2020年中考数学专题训练1.规律探索题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索
类型一 数式规律
1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其
长为尺,第二天再折断一半,其长为尺,…,第n 天折断一半后得1214
到的木棍长应为________尺.
1
2n
2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________
.
第2题图【解析】由图形可知,第n 行最后一个数为=411+2+3+…+n ,∴第8行最后一个数为==6,则第9行从左至右n (n +1)28×92
36第5个数是=.
36+5413. 观察下列关于自然数的式子:
第一个式子:4×12-12 ①
第二个式子:4×22-32 ②
第三个式子:4×32-52 ③
…
根据上述规律,则第2019个式子的值是______.
8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075.
4. 将数1个1,2个,3个,…,n 个(n 为正整数)顺次排成一列:1,12131n
,,,,,…,,,…,记a 1=1,a 2=,a 3=,…,S 1=a 1,S 2=a 1+12121313131n 1n 1212
a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63 【解析】根据题意,将该数列分组,1个1的和为1,2个的36412
和为1,3个的和为1,…;∵1+2+3+…+63=2016个数,则第201913
个数为64个的第3个数,则此数列中,S 2019=1×63+3×=63.164164364类型二 图形规律
5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,
0).观察每次变换前后的三角形的变化,按照变换规律,则点A n的坐标是________.
第5题图
(2n,3) 【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.
第6题图
(6058,1) 【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC的边长为3,如解图第一个循环周期内的点P1,P2,P3,
P 4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P 2016的横坐标为504×12+1=6049,纵坐标为2,所以点P 2019的横坐标为6049+9=6058,纵坐标为1.故P 2019(6058,1).
第6题解图
7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右
运动,速度为每秒个单位长度,则第2019秒时,点P 的坐标是π2
________.
第7题图
(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).
8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆
时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为________.
第8题图
(-1,-1) 【解析】∵菱形OABC的顶点O(0,0),B(2,2),∴BO 与x轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB 的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).
9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.
第9题图
3n -1 【解析】由题可知,∠MON =60°,设B n 到ON 的距离为h n ,∵3正六边形A 1B 1C 1D 1E 1F 1的边长为1,∴A 1B 1=1,易知△A 1OF 1为等边三角形,∴A 1B 1=OA 1=1,∴OB 1=2,则h 1=2×
=,又∵OA 2=A 2F 2=323A 2B 2=3,∴OB 2=6,则h 2=6×=3,同理可得:OB 3=18,则h 3=18×323=9,…,依此可得OB n =2×3n -1,则
h n =2×3n -1×=3
233
23n -1.∴B n 到ON 的距离h n =
33n -1.
310. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.