【国家电网 精】chapter1-2
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V2 Q C 2 0.5103 C 60106 F 8.3V V3 Q C3 0.5103 C 20106 F 25.0V
1.2 capacitor 电容元件 常见电容器:
空气可变电容器
微调电容器
返回 上页 下页
云母电容器
玻璃电容器
瓷介电容器
纸介电容器
电解电容器
双电层电容器
一、conductance 电容
q+
q_
在外电源的作用下,两极板上分别带上等
量异号电荷,撤去电源,板上电荷仍可长
久地集聚下去,是一种储存电能的部件。
Solution a. CT C1 C2 C3 125F
b. QT CTV 125F 50V 6.25mC
c.
Q1 C1V 10F 50V 0.5mC
Q2 C2V 15F 50V 0.75mC
Q3 C3V 100F 50V 5.0mC
Check: QT Q1 Q2 Q3 6.25mC
Example 1-8 A signal generator applies voltage to a 5-mF capacitor with a waveform as in figure (a). Determine the current and sketch its gragh.
dv v
Example 1-10 A 10-μF, a 15-μF, and a 100-υF capacitors are connected in parallel across a 50-V source. Determine the following: a. Total capacitance. b. Total charge stored. c. Charge on each capacitor.
CT C1 C2 C3 C N
2. capacitors in series 电容元件的串联
1 1 1 1 1
CT C1 C2 C3
CN
For two capacitors in series, this reduces to 对于两个电容元件的并联,可简化为:
CT
ห้องสมุดไป่ตู้ C1C 2 C1 C2
C
i
+
p vi v C dv
-
dt
v、i 取关联
参考方向
v
(1)当电容充电, v>0,d v/d t>0,则i>0,q ,
p>0, 电容吸收功率。
(2)当电容放电,v>0,d v/d t<0,则i<0,q , p<0, 电容发出功率.
WL
t
pdt
0
t dv Cv dt C 0 dt
v,q
v
conductance 电容:
q
Symbol:C
CQ V
O v SI:Farad (F) 法拉
1F 106 F 1012 pF
返回 上页 下页
Example 1-7 a、How much charge is stored on a 10-mF capacitor when it is connected to a 24-volt source? b、the charge on a 20-nF capacitor is 1.7mC. What is its voltage?
Solution
a. Q CV 10 106 F 24V 240C
b.
V Q C 1.7 106 C 20 109 F 85V
Definition of conductance 电容的定义:
C A
d
ε——介电常数 A——极板正对面积 d——极板间距离
二、voltage and current relations of Capacitor
v vdt 1 Cv 2
0
2
Example1-9 Consider the circuit in Figure, Determine the energy stored in capacitor.
四、capacitors in series and parallel 电容元件的串、并联 1. capacitors in parallel 电容元件的并联
The current is plotted in figure (b).
三、Energy stored by an capacitor 电容元件储存的能量
电容能在一段时间内吸收外部供给的能量转化为电场能量储存
起来,在另一段时间内又把能量释放回电路,因此电容元件是无源 元件、是储能元件,它本身不消耗能量。
Thus,
iC C dt C t
0ms to 1ms: i 5106 F 10000V / s 50mA
1ms to 3ms: i 5106 F 10000V / s 50mA 3ms to 4ms: i 5106 F 0V / s 0A
4ms to 5ms: i 5106 F 20000V / s 100mA
结论:电容并联,各 个电容的电压相等, 总电量QT等于各个
电容电量Qi。
Example 1-11 A 30-μF, a 60-μF, and a 20-μF capacitors are
connected in series. Determine the following:
a. Determine CT. b. If 50-V is applied across the capacitors, determine Q.
电容元件的电压、电流关系
v、i 取关联
C
i
+
v
参考方向
-
q i
Cv dq
i
dCv dt
C
dv dt
dt
Note: In DC circuit 在直流电路中
dv 0
C dt
iL 0
i
conductor is equivalent to open-circuit in DC circuit. 电容元件在直流电路中相当于开路
c. Determine the voltage on each capacitor. Solution
a. 1 1 1 1 0.1106
CT C1 C2 C3
结论:电容串联,
CT
1 0.110 6
10F
b. Q CTV 10F 50V 0.5mC
c. V1 Q C1 0.5103 C 30106 F 16.7V
1.2 capacitor 电容元件 常见电容器:
空气可变电容器
微调电容器
返回 上页 下页
云母电容器
玻璃电容器
瓷介电容器
纸介电容器
电解电容器
双电层电容器
一、conductance 电容
q+
q_
在外电源的作用下,两极板上分别带上等
量异号电荷,撤去电源,板上电荷仍可长
久地集聚下去,是一种储存电能的部件。
Solution a. CT C1 C2 C3 125F
b. QT CTV 125F 50V 6.25mC
c.
Q1 C1V 10F 50V 0.5mC
Q2 C2V 15F 50V 0.75mC
Q3 C3V 100F 50V 5.0mC
Check: QT Q1 Q2 Q3 6.25mC
Example 1-8 A signal generator applies voltage to a 5-mF capacitor with a waveform as in figure (a). Determine the current and sketch its gragh.
dv v
Example 1-10 A 10-μF, a 15-μF, and a 100-υF capacitors are connected in parallel across a 50-V source. Determine the following: a. Total capacitance. b. Total charge stored. c. Charge on each capacitor.
CT C1 C2 C3 C N
2. capacitors in series 电容元件的串联
1 1 1 1 1
CT C1 C2 C3
CN
For two capacitors in series, this reduces to 对于两个电容元件的并联,可简化为:
CT
ห้องสมุดไป่ตู้ C1C 2 C1 C2
C
i
+
p vi v C dv
-
dt
v、i 取关联
参考方向
v
(1)当电容充电, v>0,d v/d t>0,则i>0,q ,
p>0, 电容吸收功率。
(2)当电容放电,v>0,d v/d t<0,则i<0,q , p<0, 电容发出功率.
WL
t
pdt
0
t dv Cv dt C 0 dt
v,q
v
conductance 电容:
q
Symbol:C
CQ V
O v SI:Farad (F) 法拉
1F 106 F 1012 pF
返回 上页 下页
Example 1-7 a、How much charge is stored on a 10-mF capacitor when it is connected to a 24-volt source? b、the charge on a 20-nF capacitor is 1.7mC. What is its voltage?
Solution
a. Q CV 10 106 F 24V 240C
b.
V Q C 1.7 106 C 20 109 F 85V
Definition of conductance 电容的定义:
C A
d
ε——介电常数 A——极板正对面积 d——极板间距离
二、voltage and current relations of Capacitor
v vdt 1 Cv 2
0
2
Example1-9 Consider the circuit in Figure, Determine the energy stored in capacitor.
四、capacitors in series and parallel 电容元件的串、并联 1. capacitors in parallel 电容元件的并联
The current is plotted in figure (b).
三、Energy stored by an capacitor 电容元件储存的能量
电容能在一段时间内吸收外部供给的能量转化为电场能量储存
起来,在另一段时间内又把能量释放回电路,因此电容元件是无源 元件、是储能元件,它本身不消耗能量。
Thus,
iC C dt C t
0ms to 1ms: i 5106 F 10000V / s 50mA
1ms to 3ms: i 5106 F 10000V / s 50mA 3ms to 4ms: i 5106 F 0V / s 0A
4ms to 5ms: i 5106 F 20000V / s 100mA
结论:电容并联,各 个电容的电压相等, 总电量QT等于各个
电容电量Qi。
Example 1-11 A 30-μF, a 60-μF, and a 20-μF capacitors are
connected in series. Determine the following:
a. Determine CT. b. If 50-V is applied across the capacitors, determine Q.
电容元件的电压、电流关系
v、i 取关联
C
i
+
v
参考方向
-
q i
Cv dq
i
dCv dt
C
dv dt
dt
Note: In DC circuit 在直流电路中
dv 0
C dt
iL 0
i
conductor is equivalent to open-circuit in DC circuit. 电容元件在直流电路中相当于开路
c. Determine the voltage on each capacitor. Solution
a. 1 1 1 1 0.1106
CT C1 C2 C3
结论:电容串联,
CT
1 0.110 6
10F
b. Q CTV 10F 50V 0.5mC
c. V1 Q C1 0.5103 C 30106 F 16.7V