53一元一次方程的应用1
《一元一次方程的应用》 讲义
![《一元一次方程的应用》 讲义](https://img.taocdn.com/s3/m/c0967e70b5daa58da0116c175f0e7cd185251845.png)
《一元一次方程的应用》讲义一元一次方程是数学中的重要基础知识,在我们的日常生活和实际问题中有着广泛的应用。
通过建立一元一次方程,可以将一些看似复杂的问题转化为数学语言,从而找到解决问题的方法。
一、行程问题行程问题是一元一次方程常见的应用场景之一。
比如,甲乙两人分别从 A、B 两地同时出发相向而行,甲的速度为每小时 5 千米,乙的速度为每小时 4 千米,经过 3 小时两人相遇,求 A、B 两地的距离。
我们设 A、B 两地的距离为 x 千米。
甲走的路程为 5×3 = 15 千米,乙走的路程为 4×3 = 12 千米。
由于两人是相向而行,所以他们走过的路程之和等于两地的距离,即 15 + 12 = x,解得 x = 27 千米。
再比如,一辆汽车以每小时 60 千米的速度从甲地开往乙地,4 小时后到达。
返回时由于路况不好,速度变为每小时 48 千米,求返回时需要的时间。
设返回时需要的时间为 x 小时。
根据路程相等,去时的路程为 60×4 = 240 千米,返回的路程为 48x 千米,所以 48x = 240,解得 x = 5 小时。
二、工程问题工程问题也是经常用到一元一次方程的领域。
例如,一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?设两人合作需要 x 天完成。
把这项工程的工作量看作单位“1”,甲每天的工作效率为 1/10,乙每天的工作效率为 1/15,两人合作每天的工作效率为 1/10 + 1/15。
根据工作量=工作效率×工作时间,可得(1/10 + 1/15)x = 1,解得 x = 6 天。
又如,一个水池,有甲、乙两个进水管,单开甲管8 小时可以注满,单开乙管 12 小时可以注满,现在两管同时打开,多少小时可以注满水池?设 x 小时可以注满水池。
甲管每小时的注水量为 1/8,乙管每小时的注水量为 1/12,两管同时开每小时的注水量为 1/8 + 1/12,所以(1/8 + 1/12)x = 1,解得 x = 48 小时。
一元一次方程的解的应用
![一元一次方程的解的应用](https://img.taocdn.com/s3/m/93e0d9f368dc5022aaea998fcc22bcd126ff420c.png)
一元一次方程的解的应用一元一次方程是数学中最基本且常见的方程形式,它具有广泛的应用。
通过解一元一次方程,我们能够解决各类实际问题,从解释自然现象到解决实际生活中的计算问题都离不开一元一次方程。
1. 一元一次方程在几何中的应用在几何学中,一元一次方程可以用来解决诸多问题。
一个典型的例子是计算直线的交点坐标。
假设有两条直线,分别表示为y = k1x + b1和y = k2x + b2,其中k1、k2分别表示两条直线的斜率,b1、b2分别表示两条直线的截距。
当两条直线交于一点时,即存在一个坐标(x0, y0)满足方程组:k1x0 + b1 = k2x0 + b2求解这个方程组即可得到交点的坐标。
2. 一元一次方程在物理中的应用物理学中,一元一次方程是最常见的模型之一,常被用来描述物理量之间的关系。
例如,根据物体运动的速度、时间和位移的关系,可以建立如下方程:v = s / t其中v表示速度,s表示位移,t表示时间。
通过解这个方程,我们可以计算出物体在给定时间内的位移。
3. 一元一次方程在经济学中的应用经济学中,一元一次方程被广泛用于描述经济关系。
例如,假设某商品的销售价格为p,销售量为q,那么销售收入可以表示为: r = p * q其中r表示销售收入。
通过解这个方程,我们可以计算出在不同的价格和销售量情况下的销售收入,从而为经济决策提供依据。
4. 一元一次方程在工程中的应用在工程领域,一元一次方程被广泛应用于各类计算中。
例如,假设某个工程项目的总工时为H,每小时的工资为W,那么总费用可以表示为:C = H * W其中C表示总费用。
通过解这个方程,我们可以计算出不同工时和工资水平下的总费用,从而为工程预算提供参考。
综上所述,一元一次方程的解的应用非常广泛,几乎渗透到了各个领域。
通过解一元一次方程,我们可以解决几何、物理、经济和工程等各类实际问题,为决策和计算提供了方便和依据。
因此,掌握一元一次方程的方法和技巧对于我们在各个领域的学习和工作都至关重要。
一元一次方程的应用
![一元一次方程的应用](https://img.taocdn.com/s3/m/23973c3c26284b73f242336c1eb91a37f11132ae.png)
一元一次方程的应用一元一次方程是指只有一个未知数,并且该未知数的指数为1的方程。
一元一次方程的一般形式为ax + b = 0,其中 a 和 b 为已知常数,x 为未知数。
一元一次方程的应用非常广泛,可以在各个领域中解决实际问题。
本文将以数学、物理和经济三个方面来讨论一元一次方程的具体应用。
一、数学领域1. 解题应用:一元一次方程的解可以代表问题的答案。
通过列方程、整理方程、求解方程的过程,可以得到问题的解决方案。
2. 几何应用:一元一次方程可以用于求解图形的坐标、长度、面积等问题。
例如,求两点之间的距离、直线与坐标轴的交点等都可以转化为一元一次方程的问题。
3. 概率应用:一元一次方程可以用于概率计算中。
例如,已知事件发生的概率,求解该事件发生的次数等,可以通过建立一元一次方程来解决。
二、物理领域1. 力学应用:一元一次方程可以用于解决力学问题。
例如,已知物体的质量和加速度,求解力的大小;已知物体的速度和时间,求解物体的位移等。
2. 热学应用:一元一次方程可以用于热学问题的计算。
例如,已知物体的温度和传热系数,求解物体的传热速率;已知物体的热容和温度变化,求解物体的热量等。
三、经济领域1. 成本应用:一元一次方程可以用于经济成本的计算。
例如,已知某商品的固定成本和单位产品的生产成本,求解生产一定数量商品的总成本。
2. 收益应用:一元一次方程可以用于经济收益的计算。
例如,已知某汽车公司的定价策略和销售数量,求解该公司的总收益。
3. 投资应用:一元一次方程可以用于投资回报的计算。
例如,已知某项投资的投资额和回报率,求解投资多少年可以收回成本。
综上所述,一元一次方程的应用十分广泛,不仅可以用于数学领域的解题,还可以用于物理和经济等实际问题的求解。
掌握一元一次方程的应用方法,将有助于我们解决各种实际问题,并提升我们的数学思维能力。
一元一次方程的实际应用
![一元一次方程的实际应用](https://img.taocdn.com/s3/m/822383aced3a87c24028915f804d2b160b4e8609.png)
一元一次方程的实际应用
1.电路分析:解决电路中由电阻、电容、电感等的次数和相位关系的一元一次方程。
2.工程测量:如标准气体混合物分子量的测定,需要使用一元一次方程。
3.机械力学:求解运动学问题时,常使用到一元一次方程来表示位置、速度和加速度之间的关系。
4.化学反应动力学:反应方程要么是一对多对应的多项式方程,要么是复杂的微分方程。
而在特定情况下,可以将多项式化为一元一次方程来解决。
5.商业问题:例如企业常使用销售量与销售价格之间的函数来进行风险评估、产品定价或者制定预测性预算。
这些函数也可以表达成一元一次方程。
一元一次方程的应用
![一元一次方程的应用](https://img.taocdn.com/s3/m/efa16e4a591b6bd97f192279168884868762b8de.png)
一元一次方程的应用一元一次方程是初中数学中的基础内容,它是指只含有一个未知数,并且该未知数的最高次数为1的代数方程。
本文将围绕一元一次方程的应用展开探讨,涵盖了方程的定义、解法以及实际生活中的应用。
一、方程的定义与解法一元一次方程的一般形式为:ax + b = 0,其中a、b为已知数,x为未知数,a≠0。
解一元一次方程的基本步骤如下:1. 将方程进行化简,将未知数的系数和常数项移到方程的一边,使得方程变为ax = -b的形式。
2. 通过除以系数a,消去未知数x的系数,得到x = -b/a的解。
需要注意的是,若a = 0,则该方程没有解或者有无数解,这需要根据具体的题目情况进行判断。
例如,对于方程2x + 3 = 7,可进行如下解法:1. 将常数项移到方程的一边,得到2x = 7 - 3。
2. 化简得到2x = 4。
3. 除以2,得到x = 2。
因此,该方程的解为x = 2。
二、实际生活中的应用一元一次方程在我们的日常生活中有着广泛的应用,因为它可以用来解决很多实际问题。
以下是一些常见的应用场景:1. 商业应用在商业领域中,一元一次方程可以用来解决定价、成本、销售和利润等问题。
例如,一家零售店的成本包括固定成本和变动成本,可以使用一元一次方程来计算其销售额和盈利情况。
2. 交通运输交通运输中,我们经常会遇到速度、距离和时间的关系,利用一元一次方程可以计算出车辆的速度、行驶时间以及路程。
例如,已知一辆汽车以每小时60公里的速度行驶,行驶了5个小时后,可以使用一元一次方程求出行驶的总里程。
3. 比例关系一元一次方程也可以用来解决比例关系的问题。
例如,某种商品的原价为x元,现在打折促销,打折后的价格为原价的80%,可以使用一元一次方程来计算打折后的价格。
假设商品原价为100元,则打折后的价格为0.8x,可以列出方程0.8x = 100来求解。
4. 时间和距离在旅行中,一元一次方程可以帮助我们计算出到达目的地所需的时间和距离。
一元一次方程的应用(1)
![一元一次方程的应用(1)](https://img.taocdn.com/s3/m/e06a69c2f61fb7360b4c65e1.png)
15小时,若两人合做x小时可以完工,依题意可列方程为( )
A.( 1 1 )x 1 500 12 15
C.( 1 1 500)x 1 500 12 15
B.(1 500 1 500)x 1 500 12 15
D.(1 500 1 500)x 1 12 15
【解析】选B.甲每小时加工 1 500 个零件,乙每小时加工1 500 个
3.制成的盒身与盒底有什么数量关系? 提示:盒身个数的2倍=盒底的个数. 4.所以可列方程:_2_×__2_5_x_=_4_0_(_3_6_-_x_)_. 5.解方程,得:_x_=_1_6_. 6.用_1_6_张制盒身,_2_0_张制盒底.
【总结提升】配套问题的两个未知量及两个等量关系 1.两个未知量: 这类问题有两个未知数,设其中哪个为x都可以,另一个用含x 的代数式表示,两种设法所列方程没有繁简或难易的区别. 2.两个等量关系: 例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数 =36”,此关系用来设未知数.另一个是制成的盒身数与盒底数 的倍数关系,这是用来列方程的等量关系.
2 4 8x 2 1,
40 40
解得x=2.
答:还需增加2人.
2.工程问题: (1)工作时间、工作效率、工作量之间的关系: ①工作量=_工__作__时__间__×_工__作__效__率__. ②工作时间=_工__作__量__÷_工__作__效__率__. ③工作效率=_工__作__量__÷_工__作__时__间__. (2)通常设完成全部工作的总工作量为_1_,如果一项工作分几个 阶段完成,那么各阶段工作量的和=_总__工__作__量__,这是工程问题列 方程的依据.
【解析】选A.安排x台机械运土,则安排(15-x)台机械挖土,
一元一次方程的应用
![一元一次方程的应用](https://img.taocdn.com/s3/m/b244a526dcccda38376baf1ffc4ffe473368fdff.png)
一元一次方程的应用一元一次方程是数学中的基本概念之一,它在解决现实生活中的问题时起着重要的作用。
本文将探讨一元一次方程的应用,并通过实例来说明它在实践中的意义。
一、方程的定义和基本性质一元一次方程是指只含有一个变量(未知数)的一次方程,它的一般形式为ax + b = 0,其中a和b是已知数,x为未知数。
方程的解即是使得方程成立的数值,解的存在与唯一性是一元一次方程的重要性质。
对于形如ax + b = 0的方程,如果a≠0,则方程有唯一解x = -b/a;如果a=0且b≠0,则方程无解;如果a=0且b=0,则方程有无限多解。
二、一元一次方程在实践中的应用一元一次方程在日常生活中有着广泛的应用,特别是在问题求解和实际应用中扮演着重要角色。
以下是一些典型的应用示例:1. 汽车行驶问题假设一辆汽车以每小时60公里的速度前进,已知它从起点出发行驶了3小时后的行驶距离为180公里。
我们可以建立如下的一元一次方程来求解汽车的起始位置:60x + 180 = 0其中,x表示汽车的起始位置,方程的解x即为汽车的起点位置。
2. 黄金分割比的计算黄金分割比是数学中的重要比例关系,它可以通过一元一次方程来求解。
假设黄金分割比为a:b,已知a+b=1,按照黄金分割比将线段分割成两部分,我们可以通过如下的一元一次方程来求解黄金分割比:a/b = a+b/b = 1/b上述方程的解即为黄金分割比。
3. 成绩排名问题假设某班级有n个学生,他们的数学成绩分别为x1, x2, ..., xn。
现在要求按成绩从高到低排名,并将排名用1, 2, ..., n表示。
我们可以通过如下的一元一次方程来求解学生的排名:xi + 1 = xi-1 + 1其中,xi-1和xi分别表示排名为i-1和i的学生的成绩。
通过以上实例,我们可以看到一元一次方程在日常生活中的广泛应用。
它可以帮助我们解决各种实际问题,从汽车行驶到数学比例的计算,再到成绩排名等。
一元一次方程的应用
![一元一次方程的应用](https://img.taocdn.com/s3/m/b6e66d46178884868762caaedd3383c4ba4cb46e.png)
一元一次方程的应用1. 苹果的购买:假设每个苹果的价格是p,你买了x个苹果,花了y 元。
这个购买过程可以用方程px = y来表示,其中p是苹果的单价。
通过解这个方程,可以计算出每个苹果的价格或购买的数量。
2. 电费计算:假设每度电的价格是p,你使用了x度电,支付了y元的电费。
这个计算过程可以用方程px = y来表示,通过解这个方程,可以计算出每度电的价格或使用的数量。
3. 路程和速度的关系:假设一个人以每小时v的速度行驶了x小时,那么他所行驶的路程可以用方程vx = d来表示,其中d是行驶的总路程。
通过解这个方程,可以计算出速度或行驶的时间。
4. 汽车行驶的时间:假设一个汽车以每小时的速度v行驶了x千米,行驶的时间可以用方程vx = t来表示,其中t是行驶的时间。
通过解这个方程,可以计算出汽车的速度或行驶的距离。
5. 工作量计算:假设一项工作需要x个小时完成,每小时工作的效率是p个单位,那么完成这项工作需要的总工作量可以用方程px = w来表示,其中w是工作的总量。
通过解这个方程,可以计算出工作的效率或完成工作所需的时间。
6. 线性销售模型:假设一种商品每件的价格是p,销售了x件,总销售额为y元。
这个销售过程可以用方程px = y来表示。
通过解这个方程,可以计算出每件商品的价格或销售的数量。
7. 比例关系:假设一个问题中存在两个量x和y,它们之间存在比例关系,可以用方程yx = t来表示,其中t是比例系数。
通过解这个方程,可以计算出两个量的比例关系。
以上这些是一元一次方程在现实生活中的一些应用场景,我们可以通过解这些方程来计算出各种参数的值或者确认各种关系。
整合了数学和实际问题,使得人们可以更好地理解和解决实际生活中的各种情况。
一元一次方程的应用ppt课件
![一元一次方程的应用ppt课件](https://img.taocdn.com/s3/m/5387f412f6ec4afe04a1b0717fd5360cba1a8df3.png)
知1-练
3-1. [期末·上海松江区]甲、乙两个车间工作人员的人数之
知1-练
比是3∶ 4,乙车间突然遇上紧急事件,急需增加人员,
即刻从甲车间调出12人到乙车间,这时甲车间人数是
乙车间人数的 ,甲车间原有多少人?
解:设甲车间原有3x人,则乙车间原有4x人,
(1) 求八年级选取的人数;
解:设八年级选取x人,则九年级选取2x人,
由题意,得25+x+2x=100,解得x=25.
答:八年级选取25人.
知1-练
(2)如果下一次学校选取志愿者,七年级的人数至少要
30人,则七年级志愿者人数至少要增加百分之几?
解:(30-25)÷25=20%.
答:七年级志愿者人数至少要增加20%.
若甲、乙同时出发,则相遇时,甲用的时间 = 乙用的时间 .
(2) 追及问题中的相等关系: ①当快者追上慢者时,快者走的
路程 -慢者走的路程 = 追及路程;②若同时出发,当快者
追上慢者时,快者用的时间 = 慢者用的时间 .
(3) 航行问题中的相等关系: 顺水(顺风)速度 = 静水(无风) 速度
+ 水(风)速,逆水(逆风)速度 = 静水(无风)速度 -水(风)速 .
速度为 60 km/h,一列快车从乙站开出,速度为 90 km/h.
(1)若两车相向而行,慢车先开 30 min,快车开出几小时
后两车相遇?
(2)若两车同时开出,相背而行,多少小时后两车相距
1 800 km ?
(3)若两车同时开出,快车在慢车后面同向而行,多少小
时后两车相距 1 200 km(此时快车在慢车的后面)?
同向:两列火车所行路程的差 = 两列火车车身长的和 .
一元一次方程的应用
![一元一次方程的应用](https://img.taocdn.com/s3/m/72d2c193185f312b3169a45177232f60dccce742.png)
一元一次方程的应用一元一次方程是初中数学中的基础知识之一,它在实际生活中有着广泛的应用。
在本文中,我将探讨一些一元一次方程的实际应用,并探讨它们在现实生活中的意义。
一元一次方程通常具有以下形式:ax + b = 0,其中a和b是已知的常数,x是未知数。
这种形式的方程可以解析地求解,从而得出x的数值解。
这使得一元一次方程成为解决一些实际问题的强大工具。
首先,一元一次方程可以应用于计算机编程中。
计算机程序通常需要解决一些数学问题,而一元一次方程是其中的常见应用之一。
例如,在计算中,我们经常需要解决线性关系,如计算两个变量之间的比例,或者计算一个变量的变化规律。
这些问题可以用一元一次方程来建立模型,并通过求解方程得到结果。
其次,一元一次方程在日常生活中的运用也是非常广泛的。
例如,我们常常遇到解决购物折扣问题的情况。
假设某商场正举行打折活动,所有商品都打8折。
如果我们想要购买一件原价200元的商品,我们可以使用一元一次方程来计算折扣后的价格。
设折扣后的价格为x元,则有0.8x = 200,通过求解这个一元一次方程,我们可以得到x的值,即折扣后的价格。
除此之外,一元一次方程还可以应用于物理学中。
例如,在直线运动中,根据速度、时间和位移之间的关系,可以建立如下一元一次方程:vt + s = 0,其中v是速度,t是时间,s是位移。
通过解这个方程,我们可以确定物体的位移。
在经济学中,一元一次方程也有重要的应用。
例如,在成本和产量之间的关系中,可以建立如下方程:C = mx + b,其中C是总成本,x 是产量,m和b是已知的常数。
通过求解这个一元一次方程,我们可以计算出达到平衡产量时的总成本。
此外,一元一次方程还可以应用于统计学中的回归分析。
在分析变量之间的线性关系时,我们需要建立一个合适的数学模型,而一元一次方程往往是回归分析中最简单也最常用的模型之一。
通过拟合一元一次方程,可以帮助我们理解变量之间的关系,并预测未来的趋势。
一元一次方程的应用-1
![一元一次方程的应用-1](https://img.taocdn.com/s3/m/a97c07eca1c7aa00b52acb22.png)
2 2 10 x 7 x 9 3 3
解之得 X=4.5 则 10x=45,
7x=31.5
育网 -
答:最快者的速度是 45千米∕时,最慢者的速度为 31.5千米∕时。 需要更完整的资源请到 新世纪教
(4) 劳力调配问题
例4 :甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两 仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍? 分析 :若设应分给甲仓库粮食X吨,则数量关系如下表
1.4% · X+3.7% · (20-X)=0.625
解之得 X= 5 则 20-X=15
答 :甲种存款为5万元,乙种存款为15万元。
需要更完整的资源请到 新世纪教 育网 -
(7)、数字问题
要理解十进制整数的表示方法
例7 :一个两位数的十位上的数是个位上的数的两倍,若把两个数字 对调,则新得到的两位数比原两位数小36,求原两位数。 分析 :题中数量关系如下表 (若设原数的个位数字为X)
原有粮食 甲仓库 乙仓库 35 19 新分给粮食 X (15-X) 现有粮食 35+X 19+(15-X)
故相等关系为 : 甲仓库现有粮食的重量=2×乙仓库现有粮食的重量
解 :设应分给甲仓库粮食X吨,则应分给乙仓库粮食(15-X)吨。 依题意得
35 x 219 15 x
X=11 15-X=4
一元一次方程的应用
一、列一元一次方程解应用题的一般步骤
(1)、一般步骤 (2)、注意事项
二、应用题的常见类型
(1)、和差倍分问题 (2)、行积问题 (3)、行程问题 (4)、劳力调配问题 (5)、工程问题 (6)、利率问题 (7)、数字问题
三、思考题 四、退出
2024年沪科版七年级数学上册 3.3 一元一次方程的应用 课时1(课件)
![2024年沪科版七年级数学上册 3.3 一元一次方程的应用 课时1(课件)](https://img.taocdn.com/s3/m/99b455282f3f5727a5e9856a561252d380eb20b7.png)
新知探究 知识点 一元一次方程的应用(一)
例1 如图,李明同学从一张正方形纸片上剪去一张宽为4 cm
的长方形纸条,再从剩下的长方形纸片上剪去一张宽5 cm的
长方形纸条.如果两次剪下的长方形纸条面积正好相等,那
么原正方形的边长为多少?
4
5
(单位:cm)
新知探究 知识点 一元一次方程的应用(一)
思考:1.本题中有什么等量关系?
找等量关系,列方程
数学问题
实际问题
(一元一次方程)
实际问题的 答案
解方程
检验
数学问题的解
(一元一次方程的解)
随堂练习 【教材P104 练习】 1.列方程,解下列各题: (1)一种小麦磨成面粉,出粉率为80%(即20%成为子).为 了得到4 500 kg面粉,至少需要多少小麦?
解:设至少需要x kg小麦. 根据题意,得x·80% = 4 500. 解方程,得x=5 625. 答:至少需要 5 625 kg小麦.
登山平均速度/km·h-1 3
已知张老师在补给站休息了10min,用时1.5h完成了比赛.
求补给站与起点的距离.
8.2km
跑步距离+登山距离=总距离
起点
补给站
终点
新知探究
知识点
起点
一元一次方程的应用(一)
8.2km
终点
x km 补给站
8.2-x km 跑步时间+登山时间=总用时-休息时间
解:设补给站离起点x km. 根据题意,得
②号车的行驶速度是72km/h,①号车比②号车早到 4 h,求合
肥与亳州相距多少千米?
9
解:设合肥与亳州相距x km.
根据题意,得 x x 4 ,解得x=320. 72 80 9
一元一次方程的应用(通用16篇)
![一元一次方程的应用(通用16篇)](https://img.taocdn.com/s3/m/eece7992dc3383c4bb4cf7ec4afe04a1b071b0b8.png)
一元一次方程的应用(通用16篇)一元一次方程的应用篇1教学设计示例教学目标1.使同学初步把握一元一次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;2.培育同学观看力量,提高他们分析问题和解决问题的力量;3.使同学初步养成正确思索问题的良好习惯.教学重点和难点一元一次方程解简洁的应用题的方法和步骤.课堂教学过程设计一、从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由同学回答,老师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,老师引导,同学口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思索,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样查找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、讨论一元一次方程解简洁应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让同学争论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 老师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应留意仿照.依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据同学总结的状况,老师总结如下:(1)认真审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)依据相等关系,正确列出方程.即所列的方程应满意两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?(仿按例2的分析方法分析本题,如同学在某处感到困难,老师应做适当点拨.解答过程请一名同学板演,老师巡察,准时订正同学在书写本题时可能消失的各种错误.并严格规范书写格式)解:设第一小组有x个同学,依题意,得3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.其苹果数为3× 5+9=24.答:第一小组有5名同学,共摘苹果24个.同学板演后,引导同学探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.四、师生共同小结首先,让同学回答如下问题:1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应留意什么?依据同学的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面把握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数一元一次方程的应用篇2教学设计示例教学目标1.使同学初步把握一元一次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;2.培育同学观看力量,提高他们分析问题和解决问题的力量;3.使同学初步养成正确思索问题的良好习惯.教学重点和难点一元一次方程解简洁的应用题的方法和步骤.课堂教学过程设计一、从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由同学回答,老师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,老师引导,同学口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思索,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样查找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、讨论一元一次方程解简洁应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让同学争论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 老师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应留意仿照.依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据同学总结的状况,老师总结如下:(1)认真审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)依据相等关系,正确列出方程.即所列的方程应满意两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?(仿按例2的分析方法分析本题,如同学在某处感到困难,老师应做适当点拨.解答过程请一名同学板演,老师巡察,准时订正同学在书写本题时可能消失的各种错误.并严格规范书写格式)解:设第一小组有x个同学,依题意,得3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.其苹果数为3× 5+9=24.答:第一小组有5名同学,共摘苹果24个.同学板演后,引导同学探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.四、师生共同小结首先,让同学回答如下问题:1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应留意什么?依据同学的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面把握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.一元一次方程的应用篇3教学设计示例教学目标1.使同学初步把握一元一次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;2.培育同学观看力量,提高他们分析问题和解决问题的力量;3.使同学初步养成正确思索问题的良好习惯.教学重点和难点一元一次方程解简洁的应用题的方法和步骤.课堂教学过程设计一、从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由同学回答,老师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,老师引导,同学口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思索,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样查找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、讨论一元一次方程解简洁应用题的方法和步骤例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以 x=50 000.答:原来有 50 000千克面粉.此时,让同学争论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 老师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应留意仿照.依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据同学总结的状况,老师总结如下:(1)认真审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)依据相等关系,正确列出方程.即所列的方程应满意两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?(仿按例2的分析方法分析本题,如同学在某处感到困难,老师应做适当点拨.解答过程请一名同学板演,老师巡察,准时订正同学在书写本题时可能消失的各种错误.并严格规范书写格式)解:设第一小组有x个同学,依题意,得3x+9=5x-(5-4),解这个方程: 2x=10,所以 x=5.其苹果数为3× 5+9=24.答:第一小组有5名同学,共摘苹果24个.同学板演后,引导同学探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.四、师生共同小结首先,让同学回答如下问题:1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应留意什么?依据同学的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面把握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数一元一次方程的应用篇4教学内容:人见教版初一代数[目的要求]:1. 使同学能分析问题中的相等关系,会列出一元一次方程,解简洁的调配问题的应用题;2. 使同学能从应用题所求的两个未知数中选设一个,通过列方程求得这个未知数的值后,再利用它与另一个未知数以及某些已知数的关系,求得另一个未知数的值。
一元一次方程的应用【优秀8篇】
![一元一次方程的应用【优秀8篇】](https://img.taocdn.com/s3/m/d77e93f40408763231126edb6f1aff00bfd57055.png)
一元一次方程的应用【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!一元一次方程的应用【优秀8篇】元一次方程的应用篇一讲到一元一次方程去括号的应用,即用一元一次方程解决工程问题。
矿产
![矿产](https://img.taocdn.com/s3/m/829bb502a4e9856a561252d380eb6294dd88229b.png)
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、从如图的月历表中取一个2×2方块。 若这个方块所围成的4个方格的日期之 和为44,求这4个方格中的日期。
JULY 日 一 二三 四 五 六
123
4
5
67
8
9 10Βιβλιοθήκη 11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
(1)体会现实生活中的问题可以运用方
23
5
家再经 25小时到达目的地。假定整个行程中,两家 都是匀速行驶的。
问:两家行驶的速度分别是多少? (1)请画出线段图
(2)根据线段图,你能找出题中有哪些相等关系 吗?
做一做
1、甲、乙两人从相距为180千米的A、B两地 同时出发,甲骑自行车,乙骑摩托车,沿同一条路 线相向匀速行驶.已知甲的速度为每小时15千 米,乙的速度为每小时45千米,若甲先行驶1时 后乙才出发,问甲再行驶多少时间与乙相遇?
程来解决(方程建模)
(2)解决实际问题的一般过程: 审 设 列解 验
(3)会列一元一次方程解决简单的实际问题
▲分析时,借助线段图
▲设元后,相关的量用未知数的代数式来表 示
请编一个实际应用题,要求所列的方程为
15x 45x 120
义务教育课程标准 浙教版七年级上 册
你能知道吗?
高老师女儿今年16岁,她的年龄是高老 师年龄的 1 多2岁,你能知道高老师的
3
年龄吗?你是怎么知道的?
国庆长假期间,高老师一家准备驾车去雁 荡山旅游,出发前一天晚上去江南摩尔购 物,购买水果5kg,饮料15瓶,面包10个, 已知水果的单价为12元/kg,饮料单价是面 包单价的2倍少0.8元,共花费了140元, 问:面包的单价为多少?
际情形,并写出答案.
第二天早晨,高老师一家和朋友一家分别从嘉兴、
平湖两地同时驾车沿G15高速出发前往雁荡山,高 老师家从嘉兴出发,途经平湖,朋友家直接从平湖 出发。已知嘉兴与平湖相距45千米,经3小时后高老 师家追上朋友家,追上后,两家各按原来的速度前
往雁荡山,高老师家再经 4小时到达目的地,朋友
请认真审题并思考:
(1)题中涉及哪些量?
(2)题中的量之间有哪些相等关系?
运用方程解决实际问题的一般过程: 1.审题: 分析题意,找出题中的数量及其关系; 2.设元: 选择一个适当的未知数用字母表示
(例如x);
3.列方程: 根据相等关系列出方程;
4.解方程:求出未知数的值; 5.检验:检查求得的值是否正确和符合实