 一种 传 统 的 图像 分 割方 法 , 因其 实现 简单 、 计算 量 小、 性 能较 稳定 而 成为 图像 分割 中最基 本和 应用 最 广泛 的分 割技 术 。 阈值 法在 不 同物 体或 结构 之 间有很 大 的强 度对 比时 ,能 够 得到 很好 的效果 。 它计 算 简单 , 而且 总能用 封 闭而且 连通 的边 界定义 不交 叠 的 区域 。阈值化 分 割算法 就是 选取 一个 或者 多个 阈值 , 将 图像 的直 方 图 分成几类 , 图像 中灰度值在 同一个灰度类内的象素属于同一个类 , 从 而达 到分 割 的 目的。 阈值 法 的核 心是 如何 选 择合适 的阈值 ,阈值分 割法 具 有运 算效 率较高 、 计 算 简单 等优 点 , 在过 去 的几 十年 中被 广泛 使用 。阈值 化算 法 多种 多样 , 最具 代表 陆的方 法有 : 最 大类 间方 差法 、 直 方 图法 、 最大 熵法 、 概 率松 弛法 、 最 小误 差法 、 矩 量保 持法 等 。但 是 , 阈值 法一 般仅 考虑像素本身的灰度值 , 不考虑图像的空间相关胜特征 , 极易受到噪 声的影响。在实际情况中, 阈值法常与其它分割算法相结合 , 对 图像 进行 分割 。 2 . 2基 于边 缘 的图像 分割技 术 边 缘检 测法 是基 于 图像 不 连续性 的分割 技术 ,它 通过 检测 不 同 均匀 区 域之 间 的边界 来 实现 对 图像 的分 割 ,这 与 人 的视觉 过程 有些 相似 。 依据执行方式的不同, 这类方法通常又分为串行边缘检测技术 和并 行 边缘 检测 技 术 。串行 边缘 检测 技术 首 先要 检测 出一 个边 缘起 始点, 然 后 根据 某种 相似 性 准则 寻找 与前 一点 同类 的边 缘 点 , 这 种 确 定后 继相 似点 的方 法称 为跟 踪 。 根 据跟踪 方 法的不 同 , 这 类方 法又 可 分 为轮廓 跟踪 、 光栅 跟踪 和全 向跟 踪三 种方法 Ⅲ 。 并 行边 缘 检测 技术 通常 借 助空 域微 分算 子 ,通过 其模 板 与 图像 卷积完成, 因而检测 方法包 括基 于各 种边 界检 测算 子 ̄ ( R o b e a s 算 子、 L a p l a e i a n 算子 、 S 0 b e l 算子 、 P r e w i t t 算子 、 L O G算 子 等 )的边 界 检 测 。这类 方法 通常 不能得 到连 续 的单像 素边 缘 , 而 这对 于分 割来说 是 至 关重 要 的 。所 以 , 通 常在进 行上 述 边缘 检测 之后 , 需要 进 行一 些 边 缘 修正 的工作 , 如 边缘 连通 、 去除 毛刺 和虚假 边缘 等 。 2 . 3 基于 区域特 征 的图像 分割技 术 基 于 区域 的分割 技术 有两 种基 本形 式 : 区域生 长和分 裂合 并 。 前 者是从单个像素出发 , 逐渐合并以形成所需的分割结果, 是区域分割 的最基 本 方 法 ; 后 者 是从 整 个 图像 出发 , 不 需 要生 长 点 , 逐 渐分 裂 或 合并以形成所需要 的分割结果。不同于阈值方法 , 这类方法不但考虑 了像素 的相似性 , 还考虑了空间上的邻接性 , 因此可以有效消除孤立 噪声的干扰 , 具有很强的鲁棒性。而且 , 无论是合并还是分裂 , 都能够 将 分割 深入 到 像素 级 , 因此 可 以保证 较 高 的分割 精度 , 如 分水 岭算 法 等。 3改进 的 图像分 割技 术 传统 的图像 分 割技 术 都 或多 或 少 地存 在 着某 种 程 度上 的不 足 , 因此更 多 的研 究者 尝试 将诸 多 理论模 型与 图像 分割 技术 相结 合 以求 达 到 更好 的分 割效 果 。本 文就 简要 介绍 了几 种 应用 得较 为广 泛 的改

医学图像分割算法综述

医学图像分割算法综述

医学图像分割算法综述随着技术的不断进步,医学图像在临床应用中扮演着越来越重要的角色。

医学图像分割算法是将图像中的信息分离为不同的区域的过程,可用于亚像素级别的图像分析和诊断,被广泛应用于医学影像处理中。

本文将介绍几种常见的医学图像分割算法,包括:阈值分割算法、区域生长算法、边缘检测算法、水平线算法、聚类算法和机器学习算法。

1. 阈值分割算法阈值分割算法是医学图像分割中最简单的方法之一,它将图像像素按其灰度级别分为两部分。

如果像素的灰度值高于特定的阈值,则将其分配给一个分割类别,否则分配给另一个分割类别。

阈值可以手动或自动设置。

手动设置阈值通常可以得到较好的分割结果,自动设置阈值则需要先对图像进行预处理,如直方图均衡化和变换,以使其更适合自动阈值选择算法。

2. 区域生长算法区域生长算法基于像素之间相似性的概念,在开始的时候选定一个种子点,它被包括在一个区域中。

然后,算法在种子点周围的像素上进行迭代,在迭代过程中,对于那些与种子点相似的像素,将它们添加到该区域中。

该算法对于像素数量较少的图像比较有效,但对于包含许多较小的目标的图像较差,因为在这些情况下,算法容易陷入误判。

3. 边缘检测算法边缘检测算法采用像素点在灰度空间中的梯度和目标周围的反差来检测图像的边缘。

梯度表示像素值发生变化的方向和速率,既可以用于检测目标的轮廓,也可以用于检测目标内部。

边缘检测算法对于图像中有大量的灰度变化和边缘的情况效果比较好,但对于像素变化不明显的图像效果较差。

4. 水平线算法水平线算法基于连续像素的行为,可以用于检测相邻像素之间的物体或组织。

算法从顶部或底部的一个像素开始,检测到一个物体或组织的边界。

然后,该算法继续扫描相邻像素,以便检测到相同的物体或组织。

该算法适用于平滑的轮廓和渐变变化的图像,但不适用于存在复杂形状的图像。

5. 聚类算法聚类算法通过对相似像素进行分类,将图像分割成若干个区域。

这些像素通常具有相似的物理或几何属性,如颜色,亮度和形状等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述
通信工程
图像分割常用方法综述
摘要:本文首先介绍了图像分割的定义,再介绍了几种图像分割常用方法:基于阈值的分割方法、基于轮廓的分割方法、基于区域的分割方法,并对其优缺点进行了比较,最后介绍了图像分割的研究现状及发展前景。

关键词:图像分割;数字图像处理;阈值;边缘;区域
一、图像分割文献分析
在中国知网搜索关键词“图像分割”,且包含关键词“基于”共有12070条记录。

在结果中检索,并将词频设置为2次以上,得:且包含“阈值”的有1731条记录,且包含“边缘”的有1780条记录,且包含“区域”的有3048条记录。

分析结果如下表1所示:
表1 图像分割常用方法所占的研究比例
从表1可以看出,图像分割的几种经典方法的研究依旧占据了大半,尤其是基于区域的研究方法,更是研究的重点之一。

当然对于新方法的研究也很热门。

在中国知网搜索关键词“图像分割”,且包含关键词“应用”共有6326条记录。

在结果中检索,并将词频设置为2次以上,得:且包含“阈值”的有791条记录,且包含“边缘”的有957条记录,且包含“区域”的有1432条记录。

分析结果如下表2所示:
表2 图像分割常用方法所占的应用比例
表2的数据与表1接近,说明现在的数字图像分割的研究成果应用到实际的比例相当之高,可谓硕果累累。

在中国知网搜索关键词“图像分割”,并将时间限定为2007年到2011年,共有9313条记录,其中在计算机软件及计算机应用领域的记录就有7209条,占了总量
的77%,说明计算机技术与图像分割技术相结合对双方都有着巨大的促进作用。

就以此为例,对图像分割近年来的应用趋势进行分析。

图1 图像分割在计算机软件及计算机应用领域的年度分析
从图1可以看出,近年来图像分割在实际应用上的研究保持着较为平稳的势头。

由于2011年的数据是不完全统计,但现有数量也已相当庞大,依照这个趋势,图像分割将在计算机领域长期占据着一个极其重要的地位,当然随着研究的深入,相信在其他各个领域,图像分割都将发挥自己独特的作用。

二、图像分割的定义
视觉是人类最高级的感知系统,图像在其中有着极其重要的意义。

然而人类的感知仅限于电磁波谱的视觉波段,成像机器则可覆盖几乎所有电磁波谱,从伽马射线到无线电波。

成像机器可以对很多图像源进行加工,而非仅仅人们生活中所熟悉或者常见的,比如超声波、电子显微镜及计算机产生的图像等[1],所以随着计算机技术的不断发展,数字图像技术的应用领域将越来越广泛,而图像分割又是数字图像处理中的关键技术之一。

图像分割是进行视觉分析和模式识别的前提,其根据图像的某些特性,将图像分成若干有意义的区域,使这些特征在某一区域内表现出相似性,不同区域则有显著不同。

分割产生的区域是图像内容的一种表示,其质量直接影响分析、识别等后续操作[2]。

图像分割的结果一般用数字、文字、符号、几何图形或其组合表示的内容和特征,用以对图像进行详尽的描述和解释。

三、图像分割常用方法分析
接下来将介绍几类图像分割的主要方法:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法。

当然,近年来在原有的方法上或者结合一些其他学科的理论,又提出了很多新的分割方法。

1.基于阈值的分割方法
阈值法是通过对图像进行逐行像素扫描并将像素标记为对象或背景以实现分割。

假设图像中每个区域都是由许多灰度级近似的像素所组成的[3],而目标和背景之间则会有显著的区别。

所以,图像的灰度级直方图会呈现明显的峰值,然后我们根据所需选择合适的阈值t ,即可对图像进行分割。

其数学表达式可表示如下:
此类方法的关键在于阈值t 的选择[3],基于此提出了很多不同的方法:直方图变换法、
最大类空间方差法、最小误差法、均匀化误差法、共生矩阵法、最大熵法、简单统计法、局部特性法、模糊聚类法、基于过渡区的阈值选取法等。

虽然目前出现了各种基于阈值分割的改进算法,图像分割的效果有所改进,但在阈值的设置上还是没有很好的解决方法,关于如何筛选阈值,并选取能最优分割图像的阈值,这可能是基于阈值分割的图像分割法的发展趋势。

表3 灰度阈值法的优缺点
2.基于边缘的分割方法
边缘是图像最基本的特征之一。

所谓边缘是指其周围像素灰度有阶跃变化的那些像素的集合。

它存在于目标与背景之间,是图像分割所依赖的最重要的特征。

因此 ,边缘检测可以看作是处理许多复杂问题的关键。

边缘检测是图像处理和计算机视觉中的基本问题,其目的是识别图像中各种参数变化明显的点。

所谓边缘是指图像局部特性的不连续性,边缘总是以f(x,y)= 1 若f(x,y)≥t
0 其他
强度突变的形式出现,例如,灰度突变、颜色突变、纹理等,这些都是分割两个不同区域的标志[5]。

目前的边缘检测一般通过空间微分算子法来进行,常用算子有Sobel算子、Roberts 算子、Marr算子、Kirsch算子、Prewitt算子等。

在有噪声存在时,各种算子得到的边缘像素常常是孤立或分小段连续,所以我们首先检测出图像局部特性的不连续性,然后将这些不连续性的边缘像素连接成完整的边界,再确定图像的轮廓。

所以存在干扰因素时,大致流程如图3所示。

图3 边缘检测跟踪法流程
这种方法的难点在于边缘检测时抗噪性和检测精度的矛盾,若提高检测精度,则噪声产生的伪边缘会导致不合理的轮廓,若提高抗噪性,则会产生轮廓漏检和位置偏差。

如果图像的边缘灰度值过滤比较尖锐且噪声较小,此类方法能取得良好的效果[6]。

在未来的研究中,用于提取初始边缘点的自适应阈值选取用于图像层次分割的更大区域的选取以及如何确认重要边缘以去除假边缘将变的非常重要[7]。

表4 边缘检测跟踪法的优缺点
3.基于区域的分割方法
基于区域的分割方法主要能分为区域生长法和区域分裂合并法两类。

区域生长法在计算机视觉领域中有着相当重要的地位。

它把图像分割成特征相同的若干小区域,比较相邻小区域特征的相似性(平均灰度值、纹理、颜色等),若它们足够相似,则作为同一区域合并,以此方法将特征相似的小区域不断合并,直到不能合并为止,最后形成特征不同的各区域此方法尽量保持区域中像素的临近性和一致性的统一,以便更好的分辨图像真正的边界[8]。

采用区域生长法的关键在于种子点的位置选择、生长准则和生长顺序。

此方法最简单的形式是先人工给出一个种子点,然后提取出和此种子点具有相同灰度值的所有像素。

如何定义区域一致性准则可能成为接下来的研究重点。

表5 区域生长法的优缺点
上面介绍的区域生长法是从单个子像素开始不断吸收新像素最后到整个区域,区域分裂合并则是先将整幅图像看成一个区域,然后开始不断分裂,再将相邻区域合并得到整个区域。

分裂合并法被认为是一种很有发展前景的分割方法。

实际中常先把图像分成任意大小且不重叠的区域,然后再合并或分裂以满足分裂的要求[8]。

该方法的关健是如何对区域进行初始划分和分裂合并准则的设计。

其大致流程如图4所示:
图4 区域分裂合并法流程
表6 区域分裂合并法的优缺点
四、图像分割的发展前景
虽然近年来图像分割的研究成果越来越多,但由于其本身所具有的难度又尚无通用分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适于所有图像的通用的分割方法。

缺少一个判断图像分割是否成功的客观标准,这不仅是图像分割研究中的一个瓶颈,同样也成为了计算机视觉研究中的一个瓶颈[11].
纵观图像分割研究的历史,图像分割的研究有以下几个趋势:1)对原有算法的不断改进。

2)新方法、新概念的引入和多种方法的有效综合运用。

3)交互式分割研究的深入。

4)对特殊图像分割的研究越来越重视[12],比如合成孔径雷达图像[13]的研究,已经取得了一定的成果。

图像分割技术有着巨大的潜力,相信随着研究的深入,许多现有的问题都将逐一得到解决,届时,图像分割对人们的意义将显得更为重要。

相关文档
最新文档