加氢精制催化剂及工艺技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加氢精制催化剂及工艺技术
▪加氢精制技术应用概况
▪加氢精制主要反应及模型化合物加氢反应历程
主要反应
模型化合物加氢反应历程
典型工艺流程
▪加氢精制工艺技术
重整原料预加氢催化剂及工艺
二次加工汽油加氢精制催化剂及工艺
煤油加氢精制催化剂及工艺
劣质二次加工柴油加氢精制催化剂及工艺
进口高硫柴油加氢精制催化剂及工艺
焦化全馏分油加氢精制催化剂及工艺
石蜡加氢精制催化剂及技术
▪加氢精制催化剂
加氢精制技术应用概况
抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。
FRIPP加氢精制技术开发的经历:
∙1950s 页岩油加氢技术
∙1960s 重整原料预精制技术
∙1970s 汽、煤、柴油加氢精制技术
∙1980s 石油蜡类加氢精制技术
∙1990s 重质馏分油加氢精制技术、渣油加氢处理技术
FRIPP加氢精制系列催化剂:
∙轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98
∙重质馏分油 3926、3936、CH-20、3996
∙柴油临氢降凝 FDW-1
∙石油蜡类 481-2、481-2B、FV-1
∙渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列
FRIPP加氢精制催化剂工业应用统计(1999年):
加氢精制主要反应及模型化合物加氢反应历程
加氢精制主要反应
加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。其典型反应如下:
1、加氢脱硫
2、加氢脱氮
3、加氢脱氧
4、烯烃加氢饱和
5、芳烃加氢饱和
6、加氢脱金属
(1)沥青胶束的金属桥的断裂(详见图3)
式中 R,R'--芳烃;M--金属钒。
(2)卟啉金属镍的氢解
加氢精制主要反应及模型化合物加氢反应历程
模型化合物加氢反应历程
石油馏分中硫、氮化合物的氢解属于双分子吸附反应机理,随着分子结构的不同,反应历程有很大差别,现扼要介绍如下:
1、模型硫化物加氢脱硫反应历程
硫化物加氢脱硫反应活性,随着分子结构不同而异,一般烷基硫化物大于环状硫化物,环状硫化物又随着环上取代基的增加而下降。如硫芴的反应活性较噻吩约低一至二个数量级,硫化物的一般反应活性顺序如下:
通常以噻吩或硫芴代表硫化物进行加氢脱硫反应历程的研究,图1是在Co-Mo/Al2O3催化剂上18MPa、300℃时硫芴的加氢脱硫反应历程。硫芴加氢脱硫反应存在二条平行路线,(1) C-S键直接氢解,生成H2S和联苯;
(2)其中一个苯环先加氢,然后C-S键断裂生成H2S和环己基苯。第一条反应速度常数约比第二条高一个数量级,是主导路线。
图1 硫芴加氢反应历程图
2、模型氮化物的加氢脱氮反应历程
氮化物的加氢脱氮反应活性,同样也随着分子结构不同而有很大差别,其一般顺序为:
其中五元及六元氮杂环化物最难加氢脱氮。图2为在Ni-Mo/Al2O3催化剂上,3.4MPa、342℃时喹啉加氢脱氮的反应网络图。
图2 喹啉加氢脱氮的反应网络图
氮杂环加氢脱氮反应必须经过C=N键加氢成C-N键后断裂。如图2,喹啉加氢脱氮反应首先是环加氢。加氢在苯环和氮杂环上同时进行,而以氮杂环为主。由于反应[Ⅰ]处于热力学平衡,故在反应温度较低时,脱氮反应步骤按[Ⅰ]→[Ⅶ]→[Ⅵ]进行,随着反应温度逐渐升高,或压力降低时,平衡移向左边,则反应步骤愈来愈明显转变为[Ⅳ]→[Ⅴ]→[Ⅵ]。
因受邻近苯核共振能的影响,苯胺的C-N键很难断裂,因此反应[Ⅲ]速度很慢,实际上很少发生。
3、芳烃加氢反应历程
一般馏分油的芳烃加氢主要指萘系或蒽(菲)系稠环芳烃的加氢。其反应历程如下。
萘加氢:
菲(蒽)加氢:
从反应历程可见,稠环芳烃加氢有两个特点:( 1 )每个环加氢脱氢都处于平衡状态;( 2 )加氢逐环依次进行。从稠环芳烃的分子结构考虑,当稠环芳烃中一个环引进一个分子氢以后,其苯核共振能的稳定化作用便受到破坏,因而生成的环烯比较容易加氢生成环己烷,例如具有三个苯环的蒽,其第9及第10位置就比萘第7、8位置不稳定,容易与氢反应,而萘比苯又更具有烯烃性质,因此比苯又容易加氢生成四氢萘。但当萘一旦加上二个分子的氢,或蒽加上一个分子氢以后,则相对地变得更加稳定,继续加氢就需要苛刻的加氢条件。
稠环芳烃加氢深度受到热力学平衡的限制,一些稠环芳烃加氢平衡常数如下表。
一些稠环芳烃加氢的平衡常数
显然,随着反应温度升高,加氢平衡常数呈数量级下降,因此芳烃深度饱和加氢必须在较低温度下进行。
4、加氢脱金属反应
加氢脱金属是渣油加氢精制的主要反攻反应。由于在渣油中,金属及硫、氮一般共同存在于沥青质胶束中,因此,从渣油中加氢脱金属和加氢脱硫、脱氮与沥青质的转化是分不开的。
沥青质胶束的裂解是通过反应″a″与反应″b″连续反应过程,反应″a″是首先通过金属(M)桥的断裂,以及金属(V或Ni)从卟啉结构中脱除,然后经反应″b″,通过杂原子(S、N)的脱除,进一步降低分子量,而形成稠环芳烃和烷烃桥合的沥青质碎片。一般认为沥青质裂解属于热裂解反应,而渣油加氢精制过程一般要求较高的氢分压,主要在于抑止催化剂表面积炭的形成。
典型工艺流程
加氢精制典型工艺流程图: