变频电机轴电压与轴电流的产生机理分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

變頻電機軸電壓與軸電流的產生機理分析

1.當電動機在正弦波電源驅動下運行時,通過電機軸的交變磁鏈產生軸電壓。這些磁鏈是由轉子和定子槽、分離鐵心片之間的連接部分、磁性材料的定向屬性和供電電源不平衡等因素引起磁通不平衡而產

生的[1]。到90年代,以IGBT為功率器件的PWM變頻器作為電機驅動電源時,電機軸電流問題更加嚴重,且其產生機理與正弦波電源驅動時完全不同。文獻[1]指出,具有高載波頻率(例如10khz以上)的IGBT變頻器導致電動機的軸承比低載波頻率的變頻器驅動時損壞更快。busse較為詳細地分析了軸承電流的產生及軸承電流密度與軸承損壞之間的關係[2],並建立了PWM驅動下的軸承電流電路模型,但該模型未能體現出軸承電流與變頻器開關頻率之間的關係。為討論高頻PWM脈衝電壓驅動時電機軸電壓與軸電流的產生機理,本文在建立軸電壓與軸電流電路模型的基礎上,分析軸電流產生的條件及形式,並針對變頻器輸出電壓的特性變化以及電機端有無過電壓等情況,通過倣真分析得到不同情況下的軸電壓與軸承電流波形。在抑制軸承電流方面,文獻[1]給出的辦法用正弦波濾波器將PWM電壓轉換成正弦波電壓,使電機工作在正弦波供電狀態下,但該方法所串電感大,系統動態響應慢,同時電感上的壓降和功耗增大。本文在變頻器輸出端串小電感並輔以RC吸收網路,可有效抑制PWM變頻器驅動下出現的軸電流。

2.共模電壓與軸電壓一般認為,磁路不均衡、單極效應和電容電流是電機中產生軸電壓的主要原因[3]。在電網供電的普通電機中,人們一般比較重視磁路不平衡的影響。但在變頻器供電的電機中軸電壓主要由電壓不平衡,即電源電壓的零序分量產生。由於電路、元器件、連接和回路阻抗的不平衡,電源電壓將不可避免地產生零點漂移,該

電壓將在系統中產生零序電流,軸承則是電機零序回路的一部分。正弦波電源驅動時,通過計算可知=0。在PWM變頻器驅動下,的值取決於變頻器開關狀態,且變化週期與變頻器載波頻率一致。事實上,只是共模電壓的一種表現形式,由於靜電耦合,電機各部分間存在著大小不等的分佈電容,因此構成電機的零序回路。根據傳輸線理論,一個分佈參數電路可用等效的具有相同輸入輸出關係的集總參數π網路模型代替。因此,電機分佈參數電路可用集總參數電路來等效,形成軸電壓的繞組--轉子耦合部分電路如圖2a)所示,其中vbrg為軸電壓,ibrg為軸承電流,va,vb和vc為電機輸入電壓。儘管iws不流過軸承,但它與軸承電流在定子繞組上有相同的路徑,勢必對軸承電流有所影響。為便於分析,繞組中心點到定子的耦合部分將不予考慮。為計算方便,將圖2a)簡化為圖2b)所示等效單相驅動電路模型。圖中z1為電源中點對地阻抗,z2為旁路阻抗,表徵驅動回路中的共模電抗線圈、線路電抗器和長電纜等;r0和l0為定子的零序電阻和電感;csf、csr和crf分別為電機定子對地、定子對轉子和轉子對地電容;rb為軸承回路電阻;cb和r1為軸承油膜的電容和非線性阻抗;usg和urg分別為定子繞組與轉子中性點對地電壓。對於採用變頻器供電的電機,當軸承油膜未被擊穿時,由於載波頻率高,電容的容抗大大減小,與xcb相比,rb很小而r1很大,由於PWM驅動電壓為非正弦電壓,計算時先將其分解,然後分別求取,軸電壓有效值為:

3.軸承模型與軸承電流的產生由於分佈電容的存在和高頻脈衝輸入電壓的激勵作用,電機軸上形成耦合共模電壓。事實上,軸電壓的出現不僅與上面兩個因素有關,且和軸承結構有著直接關係。轉子前後端均由一個軸承支撐,其結構如圖3所示。以其中一個軸承為例,軸承的滾道由內滾道與外滾道組成,當電機轉動時,軸承中的滾珠被潤滑油層包圍,由於潤滑油的絕緣作用,軸承滾道與滾珠之間形成電

容,如圖3b)所示。這兩個電容在轉子-定子回路中以串聯形式存在(為便於分析,不考慮滾珠的阻抗),可以等效成一個電容cbi,i代表軸承中的第i個滾珠。對於整個軸承而言,各個滾珠與滾道之間的電容以並聯形式存在。所以整個軸承內可以等效成一個電容cb。據對軸承的分析,軸承可用一個帶有內部電感和電阻的開關來等效。當滾珠未與滾道接觸時,開關斷開,轉子電壓建立;當轉子電壓超過油膜門檻電壓時,油膜擊穿開關導通,轉子電壓迅速內放電,在軸承內形成較大放電電流。va、vb和vc為電機三相輸入電壓,l’、r’和c’為輸入電壓耦合到轉子軸的等效集中參數,cg為crf和cb並聯後的等效電容。當軸承滾珠和滾道接觸或者軸承內油層被擊穿時,cb不存在,此時cg僅代表轉子軸對機殼的耦合電容。電容cb是一個多個變數的函數:cb(q,v,t,η,λ,λ,εr)[2]。其中q代表功率,v代表油膜運動速度,t代表溫度,η代表潤滑劑粘性,λ代表潤滑劑添加劑,λ代表油層厚度,εr代表潤滑劑介電常數。軸承電容cb與定子到轉子耦合電容csr,比定子到機殼耦合電容csf和轉子到機殼耦合電容crf小得多。這樣一來,耦合到電機軸承上的電壓便不至於過大,這是因為crf與cb並聯後的電容比耦合回路中與之串聯的csr大得多,而串聯電容回路中,電容越大承受的電壓反而越小。事實上,根據分佈電容的特點,很大一部分共模電流是通過定子繞組與鐵芯之間的耦合電容csf傳到大地去的,因此軸承電流只是共模電流的一部分。從圖4可看出,形成軸承電流有兩種基本途徑。一是由於分佈電容的存在,定子繞組和軸承形成一個電壓耦合回路,當繞組輸入電壓為高頻PWM脈衝電壓時,在這個耦合回路勢必產生dv/dt電流,這個電流一部分經crf傳到大地,另一部分經軸承電容cb傳到大地,即形成所謂的dv/dt軸承電流,其大小與輸入電壓以及電機內分佈參數有關。二是由於軸承電容的存在,電機軸上產生軸電壓,當軸電壓超過軸承油層的擊穿電

壓時,軸承內外滾道相當於短路,從而在軸承上形成很大放電電流,即所謂的電火花加工(electricdischargemachining-EDM)電流。另外,當電機在轉動時,如果滾珠和滾道之間有接觸,同樣會在軸承上形成大的EDM電流。為了定量EDM及dv/dt電流對軸承的影響,軸承內的電流密度十分關鍵。建立電流密度需估計滾珠與滾道內表面的點接觸區域。根據赫茲點接觸理論(hertzianpointcontacttheory),軸承電氣壽命可用如下公式求得[2]:eleclife(hrs)=(7)式中,代表軸承電流密度。一般而言,dv/dt電流對軸承壽命影響很小,而由EDM產生的軸承電流密度很大,使得軸承壽命大大降低。另外,空載時軸承損壞程度反而比重載時大得多,這是因為重載時軸承接觸面積增大,無形中減小了軸承電流密度。

4.軸電壓與軸承電流的倣真分析為進一步討論軸承電流與PWM變頻器輸出電壓特性以及電機端有無過電壓之間的關係,本文對dv/dt 電流與EDM電流兩種形式的軸承電流分別進行倣真分析,結果發現,軸承電流不僅與變頻器載波頻率有關,且與變頻器輸出脈衝電壓的上升時間有關,同時當電機端出現過電壓時軸承電流明顯增加。先假定電纜長度為零,根據軸承電流的存在形式可知,dv/dt電流主要是由輸入跳變電壓引起,因此dv/dt電流大小與變頻器載波頻率和電壓上升時間有關。變頻器載波頻率越高,一個正弦波週期內產生的dv/dt 電流數量也就越多,但此時電流幅值不變。脈衝電壓上升時間是影響dv/dt電流幅值的決定性因素,另外分佈電容的大小也影響dv/dt電流幅值。而EDM電流產生的直接原因是軸電壓的存在,因此軸電壓的大小決定了EDM電流幅值,軸電壓的大小決定於輸入電壓的大小及電機內分佈電容的大小。雖然變頻器載波頻率和脈衝電壓上升時間都會影響軸電壓的形狀,但軸電壓的峰值與二者都沒有關係,因此EDM 電流與二者也沒有本質的聯繫,這是EDM電流與dv/dt電流最大區

相关文档
最新文档