斩波调速
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主电路主要环节是:整流电路、斩波电路及保护电路。
图2-1 调速系统
直流脉宽调速系统的组成如图2-1所示,由主电路、控制及保护电路、信号检测电路三大部分组成。
二极管整流桥把输入的交流电变为直流电,电阻R1为起动限流电阻,C1为滤波电容。
可逆PWM变换器主电路系采用MOSFET所构成的H型结构形式,它是由四个功率IGBT管(VT1、VT2、VT3、VT4)和四个续流二极管(VD1、VD2、VD3、VD4)组成的双极式PWM可逆变换器,根据脉冲占空比的不同,在直流电机M上可得到正或负的直流电压。
2.1.1 整流电路
晶体二极管桥式整流电路是使用最多的一种整流电路。
这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。
图2-2 整流电路
桥式整流电路的工作原理如下:e2 为正半周时,对D1 、D3 和方向电压,Dl,D3 导通;对D2 、D4 加反向电压,D2 、D4 截止。
电路中构成e2 、Dl、Rfz 、D3 通电回路,在Rfz ,上形成上正下负的半波整洗电压,e2 为负半周时,对D2 、D4 加正向电压,D2 、D4 导通;对D1 、D3 加反向电压,D1 、D3 截止。
电路中构成e2 、D2 Rfz 、D4 通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。
如此重复下去,结果在R ,上便得到全波整流电压。
其波形图和全波整流波形图是一样的。
从图2-2中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半!
2.1.2 斩波调速电路
直流电动机往往需要正、反向运行,而且有电动和制动工作状态,这就需要四象限斩波变换电路为电动机供电。
图2-3给出了四象限斩波调速主电路原理图。
T1~T4组成了全桥电路,又称H桥型电路;TA1检测母线的电流大小和方向,TA2检测电动机的电流大小和方向;电容C用来减小开关过程引起的电压波纹压敏电阻Rv用来抑制电压尖峰。
电机的工作状态同供电方式和负载有关。
C
D3
D1
D2D4 Rv
T3
T4
T2
T1
TA1
TA2
M
Ud
斩波调速主电路原理图
继电器的线圈。
过流保护信号取自电阻两端的电压,当主电路的电流高于一定数值时,电磁继电器的开关闭合,接通低电平,该过电流信号还送到SG3525的脚10。
在SG3525内部由于T3基极与A端线相连,A端线由低电压上升为逻辑高电平,经过SG3525A的13脚输出为高电平,功率驱动电路输出至功率场效应管的控制脉冲消失。
在电路中,过流保护环节还输出一个信号到与门的输入端,当出现过流信号时,检测环节输出一低电平信号到与门的输入端,使脉冲消失,与SG3525的故障关闭功能一起构成双重保护。
IGBT的保护设计:
在斩波电路中对斩波器的保护,实际上就是对IGBT的保护。
所以重要的是怎么设计好对开关管IGBT的保护方案。
在设计对IGBT的保护系统中,主要是针对过电流保护和开关过程中的过电压保护。
IGBT的过电流保护
IGBT的过流保护电路可分为2类:一类是低倍数的(1.2~1.5倍)的过载保护;一类是高倍数(可达8~10倍)的短路保护。
对于过载保护不必快速响应,可采用集中式保护,即检测输入端或直流环节的总电流,当此电流超过设定值后比较器翻转,封锁所有IGBT驱动器的输入脉冲,使输出电流降为零。
这种过载电流保护,一旦动作后,要通过复位才能恢复正常工作。
IGBT能承受很短时间的短路电流,能承受短路电流的时间与该IGBT的导通饱和压降有关,随着饱和导通压降的增加而延长。
如饱和压降小于2V的IGBT允许承受的短路时间小于5μs,而饱和压降3V的IGBT允许承受的短路时间可达15μs,4~5V时可达30μs以上。
存在以上关系是由于随着饱和导通压降的降低,IGBT的阻抗也降低,短路电流同时增大,短路时的功耗随着电流的平方加大,造成承受短路的时间迅速减小。
通常采取的保护措施有软关断和降栅压2种。
软关断指在过流和短路时,直接关断IGBT。
但是,软关断抗骚扰能力差,一旦检测到过流信号就关断,很容易发生误动作。
为增加保护电路的抗骚扰能力,可在故障信号与启动保护电路之间加一延时,不过故障电流会在这个延时内急剧上升,大大增加了功率损耗,同时还会导致器件的di/dt增大。
所以往往是保护电路启动了,器件仍然坏了。
降栅压旨在检测到器件过流时,马上降低栅压,但器件仍维持导通。
降栅压后设有固定延时,故障电流在这一延时期内被限制在一较小值,则降低了故障时器件的功耗,延长了器件抗短路的时间,而且能够降低器件关断时的di/dt,对器件保护十分有利。
若延时后故障信号依然存在,则关断器件,若故障信号消失,驱动电路可自动恢复正常的工作状态,因而大大增强了抗骚扰能力。
IGBT开关过程中的过电压保护
关断IGBT时,它的集电极电流的下降率较高,尤其是在短路故障的情况下,
如不采取软关断措施,它的临界电流下降率将达到数kA/μs。
极高的电流下降率将会在主电路的分布电感上感应出较高的过电压,导致IGBT关断时将会使其电流电压的运行轨迹超出它的安全工作区而损坏。
所以从关断的角度考虑,希望主电路的电感和电流下降率越小越好。
但对于IGBT的开通来说,集电极电路的电感有利于抑制续流二极管的反向恢复电流和电容器充放电造成的峰值电流,能减小开通损耗,承受较高的开通电流上升率。
一般情况下IGBT开关电路的集电极不需要串联电感,其开通损耗可以通过改善栅极驱动条件来加以控制。