船舶自动舵的发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
船舶自动舵的发展
0942813220 刘磊
摘要:综述了航海自动舵的技术史和今后发展趋向以及就船舶操纵自动舵的工作原理和方法方面进行了综述。
关键词:自动舵技术发展过程自动舵发展趋向自动舵的原理自动舵的工作方法船舶借助螺旋桨的推力和舵力来改变或保持航速和航向,实现从某港出发按计划的航线到达预定的目的港。由此可见,操舵系统是一个重要控制系统,其性能直接影响着船舶航行的操纵性、经济性和安全性。自动操舵仪是总结了人的操舵规律而设计的装置,是用来控制船舶航向的设备,能使船舶在预定的航向上运行,它能克服使船舶偏离预定航向的各种干扰影响,使船舶自动地稳定在预定的航向上运行,是操纵船舶的关键设备。系统的调节对象是船,被调节量是航向。自动舵是一个闭环系统,它包括:航向给定环节;航向检测环节;给定航向与实际航向比较环节;航向偏差与舵角反馈比较环节;控制器;执行机构;舵;调节对象—船;舵角反馈机构等。自1922年自动舵问世到今天, 代替人力操舵的自动舵的发展确实取得了长足的进展, 在相当程度上减少了人力, 节约了燃料, 降低了机械磨损, 但是距离真正意义上的操舵自动化还有相。当大的距离。
本文在展望人工智能控制舵之前先对目前的自动舵进行简要的回顾,再对船舶操纵自动舵的构成和工作原理方面进行了综述。
一.自动舵的技术发展历史
1.传统的自动舵
1922年Minorsky和Sperry分别从数学角度和陀螺罗经在船舶上的运用角度各自发表了论文, 这两篇论文可以看作是对船舶自动舵作出了最早的贡献。1923年,Minorsky设计的自动舵就装在新墨西哥的战舰上投人了试验。
早期自动舵以机械结构为基础,仅能对航向进行初步控制, 今天我们将这种控制方法称为“比例(P)控制”。这是由于自动舵舵角的偏转大小是和船舶偏航角成比例的。下面的公式可表示比例控制的规律:
在实际工作中, 用陀螺罗经测出即时航向信号并与设定的航向进行比较, 然后将二者的差值输人到控制器中去, 由控制器输出并驱动舵轮伺服机构。但“比例控制”法用于惯性很大的船舶效果不理想, 原因是这种控制方法会使船舶在设定的航向两边来回摆动, 结果使转舵装置过度磨损, 而且燃料消耗要高出许多, 这些问题限制了它的使用。
直到1949年Schiff等人提出了速率控制的概念, 即速率控制与偏航角的微分成正比, 目前将其称为“比例和微分(PD)控制”其公式如下:
引入微分控制概念以后提高了自动操舵时航向的准确性, 偏舵角不仅与偏航角有关, 还与偏航速率有关。
1972年Bech等人提出了一个三项控制理论, 即在PD控制系统中加上一个低频滤波器,以便使航向稳定性保持在适当范围内的情况下
减少舵机高频运动。这一控制可以表达为:
这种形式的控制器被称作比例-微分-积分控制系统, 或简称为PID控制器。增加的积分环节依靠偏航角的积累值, 自动地使舵叶从首尾线偏转一个角度, 产生一个恒定的转船力矩, 用以抵消外界风流等持续力矩的作用。(这一理论其实在1949年Schiff的论文中就提出过, 但被搁置了多年。)1980年以前, 几乎所有海船上的自动舵都采用PID控制。
2.自适应自动舵
20 世纪50 年代,随着电子学和伺服机构理论的发展及应用,集控制技术和电子器件的发展成果于一体的更加复杂的第二代自动舵问世了,这就是著名的PID 舵。而传统的PID自动舵至少在三个方面存在严重缺陷:一是需要手动调节K p,K1,K d参数,补偿船舶状态的改变和风流环境的改变, 这种调节无法实现其精确整,更难做到适时调节;二是PID自动舵由于对高频海浪干扰采取的高频转舵实际上是无效舵, 无效舵反而导致船舶阻力增加, 引起推进能耗增加,机械磨损增大。常规PID自动舵用加大死区的办法抑制海浪干扰虽有一定效果, 但增大死区也会导致低频特性恶化, 引起持续周期性偏航;三是在大风浪中常常由于产生大角度的转舵, 导致更严重的偏航, 这在大风浪中是相当危险的。因此, 几乎所有海上航行法规都要求在大风浪和特殊环境下禁止使用自动舵, 而必须改用手动舵。
在70年代后期和80年代早期, 自适应自动舵的研究和发展异常迅速。从80
年代起, 微处理技术和复杂的自适应控制理论应用于自动舵大大提高了控制的
准确性, 增加了航行速度,减少了操纵工作量, 最主要的是减少风、浪、流、吃水等因素对手工设定参数的补偿, 提高了各种气候条件下使用自动舵的可能。
最早的自适应自动舵控制法是1975年Oldenburg等人提出的对一般的PID自动舵用直接推断法进行修正。这一功能包括对波浪信号、船速、负载变化等选择最佳控制参数。其中波浪是通过一个海浪分析器进行测量的,其不规则性可输入计算程序并利用卡尔曼滤波器提取信息。
1977年,Kallslrom和Astrom在关于船舶控制的文章中研究了另外一种方法, 被称为自校正自适应控制。1981年Brink和Tiano提出使用Ricatti方程的一个计算稳定状态的解答方法,可以基本上设计出自校正自适应自动舵由于船在风浪中变速变载航行, 船舶的动力状态及其数学模型参数是不断变化的,因此必须通过在线识别技术来实时辨识变化着的数学模型参数, 以保证在风浪变化、负载变化时, 控制器能本身修正自己的参数, 使控制系统做到动舵次数少、偏航幅值最小。问题是模拟真实的波浪系统, 在数学方面确有困难。在解Ricatti方程的繁重计算工
作中也会提出很多附加问题。
1982年由Van Amerongen提出了模型参考自适应控制理论, 根据线性叠加原理, 一艘船舶对不规则的海面状态的响应可以从不规则海面的规则波浪的
分量响应的总和推导出来。对模型参考法的主要批评意见是真实船舶相当于一个
高度非线性系统, 在风大浪高,负载急变时其适应程度很差。
1990年Fairbairn和Grimble将H∝设计法用到了自动舵上。H∝的优点是对在设备模型中的那种尚有某些参数具有不可测性的设备可进行一定程度的控制,然而
要成功地应用H
控制需要具有线性船舶模型方面有关转移函数的全面知识, 还∝
必须有足够的液压动力学方面的数据。
总之, 自适应自动舵在一定范围内取得了十分有效的自动控制效果。然而,
自适应方法要么以价值函数中的参数估算为基础, 要么是以船舶动力学环境干
扰的模型试验为基础。没有人能为一艘船舶所经历过的那种千变万化的运行条件
提供最佳的全面自动调节方法。
3.人工智能自动舵
自从80年代后期90年代初期开始,研究人员对“人工智能操舵系统”的研究倾注了极大的热情。目前开发智能控制的方法可以划分为以下三种:(1)专家级智能系统;
(2)模拟逻辑控制器;
(3)神经网络控制器。
专家系统的目标是借助计算机开发一种新的模型来解决问题。它与用参数识
别的物理模型很不相同, 虽然有许多成功应用专家系统的实例, 但使用专家系
统的自动舵实例非常少。使用专家系统自动舵最基本的要求是要能模拟舵工的作
用。一个有用的专家系统也需要考虑船舶的特征和环境的干扰,形成算法。
近几年, 模糊设定理论在船舶上的应用得到了发展, Sutton和Jess于1991年介绍了一种自适应模糊自动舵理论。这个方法是观察操作环境以及观察在环境中模糊控制器所受的影响来达到查明性能指数的目的, 将能被接受的性能指数储存到一个矩阵格式中形成控制规则。