数字信号处理 答案 第二章

合集下载

数字信号处理 答案 第二章

数字信号处理 答案 第二章

第二章判断下列序列是否是周期序列。

若是,请确定它的最小周期。

( ) 685ππ+n ( ) )8(π-ne j ( )343ππ+n 解 对照正弦型序列的一般公式 ϕω+n ,得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于)5(16516取k k =。

( )对照复指数序列的一般公式 ωσj + 得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

( )对照正弦型序列的一般公式 ϕω+n ,又343ππ+n = -2π343ππ-n = 6143-n π ,得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于 )3(838取k k =在图 中, 和 分别是线性非移变系统的输入和单位取样响应。

计算并列的 和 的线性卷积以得到系统的输出 ,并画出 的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算 的每一个取样值。

≥ δ δδ δ δδ δ δ∑∞-∞=--kkn knuku a)()( ∑∞-∞=-kknaaa n--+111计算线性线性卷积λn解: ∑∞-∞=-kknuku)()(∑∞=-)()(kknuku ≥ 即∑∞-∞=-kk knuku)()(λ∑∞=-)()(kk knukuλ λλ--+111n≥即 λλ--+111n图 所示的是单位取样响应分别为 1 和 2 的两个线性非移变系统的级联,已知1 δ δ2 n 求系统的输出解 ω 1∑∞-∞=k k u )( δ δω 2∑∞-∞=k k k u a )(∑∞-=3n k ka≥已知一个线性非移变系统的单位取样响应为 n- 用直接计算线性卷积的方法,求系统的单位阶跃响应。

数字信号处理第2章答案 史林 赵树杰编著

数字信号处理第2章答案  史林 赵树杰编著

第二章作业题 答案%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2.1将序列1,01,1()0,22,30,n n x n n n =⎧⎪-=⎪⎪==⎨⎪=⎪⎪⎩其他表示为()u n 及()u n 延迟的和。

解:首先将表示为单位脉冲序列的形式:()x n ()()()()=123x n n n n δδδ--+-对于单位脉冲函数,用单位阶跃序列表示,可得:()n δ()u n ()()()1n u n u n δ=--将上式带入到的单位脉冲序列表达式中,可得:()x n ()()()()()()()()()()()()()()()1231122342122324x n n n n u n u n u n u n u n u n u n u n u n u n u n δδδ=--+-=------+---⎡⎤⎡⎤⎣⎦⎣⎦=--+-+---%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2.5判断下列序列中,哪一个是周期序列,如果是周期序列,求出它的周期。

(1)()sin1.2x n n =(2)()sin 9.7x n n π=(5)()sin()cos()47nnx n ππ=-解:理论分析详见P18性质7)周期序列题中设计到的是正弦信号,对于正弦信号,分析其周期性,则()0()sin x n A n ωϕ=+需判断:2πω1)为整数,则周期;2)为有理数,则周期;3)为无理数则非周期。

观察(1)、(2)、(5),依次为:、、,从而可知0ω0 1.2ω=09.7ωπ=12,47ππωω==(1)为非周期,(2)、(5)为周期序列。

(2)中,,因此周期。

022209.797ππωπ==20N =(5)中,第一部分周期为,第二部分周期为,因此序列1028N πω==20214N πω==周期为。

数字信号处理第2章习题解答

数字信号处理第2章习题解答
n 0
e
n 0


e
j ( 0 )

n
1 1 e e j (0 )
当 e 1 0
2-9 求 x(n) R5 (n) 的傅里叶变换 解:X (e j )
5 j 2
n

j

x ( n )e j n e j n
1 1 1 z 2
1 1 1 2 1 z z 2 4 1
1 1 1 2 X ( z) 1 z z 2 4 n 1 n z 2 n 0
1 x(n ) u(n ) 2
n
1 1 1 z 2 1 1 z 2 1 1 1 2 z z 2 4 1 2 z 4
解:
1 由x1 ( n ) u( n ) 2
1 z 2
n
1 得 X 1 ( z ) ZT [ x1 ( n )] 1 1 1 z 2 n 1 由x2 ( n ) u( n ) 3 1 得 X 2 ( z ) ZT [ x2 ( n )] 1 1 1 z 3
1 z 3
z3 z 3z 5 1 1 1 1 1 z 1 z z 3 z 2 3 2
1 z 3 2
j x ( n ) X ( e ): 2-7 求以下序列 的频谱
(1) (n n0 )
X ( e j )
n j n ( n n ) e 0
0
1/ 4 Re[ z ]
当 n 1 时, F ( z )在围线c内有一 (n 1)阶极点 z 0 在围线c外有单阶极点 z 1/ 4, 且分母阶次高于分子阶次二阶以上

数字信号处理 答案 第二章(精编文档).doc

数字信号处理 答案 第二章(精编文档).doc

【最新整理,下载后即可编辑】第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j (3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1222222 3333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2) y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)= ∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()( =∑∞=-0)()(k k n u k u =(n+1),n ≥0 即y(n)=(n+1)u(n)(2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解ω(n)=x(n)*h1(n)=∑∞-∞=k ku)([δ(n-k)-δ(n-k-4)] =u(n)-u(n-4)y(n)=ω(n)*h2(n)=∑∞-∞=k k k ua)([u(n-k)-u(n-k-4)]=∑∞-=3nk ka,n≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=a n-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

(完整word版)数字信号处理答案第二章

(完整word版)数字信号处理答案第二章

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期.(1)x (n )=Acos(685ππ+n ) (2)x (n)=)8(π-ne j(3)x (n)=Asin(343ππ+n ) 解 (1)对照正弦型序列的一般公式x (n )=Acos (ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x (n )=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x (n)=Acos(ϕω+n ),又x (n)=Asin (343ππ+n )=Acos (-2π343ππ-n )=Acos(6143-n π),得出=ω43π.因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x (n )和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x (n )和h (n)的线性卷积以得到系统的输出y(n ),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n )=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a ) y (0)=x (O)h (0)=1y (l )=x (O )h(1)+x (1)h (O)=3y (n)=x(O)h (n )+x (1)h(n-1)+x(2)h (n —2)=4,n ≥2 (b) x(n )=2δ(n )-δ(n-1)h(n)=-δ(n)+2δ(n —1)+ δ(n —2)y(n )=-2δ(n)+5δ(n —1)= δ(n-3) (c ) y (n )=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u (n )2。

数字信号处理第二章习题解答

数字信号处理第二章习题解答

数字信号处理第2章习题解答2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。

画出1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。

解:采样周期为2184T ππ== 三个正弦信号采样得到的离散信号分别表示如下:1()cos(2)cos()42a n x n n ππ=⋅=2()cos(6)cos()42a n x n n ππ=-⋅=-3()cos(10)cos()42a n x n n ππ=⋅=输出序列只有一个角频率2π,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。

三个正弦信号波形及采样点位置图示如下:tx a 1(t )tx a 2(t )tx a 3(t )三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。

2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。

求以下信号的最低采样频率。

(1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π 解:设()a x t 的傅里叶变换为()a X j Ω(1)2()a x t 的傅里叶变换为22()[()]Ba a BX j X j d ππωωω-⋅Ω-⎰因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤即2()a x t 带限于2B ,最低采样频率为4B 。

数字信号处理答案第2章

数字信号处理答案第2章

1 = ∑e 2 n =0
N −1
j
2π ( m−k ) n N
1 + ∑e 2 n =0
N −1 − j 2π ( m + k ) n N
2π 2π j (m−k ) N − j (m+k ) N 1 1 − e N 1− e N = + 2π 2π 2 j (m−k ) − j (m+ k ) 1− e N 1− e N

N −1
−j
2π kn N
1 N −1 j(ω0 − 2π k ) n N −1 − j(ω0 + 2π k ) n N N = ∑ e − ∑e 2 j n =0 n=0
8
− jω0 N 1 − e jω0 N 1 1− e = − 2π 2π j(ω0 - k) − j(ω0 + k ) 2j N N 1− e 1 − e
12

N [δ( k ) − 1] X (k ) = k 1 − WN
k = 1, 2, L, N − 1
当k=0时, 可直接计算得出X(0)为
N ( N − 1) X ( 0) = ∑ n ⋅ W = ∑ n = 2 n=0 n =0
N −1 0 N N −1
这样, X(k)可写成如下形式:
N ( N − 1) 2 X (k ) = −N k 1 − W N , k =0 k = 1, 2, L , N − 1

6
N =2 0
(7)
k = m, k = N − m k ≠ m, k ≠ N − m
jω0 n
0≤k≤N-1
X 7 (k ) = ∑ e

(完整word版)数字信号处理第二章习题解答

(完整word版)数字信号处理第二章习题解答

数字信号处理第2章习题解答2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。

画出1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。

解:采样周期为2184T ππ== 三个正弦信号采样得到的离散信号分别表示如下:1()cos(2)cos()42a n x n n ππ=⋅=2()cos(6)cos()42a n x n n ππ=-⋅=-3()cos(10)cos()42a n x n n ππ=⋅=输出序列只有一个角频率2π,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。

三个正弦信号波形及采样点位置图示如下:tx a 1(t )tx a 2(t )tx a 3(t )三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。

2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。

求以下信号的最低采样频率。

(1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π解:设()a x t 的傅里叶变换为()a X j Ω(1)2()a x t 的傅里叶变换为22()[()]Ba a BX j X j d ππωωω-⋅Ω-⎰因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤即2()a x t 带限于2B ,最低采样频率为4B 。

数字信号处理第2章答案

数字信号处理第2章答案


系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点,
不影响频率特性, 而惟一的极点在实轴的0.9处, 因此滤波 器的通带中心在ω=0处。 毫无疑问, 这是一个低通滤波器。

[例2.4.2]假设x(n)=xr(n)+jxi(n), xr(n)和xj(n)为实序列, X(z)=ZT[x(n)]在单位圆的下半部分为零。 已知
N 1
( z 1)
z
1
2 N 1
z 1 z 1
N
2
[例2.4.4]
时域离散线性非移变系统的系统函数H(z)为
1 ( z a )( z b )
H (z)
,
a 和 b 为常数
第2章
时域离散信号和系统的频域分析
(1) 要求系统稳定, 确定a和b的取值域。
第2章
时域离散信号和系统的频域分析
2.3 分析信号和系统的频率特性
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、
零点分布完全决定了系统的频率特性, 因此可以用分析极、
零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
Re[X(ejω)]=X(ejω) Im[X(ejω)]=0 [例2.4.3] 已知 0≤n≤N N+1≤n≤2N n<0, 2N<n
n x(n) 2 N n 0
求x(n)的Z变换。
第2章
时域离散信号和系统的频域分析
解: 题中x(n)是一个三角序列, 可以看做两个相同的矩

数字信号处理第二章答案 朱冰莲

数字信号处理第二章答案  朱冰莲
由图示可得
(1)
(2)
由(1)得:
由(2)得:
以上两式相乘得:
(1)
零点:z= ,极点z=0.5
(2)
零点:z=-2,极点:z=0.5
因为此系统是一个因果稳定系统;所以其收敛
2-22
解:
(1)根据DTFT的线性、反折、移位等性质,有
(3)
(5)
(7)
2-23
(2)对于线性移不变系统,若输入序列为 ,则系统输出为
(1)
(2)
(3)
(4)
(5)
(6)
2-18
解:根据离散时间傅里叶逆变换公式
2-19
解:根据离散时间傅里叶变换定义,有
得证。
2-20
解:
若 ,则 ,那么 , ,为线性相位;
若 ,则 ,那么 , ,为线性相位;得证。
相位谱:若令 (其实就是单位圆),那么 就变成了 ,而 就是频率响应。通过 可以得到幅度谱和相位谱(也就是幅值和相位角随 的变化情况)。由于是一个复数(复数就有幅值和相位嘛),所以必然能够变换成: 这种形式,而 就是相位谱了,它是数字频率w的函数。
参考答案说明:以下为教材第二章部分习题参考答案,未经朱老师审核,综合了本人、以前助教、同学们交上来的作业的答案,其中有些不是作业。现发给大家,仅供参考,可能有错误之处,大家要及时相互讨论,弄懂原理才是最重要的。
第一次:
2-1求以下序列的Z变换、收敛域及零级点分布图。
(1)
解:
当 时,收敛域为|Z|>0,极点为Z=0,无零点。
8后的结果上下同乘32n212212222132?22?12?32112132?22?23112?121121112?11111112n1z1?221?1221?1212112111111211?1121?21??????????????????????????n??n??????????????z??z??????z????n?????????nzznznznzzznzznzznznzzznzznzznznnzznznnzzzzzzdzdzzzznzzzdzdzznnunnunznznnununznxzxnnnnnnnnnnnnnnnnnnnnnnnnnnnnn通过验证知上式分子中包含21?z故在z1处零极点抵消

《数字信号处理》朱金秀第二章习题及参考答案

《数字信号处理》朱金秀第二章习题及参考答案

第二章 习题及参考答案 一、习题1、 序列x(n)的表达式如下:⎪⎩⎪⎨⎧≤≤-≤≤-+=其它,040,414,32)(n n n n x(1) 画出序列x(n)的波形,并标出各序列值。

(2) 请用延迟的单位抽样序列及其加权和表示序列x(n)。

(3) 令y(n)=2x(n-2),请画出y(n)的波形。

2、 判断下列序列是否是周期序列,并求出周期序列的周期。

(1)是常数αππα,)843sin()(-=n n x(2)是常数ββπ,)()16(-=n j en x3、设x(n)与y(n)分别表示系统的输入和输出,试判断下列差分方程所描述的系统是否是线性移不变的? (1)y(n)=x(n)+5x(n-2) (2)y(n)=3x(n)+1(3)y(n)=x(n-n 0) , n 0为整数 (4)y(n)=x(-n) (5)y(n)=x 2(n) (6)y(n)=x(n 2) (7)∑==ni 0x(i)y(n)4、试判断下列差分方程所描述的系统是否具有因果性、稳定性,并说明理由。

(1)y(n)=x(n)+x(n+2) (2)∑+-==x(m)y(n)n n n n m(3)y(n)=x(n-m) (4)y(n)=e x(n) (5)∑-==20k)-x(n y(n)N k5、输入序列x(n)及线性时不变系统的单位脉冲响应h(n)如下所示:)3(2)1()2()(-+-++-=n n n n x δδδ )2(5.0)1()(2)(-+-+=n n n n h δδδ求该系统的输出序列y(n),并画出y(n)的波形。

6、设由下列差分方程描述的系统为因果系统, 3)1()(3)1()(-++-=n x n x n y n y 要求用递推法求系统的单位脉冲响应。

7、设)()(3n R n x =, 试求x(n)的共扼对称序列)(n x e 和共扼反对称序列)(n x o ,并分别用波形图表示。

8、根据系统的单位脉冲响应h(n),分析下列系统的因果稳定性: (1))(0n n -δ (2))(n u (3))(3n u n (4))(3n R N n(5))(31n u n - (6)n n u )((7)!)(n n u9、已知线性移不变系统的单位脉冲响应h(n)以及输入序列x(n),求输出序列y(n),并画出y(n)的波形图。

数字信号处理(方勇)第二章习题答案

数字信号处理(方勇)第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωωωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωω21sin 27sin 1137j j j e ee(5) 3350011()(3)44n kj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

数字信号处理 课后习题答案 第2章.docx

数字信号处理 课后习题答案 第2章.docx

习题1.设X(e"。

)和r(e JC0)分别是印7)和)仞的傅里叶变换,试求下面序列的傅里叶变换:(1) x("-"o) (3) x(-n) (5) x(")y(")(7) x(2n)⑵ x*(〃)(4) x(") * v(«) (6) nx(n) (8) /(〃)解:⑴00 FT[X(/7-Z70)] = £x(〃一〃o)e—S令n r = n-n0,即〃=n' + n Q,贝!J00FT[x(n-n o y\=工》(〃')以"''*""="初。

乂(烈)00 00(2)FT[x («)] = £ x* (n)e*= [ £ 戏〃)攻以]* = X* (e「W=—00 w=—00(3)00FT[x(—")]= 〃)e*"令=一〃,则00FT[x(—”)]= Zx(〃')e" =X(e—〃")”'=—00(4)00 x(〃) *'(〃)= ^\x(jrT)y(n -m)W=-0000 00FT[x(n) * v(w)] = Z【Z x("y("-初)]e""' n=-<x> w=-oo k = n-m,贝U00 00FT[x(ri)*y(ri)]= £[ £x(初) k=—CD W=-0000 00k=-<x> m=—cc= X(e5(em)_00 00 1时[x(M)贝〃)]= Z》(〃)贝〃)e「9 = Zx(〃)[-Lf/(em'"'"d 渺]e-加""=—00 〃=—00 2l "1 00=—£ Y(e j0)')2l " n=—<x>1 伙=一L "口")*?®"、技或者FT[x{n)y{ny\ = —「171 »兀oo(6)因为X(e,")= »("初,对该式两边口求导,得到叫、)=-J £仗"如=-jFT[nx(n)]因此矶孙(〃)]=j至@3)dco00⑺ FT\x(2ri)\=加n=-(x)令n' = 2n ,则FT[X(2W)]= £x(z/)e 7 %W--00,且取偶数00 1 r r・l 八1°0 . 1 00 . 1£?kO + (T)“x(")厂=| 广伽+£ef ("广伽〃=—oo 匕匕〃=—oo 〃=—00=L「xa*+x(/*E)F7[x(2z?)] = | X(e‘2") + X(—e'尸)(8) F7[X2(»)]= J X2(77)6^»=-OO利用(5)题结果,令x{n) = y{n),则F巾2(”)] = _£x(em)*X(eS) = —「X®。

数字信号处理课后答案第2章高西全

数字信号处理课后答案第2章高西全
信号压缩
DFT可以将信号从时间域转换 为频域,从而可以利用人眼视 觉特性或信号的稀疏性进行压 缩。例如,JPEG和MPEG等图 像压缩标准就利用了DFT。
快速傅里叶变换算法简介
快速傅里叶变换(FFT)是一种高效的计算DFT的算法,其时间 复杂度为O(NlogN),远优于直接计算DFT的O(N^2)复杂度。 FFT算法基于分治策略,将大问题分解为小问题进行处理,从而 大大提高了计算效率。
器性能受限于所选择的窗函数和理想滤波器的逼近程度。
最优化方法
最优化方法是一种基于误差最小化准则来设计FIR数字滤波器的方法。最优化方法包括 最小均方误差准则、最小二乘法和约束最小平方等。这些方法能够设计出具有最佳性能
的FIR数字滤波器,但计算较为复杂,需要使用迭代算法进行求解。
06
总结与展望
本章重点回顾
离散时间信号的运算
总结词
离散时间信号的运算包括加法、减法、乘法、移位和 翻转等基本运算,以及卷积和相关等复合运算。这些 运算在数字信号处理中具有重要的作用。
详细描述
离散时间信号的运算包括基本的算术运算和复合运算。 基本的算术运算包括加法、减法、乘法和移位等,这些 运算可以用于对离散时间信号进行基本的处理和变换。 此外,离散时间信号的复合运算包括卷积和相关等,这 些运算可以用于实现更复杂的信号处理功能,如滤波、 频谱分析和数字调制等。这些运算在数字信号处理中具 有重要的作用,是实现各种数字信号处理算法的基础。
信号处理
Z变换在信号处理中也有广泛的应用,例如频谱分析和滤波器设计等。通过Z变换 ,可以将离散时间信号从时间域转换到频率域,从而可以对信号进行更深入的分 析和处理。
04
离散傅里叶分析
离散傅里叶变换的定义与性质

数字信号处理 刘顺兰第二章完整版习题解答

数字信号处理 刘顺兰第二章完整版习题解答
2 k)N N 2 k) N
即 0 不在采样点上时,
X (k )
1 e
1 e
b 当 ○
j ( 0

1 e 1 e
j 0 N 2 k) N
j ( 0

sin[(
0
2


N
k)N ] e ) N
j(
0
2 N
k )( N 1)
sin(
0
2
k
0
X (1) 2 2 j
nk N
x(n)W
n 0
N 1
k 2k 3k 1 jW N WN jW N ,
可求得 X (0) 0,
N 1 n 0
X (1) 4, X (2) 0 , N ( k ) c 1 N 1 c c 1 k cW N
(3) x( n) c , 0 n N 1
n
解: (1) X ( k )
x(n)W
n 0
3
nk 4
1 W4k W42 k W43k , k 0,1,2,3 X (2) 0, X (3) 2 2 j N 4
可求得 X (0) 0, (2) X ( k )
1 N 1 j ( k ' k ) n N 1 j N ( k k ') n X ( k ) [ e N e ] 2 n 0 n 0 N , 2 0 ,
(3) X ( k )
N 1 N 1 n 0
2
2
k k ' 及k N k ' 其它
k N
1 k N 1

N ( N 1) , 2 X (k ) N k , W N 1

数字信号处理课后答案 第2章高西全

数字信号处理课后答案 第2章高西全
2. 已知

n = −∞


x( n′)e − j2ωn′ = X (e j2ω )
| ω |< ω0
1, X (e ) = 0,
ω0 <| ω | ≤ π
求X(ejω)的傅里叶反变换x(n)。
解:
1 x ( n) = 2π
∫ωe

0
ω0
jωn
sin ω0 n dω = πn
3. 线性时不变系统的频率响应(频率响应函数) H(ejω)=|H(ejω)|ejθ(ω), 如果单位脉冲响应h(n)为实序列, 试 证明输入x(n)=A cos(ω0n+ϕ)的稳态响应为

1

1
j ω j (ω − π ) 1 2 ) + X (e 2 = [ X (e )] 2
1
1
或者
FT[ x(2n)] =
(8)
1 j ω 1 [ X (e 2 )
2
+
1 j ω X (−e 2 )]
FT[ x 2 (n)] =
n = −∞


x 2 ( n ) e − jω n
利用(5)题结果, 令x(n)=y(n), 则



x(n′)e − jω ( n + n0 ) = e − jωn0 X (e jω )

n = −∞
∑ x ( n )e

− jωn
jωn = x ( n ) e = X ∗ ( e − jω ) n = −∞



(3)
FT[ x( −n)] =
n = −∞

数字信号处理答案2和3章(DOC)

数字信号处理答案2和3章(DOC)

数字信号处理答案2和3章(DOC)合工大《数字信号处理》习题答案第2章 习 题2.1)1()()1()2(2)4()(-+++-+++=n n n n n n x δδδδδ)6(2)4(5.0)3(4)2(2-+-+-+-+n n n n δδδδ 2.3 (1)31420=ωπ,所以周期为14。

(2)πωπ1620=,是无理数,所以)(n x 是非周期的。

2.4 设系统分别用下面的差分方程描述,)(n x 与)(n y 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1))()(0n n x n y -=(2))()(2n xn y =(3))sin()()(n n x n y ω= (4))()(n x e n y =2.4 (1)由于)()]([0n n x n x T -=)()()]([0m n y n m n x m n x T -=--=-所以是时不变系统。

)()()()()]()([21020121n by n ay n n bx n n ax n bx n ax T +=-+-=+所以是线性系统。

(2))()()]([2m n y m n x m n x T -=-=-,所以是时不变系统。

)()()]()([)]()([2122121n by n ay n bx n ax n bx n ax T +≠+=+,所以是非线性系统。

(3))()sin()()]([m n y n m n x m n x T -≠-=-ω,所以不是时不变系统。

)()()sin()]()([)]()([212121n by n ay n n bx n ax n bx n ax T +=+=+ω,所以是线性系统。

(4))()()]()([21)()()]()([212121n by n ay e e en bx n ax T n bx n ax n bx n ax +≠==++,所以是非线性系统。

数字信号处理第二章习题答案

数字信号处理第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 3333 3444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

2.6 试证明线性卷积满足交换率、结合率和加法分配率。

证明(1)交换律X(n) * y(n) = ∑∞-∞=-kknykx)()(令k=n-t,所以t=n-k,又-∞<k<∞,所以-∞<t<∞,因此线性卷积公式变成` x(n) * y(n) =∑∞-∞=---ttnnytnx)]([)(=∑∞-∞=-ttytnx)()(=y(n) * x(n)交换律得证.(2)结合律[x(n) * y(n)] * z(n)=[∑∞-∞=-kknykx)()(] * z(n)=∑∞-∞=t [∑∞-∞=-kktykx)()(]z(n-t)=∑∞-∞=k x(k) ∑∞-∞=ty(t-k)z(n-t)=∑∞-∞=k x(k) ∑my(m)z(n-k-m)=∑∞-∞=kx(k)[y(n-k) * z(n-k)]=x(n) * [y(n) * z(n)]结合律得证.(3)加法分配律x(n) * [y(n) + z(n)]= ∑∞-∞=kx(k)[y(n - k) +z(n - k)]=∑∞-∞=k x(k)y(n-k)+ ∑∞-∞=kx(k)z(n - k)=x(n) * y(n) + x(n) *z(n)加法分配律得证.2.7 判断下列系统是否为线性系统、非线性系统、稳定系统、因果系统。

并加以证明(1)y(n)= 2x(n)+3 (2)y(n)= x(n)sin[32πn+6π] (3)y(n)=∑∞-∞=k k x )( (4)y(n)= ∑=nn k k x 0)((5)y(n)= x(n)g(n)解 (1)设y 1(n)=2x 1(n)+3,y 2(n)=2x 2(n)+3,由于 y(n)=2[x 1(n)+x 2(n)]+3 ≠y 1(n)+ y 2(n) =2[x 1(n)+x 2(n)]+6故系统不是线性系统。

由于y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而y(n-k) = T[x(n-k)]故该系统是非移变系统。

故系统是稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(3)设 y 1(n)=∑-∞=n k k x )(1,y 2(n)=∑-∞=nk k x )(2,由于y(n)=T[ax 1(n)+ bx 2(n)]=∑-∞=+nk k k )](bx )(ax [21=a∑-∞=nk k x )(1+ b ∑-∞=nk k x )(2=ay 1(n)+by 2(n)故该系统是线性系统。

因 y(n-k)=∑--∞=t n k k x )(= ∑-∞=-nm t m x )(=T[x(n-t)]所以该系统是非移变系统。

设 x(n)=M<∞ y(n)=∑-∞=nk M =∞,所以该系统是不稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(4)设 y 1(n)=∑=nn k k x 01)( ,y 2(n)=∑=nn k k x 02)(,由于y(n)=T[ax 1(n)+ bx 2(n)]=∑=+nn k k k 021)](bx )(ax [= a∑=n n k k x 01)(+b ∑=nn k k x 02)(=ay 1(n)+by 2(n)故该系统是线性系统。

因 y(n-k)=∑-=t n n k k x 0)(= ∑+=-ntn m t m x 0)(≠T[x(n-t)]=∑=-nn k t m x 0)(所以该系统是移变系统。

设x(n)=M,则lim n →∞y(n)= lim n →∞(n-n 0)M=∞,所以该系统不是稳定系统。

显而易见,若n ≥n 0。

则该系统是因果系统;若n<n 0。

则该因果系统是非因果系统。

(5)设y 1(n)=x 1(n)g(n),y 2(n)=x 2(n)g(n),由于y(n)=T[ax 1(n)+bx 2(n)]=(ax 1(n)+bx 2(n))g(n) =ax 1(n)g(n)+b 2(n)=ay 1(n)+by 2(n)故系统是线性系统。

因y(n-k)=x(n-k),而T[x(n-k)]=x(n-k)g(n)≠y(n-k) 所以系统是移变系统。

设|x(n)|≤M<∞,则有|y(n)|=|x(n)g(n)|=M|g(n)| 所以当g(n)有限时该系统是稳定系统。

因y(n)只取决于现在和过去的输入x(n),不取决于本来的输入,故该系统是因果系统。

2.8 讨论下列各线性非移变系统的因果性和稳定性 (1)h(n)=2nu(-n) (4) h(n)=(12)nu(n) (2) h(n)=-a n u(-n-1) (5) h(n)=1nu(n) (3) h(n)=δ(n+n 0), n 0≥0 (6) h(n)= 2nR n u(n)解 (1)因为在n<0时,h(n)= 2n≠0,故该系统不是因果系统。

因为S=n ∞=-∞∑|h(n)|=n ∞=∑|2n |=1<∞,故该系统是稳定系统。

(2) 因为在n<O 时,h(n) ≠0,故该系统不是因果系统。

因为S=n ∞=-∞∑|h(n)|=1n -=-∞∑| a n|=n ∞=∞∑an-,故该系统只有在|a|>1时才是稳定系统。

(3) 因为在n<O 时,h(n) ≠0,故该系统不是因果系统。

因为S=n ∞=-∞∑|h(n)|=n ∞=-∞∑|δ(n+n 0)|=1<∞,故该系统是稳定系统。

(4) 因为在n<O 时,h(n)=0,故该系统是因果系统 。

因为S=n ∞=-∞∑|h(n)|=n ∞=∑|(12)n|<∞,故该系统是稳定系统。

(5) 因为在n<O 时,h(n)=1nu(n)=0,故该系统是因果系统 。

因为S=n ∞=-∞∑|h(n)|=n ∞=-∞∑|1n u(n)|= 0n ∞=∑1n =∞,故该系统不是稳定系统。

(6) 因为在n<O 时,h(n)=0,故该系统是因果系统 。

因为S=n ∞=-∞∑|h(n)|=1N n -=∑|2n |=2N -1<∞,故该系统是稳定系统。

2.9 已知y(n)-2cos βy(n-1)+y(n-2)=0,且y(0)=0,y(1)=1,求证y(n)=sin()sin n ββ证明 题给齐次差分方程的特征方程为α2-2cos β·α+1=0由特征方程求得特征根α1=cos β+jsin β=e j β,α2=cos β-jsin β= e j β-齐次差分方程的通解为y(n)=c 1α1n +c 2α2n =c 1ej nβ+c 2ej nβ-代入初始条件得 y(0)=c 1+c 2=0y(1)= c 1ej nβ+c 2ej nβ-=1由上两式得到c 1=1j n j ne eββ--=12sin β,c 2=- c 1=-12sin β 将c 1和c 2代入通解公式,最后得到y(n) =c 1ej nβ+c 2ej nβ-=12sin β( e j n β+ e j nβ-)=sin()sin n ββ2.10 已知y(n)+2αy(n-1)+β(n-2)=0,且y(0)=0,y(1)=3,y(2)=6,y(3)=36,求y(n) 解 首先由初始条件求出方程中得系数a 和b 由(2)2(1)(0)660(3)2(2)(1)361230y ay by a y ay by a b ++=+=⎧⎨++=++=⎩可求出 a=-1,b=-8于是原方程为y(n)-2y(n-1)-iy(n-2)=0 由特征方程α2-2α-8=0求得特征根α1=4 ,α2=-2齐次差分方程得通解为y(n)=c 1α1n +c 2α2n = c 14n +c 2(-2n )代入初始条件得y(n)= c 1α1+c 2α2= 4α1+2α2=3由上二式得到c 1=12,c 2=-12将c 1和c 2代入通解公式,最后得到y(n)=c 1α1n +c 2α2n =12[4n-(-2) n ]2.11 用特征根法和递推法求解下列差分方程: y(n)-y(n-1)-y(n-2)=0,且y(0)=1,y(1)=1解 由特征方程α2-α-1=0求得特征根α1=12,α2=12通解为y(n)=c 1α1n +c 2α2n =c 1(12)n +c 2(12-)n代入初始条件得121211c c c c +=⎧⎪⎨+=⎪⎩ 求出c 1,c 2最后得到通解y(n)= c 1()n + c 2)n)1n +)1n +]2.12 一系统的框图如图P2.12所示,试求该系统的单位取样响应h(n)和单位阶跃响应解 由图可知ßy(n)=x(n)+ βy(n-1)为求单位取样响应,令x(n)=δ(n),于是有h(n)= δ(n)+ βh(n-1)由此得到h(n)=()1n Dδβ-=βnu(n)阶跃响应为y(n)=h(n)*u(n)=nk =∑βk y(k)u(n-k)=111n ββ+--u(n)2.13 设序列x(n)的傅立叶变换为X(ejw),求下列各序列的傅立叶变换解 (1)F[ax 1(n)+bx 2(n)]=aX 1(e jw)+bX 2(ejw)(2)F[x(n-k)]=e jwk-X(ejw) (3)F[e0jw nx(n)]=X[e0()j w w -](4)F[x(-n)]=X(ejw-) (5)F[x *(n)]=X *(ejw-) (6)F[x *(-n)]= X *(e jw)(7)(8)jIm[x(n)]=12[X(e jw )-X *(e jw -)] (9)12πX(e j θ)*X(e jw ) (10)j ()jw dx e dw2.14 设一个因果的线性非移变系统由下列差分方程描述y(n)-12y(n-1)=x(n)+ 12x(n-1) (1) 求该系统的单位取样响应h(n) (2) 用(1)得到的结果求输入为x(n)=e jwn时系统的响应(3) 求系统的频率响应 (4) 求系统对输入x(n)=cos(2πn+4π)的响应解 (1)令X (n )=δ(n),得到h(n)-h(n-1)/2=δ(n)+ δ(n-1)/2由于是因果的线性非移变系统,故由上式得出 h(n)=h(n-1)/2+δ(n)+ δ(n-1)/2 ,n ≥0 递推计算出h(-1)=0h(0)=h(-1)/2+δ(0)=1 h(1)=h(0)/2+1/2=1h(2)=h(1)/2=1/2 h(3)=21h(2)=(21)2 h(4)= 21h(2)=(21)3 ...h(n)=δ(n)+ (21)n-1u(n-1) 或 h(n)= (21)n [u(n)-u(n-1)]也可将差分方程用单位延迟算子表示成(1-D)h(n)=(1+D)δ(n)由此得到h(n)=[(1+21D)/(1-21D)]δ(n) =[1+D+21D 2+ (21)2 D 3+…+(21)k-1 D 3+…] δ(n) =δ(n)+ δ(n-1)+ 21δ(n-2)+21δ(n-3)+... +(21)k-1δ(n-1)+… =δ(n)+ (21)n u(n-1)2)将jwn e n X =)(代入)(*)()(n h n x n y =得到[]()jwjwjwnjwn jw jwnnn jwnjwn e e e e e e D D D D e D D n D De n y ------+=-+=⎥⎥⎦⎤⎢⎢⎣⎡••••+⎪⎭⎫ ⎝⎛+••••+⎪⎭⎫ ⎝⎛+++=-+=-+=2112112112121211211211)(211211*)(11322δ (3)由(2)得出 ()jw jwjw e e e H ---+=211211(4)由(3)可知121121121212=-+=⎪⎪⎭⎫ ⎝⎛--wj w j wj e e e H ⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--21arctan 2211arctan 211arctan arg 222ππj j w j e e e H 故:()()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++=21arctan 242cos arg 42cos ππππn e H n e H n y jw jw2.15 某一因果线性非移变系统由下列差分方程描述y(n)-ay(n-1)=x(n)-bx(n-1)试确定能使系统成为全通系统的b 值(b ≠a ),所谓全通系统是指其频率响应的模为与频率ω无关的常数的系统。

相关文档
最新文档