生物医用高分子材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物医用高分子材料
摘要:生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。文章综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。
关键词:生物医学材料,生物医用高分子材料
1.简介
生物材料也称为生物医学材料,是指以医疗为目的,用于与生物组织接触以形成功能的无生命的材料]1[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]2[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、血液学等多种边缘学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗等)。
由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。医用高分子材料的研究目前仍然处于经验和半经验阶段,还没有能够建立在分子设计的基础上,以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长]3[。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。
2.生物材料的发展
生物材料医学用途的发展过程:一般认为,生物材料的发展大致经历了三代。
一般将第一次世界大战以前所使用的生物材料为第一代生物医学材料。代表材料有石膏、金属、橡胶以及棉花等物品。这一代的材料大都已被现代医学所淘汰。
第二代生物医学材料的发展是建立在医学、材料科学(尤其是高分子材料学)、生物化学、物理学以及大型物理测试技术发展的基础上的, 研究人员也多由材料学家和医生来担任。代表材料有羟基磷灰石、磷酸三钙、聚羟基乙酸、聚甲基丙烯酸羟乙基醋、胶原、多肤、纤维蛋白等。这类材料与第一代生物医学材料一样, 其研究思路仍旧是从改善材料本身的力学性能和生化性能, 使其在生理环境下能够长期地替代生物组织。
第三代生物医学材料是一类具有促进人体自身修复和再生作用的生物医学复合材料。它是在生物体内各种细胞组织、生长因子、生长抑素及生长机制的结构和性能的基础上建立的叫, 由具有生理“活性”的组元及控制载体的“非活性”组元构成, 有较理想的修复再生效果。它通过材料之间的复合、材料与活细胞的融合、活体组织和人工材料的杂交等手段, 赋予材料特异的靶向修复、治疗和促进作用, 从而使病变组织大部分甚至全部由健康的再生组织取代。其中骨形态发生蛋白材料是第三代生物医学材料中的代表.
3. 医用生物材料的种类
按材料属性:
(1)医用金属材料:该类材料主要有较高的机械强度和抗疲劳性,包括不锈钢、钴基合金,钛及合金等,广泛应用于人工假体、人工关节、医疗器械等;
(2)医用无机材料:该类材料化学性质稳定, 具有良好的生物相容性,主要是生物陶瓷。分为惰性生物陶瓷,如氧化铝生物陶瓷;表面生物活性陶瓷,如磷酸钙基生物陶瓷;可降解生物陶瓷,如β-磷酸三钙陶瓷等;
(3)医用高分子材料:根据来源分为天然的和合成的,天然的如多糖类、蛋白类,合成的聚氨酯、聚乙烯、聚乳酸、聚四氟乙烯等,用于人体器官、组织、关节、药物载体等;
(4)医用复合材料:生物医学复合材料是由两种或两种以上不同材料复合而成的, 主要用于修复或替换人体组织、器官或增进其功能, 也可用作人工器官的制造。一般可以克服单一材料的性能缺点,可获得性能更优的材料;
(5)生物衍生材料:生物医学衍生材料是由经过特殊处理的天然生物组织衍生而成的。经过处理的生物衍生材料是无生物活性的材料, 但其具有类似天然组织的构型和功能, 在维持人体动态的修复和替换中具有重要作用, 如皮肤掩膜、血液透析膜、人工心脏瓣膜等。
4.医用高分子材料
医用高分子材料是生物医用材料研究领域最活跃的领域之一, 特别是20世纪60年代以来发展更快, 已经能合成出许多具有优良性能的软、硬材料及药物控释材料应用到各个医学领域。医用高分子易于加工成型, 原材料易得, 理化性质可以在很宽的范围内被调节和控制, 加之生物体的大部分组织和器官实质都是由高分子化合物构成, 故一经出现就得到重视和应用。医用高分子材料要应用于生物体必须同时要满足生物功能性、生物相容性、化学稳性、可加工性等严格的要求。当前研究主要集中在外科置入件用高分子材料和生物降解及药物控制释放材料[4]。
4.1 医用高分子材料的特点及基本条件
医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性。
a·生物功能性:因各种医用高分子材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。
b·生物相容性:医用高分子材料的生物相容性包括2个方面:一是材料反应,主要包括材料在生物环境中被腐蚀、吸收、降解、磨损和失效等;二是宿主反应,包括局部和全身反应,如炎症、细胞毒性、凝血、过敏、致畸和免疫反应等。
c·可加工性:能够成型、消毒(紫外灭菌、高压煮沸、环氧乙烷气体消毒、酒精消毒等)。
在物理性能、化学性能实验、型式检验、动物实验、临床实验等不同阶段的试验,材料市场化需要经国家和地方食品药品监督管理局的批准,且报批程序复杂、费用高,所以医用高分子材料的研发成本高、风险大。
4.2 医用高分子材料的主要类别
生物医用高分子材料主要有天然生物材料和合成高分子材料。
4.2.1 天然生物材料
天然生物材料[5]是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈合方面具有强大的优势,已引起国内外医务界广泛的关注。
据日本、美国的多项专利介绍[6],由壳聚糖纤维制得的手术缝合线既能满足手术操作时对强度和柔软性的要求,同时还具有消炎止痛、促进伤口愈合、能被人体吸收的功效,是最为理想的手术缝合线;壳聚糖纤维制造的人造皮肤,通过血清蛋白质对甲壳素微细纤维进行处理,可提高对创面浸出的血清蛋白质的吸附性,有利于创口愈合,在各类人造皮肤中其综合疗效最佳。据研究报道[7,8],已用于酶固定化、细胞培养、创面覆盖材料和人工皮肤以及药物缓释材料等医学各领域,尤其各种再生丝素膜在人工皮肤、烧伤感染创面上的应用显示了独特的优势,临床应用价值显著,前景广阔。
4.2.2 合成高分子材料
合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。当前研究主要集中在外科置入件用高分子材料和生物降解及药物控制释放材料[9]。
生物降解型医用高分子材料的主要成分是聚乳酸、聚乙烯醇及改性的天然多糖和蛋白质等,在临床上主要用于暂时执行替换组织和器官的功能,或作药