化工原理课程设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽理工大学

化工原理课程设计

说明书

设计项目:标准列管式换热器的选型设计

学院名称:化学工程学院

专业班级:弹药 12-6班

学号:

学生姓名:

设计组序:第四组

指导教师:张洪流

二○一五年元月十三日

目录

一、设计任务书 (3)

二、成绩评定 (4)

三、前言 (4)

四、设计内容 (8)

(一)设计参数的确定 (8)

(二)产品流量计算 (8)

(三)热负荷及冷却水用量计算 (8)

(四)传热平均温度差计算 (8)

(五)估算传热面积 (9)

五、标准列管式换热器的选型设计 (9)

(一)初选换热器型号 (9)

(二)核算压降 (9)

(三)核算传热系数 (10)

(四)选型结果 (11)

(五)附件设计 (11)

六、设计结果一览表 (13)

七、结束语 (14)

八、参考文献 (15)

化工原理课程设计任务书

同学:

威名化工厂拟采用一列管换热器以净化后的热空气加热甲苯。

已知:原料质量流量为 3500 kg/h,初始温度为20℃,要求加热至 65 ℃;空气进口温度为 135 ℃,出口温度比进口温度低20℃。试根据工艺要求进行标准列管式换热器的选型设计。

设计时间:2015.01.12~2015.01.16(校历20周)

指导教师:张洪流

二○一五年元月九日

安徽理工大学课程设计(论文)成绩评定表

前言

化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。

化工原理课程设计能较好地激发我们学生的在学习与创造热情,加深对《化工原理》和《化工设备机械基础》这两门课程上下层约束关系的理解。因此,化工单元操作设备设计是化工原理及化工设备基础课程的重要教学环节,是培养我们学生综合运用所学知识解决涉及任务的训练,是理论教学与化学工程涉及相结合的纽带,是我们学生理论知识的综合运用及解决工程问题的能力的重要升华。

本次化工原理课程设计虽然只有一周,但是这次是学习化工原理以来第一次独立的工业设计。化工原理主要研究化工单元操作过程中的动量传递、热量传递和质量传递的基本理论与规律,以及实现这些传递过程的生产设备和技术。整个课程体系分为:理论教学、实习、实验和课程设计四个相互独立而又紧密联系的部分,课程设计则是上述课程的总结性教学环节,是进一步巩固、深化和具体应用课程理论知识与实验技能的重要过程,是培养学生综合运用所学知识完成化工设计任务的全面训练。在这一周的时间中我们从理论到实践有了进一步的突破。

通过课程设计,我们学生针对设计任务,融汇所学知识查阅资料,经过反复的论证分析,择优选定最理想的设计方案和流程,进行过程和设备的设计计算机核算,从而在查阅资料、选用公司、采集数据、文字表达、化工制图等方面得到全面训练,培养我们学生独立工作能力和团队协作精神。因此,化工设备设计是化工类所有专业级石油加工、林产加工、环境工程、制药工程、过程控制等专业的重要实践性教学环节,在整个专业课程教学体系中的低位十分突出,对培养学生的综合应用能力及独立工作能力的作用十分明显,尤其对那些毕业前只做毕业研究论文而不做毕业设计的学生更为重要。课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我们深深体会到这句千古名言的真正含义.我们今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.

传热是热能从热流体间接或直接传向冷流体的过程。其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。换热器(英语翻译:heatexchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

列管换热器的工艺设计包括标准设备的选型设计和非标准设备的工艺设计两类。由于有了系列标准,为便利和降低成本,原则上应尽可能选用标准设备。只有在实际要求与标准系列相差较大时,方需自行设计。

固定管板式换热器的结构特点是两块管板分别焊接于壳体的两端,管束两端固定在管板上,具有结构简单、紧凑,造价低等优点。缺点是:(1)除非割开管板壳程无法清洗;(2)当壳体与换热管的温差较大时(一般以50℃为限),因壳体与换热管的热膨胀性差异导致的温差应力(又称热应力)具有破坏性,需在壳体上设置膨胀节(又称热补偿圈),但壳程压力对膨胀节强度及伸缩均有影响,一般不建议采用。因此,其适用于壳方流体洁净且不易结垢、两流体温差不大或温差虽大但壳程压力不高的场合。

在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。换热器的工艺设计计算,依据设计任务的不同可分为设计计算和校核计算两种,包括计算换热面积和选型两个方面。一般已知冷、热流体的处理量和它们的物性。进出口温度、压力由工艺要求确定。设计中需选择或确定的数据有三大类,即物性数据、结构数据和工艺数据。具体来说,可以通过一下步骤来进行:初选换热器的尺寸规格,计算管程的压降和给热系数,计算壳程压降和给热系数,计算传热系数、校核传热面积。考虑到所用传热计算是的准确程度及其他未可预料因素,保持传热面积上的裕度,应使最后A/A计=1.15~1.25,否则就要重新估计、选择,重复计算。

浮头式换热器的结构特点是换热器一端管板用法兰与壳体固定,另一端管板用一内封头封住管程流体并可在壳体内沿轴向自由伸缩,故称该端为浮头。优点是管束可以从壳体中抽出,便于清洗管间;管束的膨胀不受壳体的约束,因而壳体与管束之间不会产生温差应力,也即具有自热补偿功能。缺点是:结构复杂,浮头密封要求高,用材量大、造价高,故适用于壳体与管束温差较大及管壳方均易结垢的场合。很显然,浮头式换热器的管程数一定为偶数。

填料函式换热器又称外浮头式换热器,类似浮头式换热器,不过浮头部分伸出壳体外,浮头与壳体间的间隙用填料函密封。它具有浮头式换热器的优点,但结构比浮头式换热器简单,制造方便,易于检修清洗。常用于一些腐蚀严重,需要经常更换管束的场合。但由于壳程介质有可能通过填料函外漏,故不宜走易燃、易爆或有毒的流体,壳程压力一般要小于4MPa。受填料密封性能的限制,直径一般在700mm以下。

釜式换热器。其结构特点是在壳体上部设置蒸发空间,管束可以为固定管板式、浮头式或U型管式,适用于壳程液体吸热汽化的过程,可作为简单的废热锅炉。

本次设计中我们经过一系列科学而严谨的计算采用了U型管式换热器。其结构特点是:此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。但管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。

相关文档
最新文档