变压器分布电容对高频高压...

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25卷第4期

2006年10月

电工电能新技术

Advanced T echnology of E lectrical Engineering and Energy

V ol.25,N o.4Oct.2006

收稿日期:2006204214

作者简介:赵志英(19792),女,江苏籍,硕士研究生,研究方向为功率电子变换技术;

龚春英(19652),女,浙江籍,教授,博士,主要从事航空电源,电力电子与电力传动技术的研究。

变压器分布电容对高频高压反激变换器的影响及其抑制措施

赵志英,秦海鸿,龚春英

(南京航空航天大学航空电源重点实验室,江苏南京210016)

摘要:随着单端反激变换器在高频高压场合的应用,变压器寄生参数的控制对电路的正常运行以及性能优化尤为关键。文中对变压器分布电容对电路的影响进行了透彻分析,给出了一般性的模型,并以高输入电压低输出电压场合为例,对该模型进行了等效处理,继而详细分析了分布电容对电路工作产生的影响,归纳出有意义的结论,并基于以上研究,提出控制寄生参数的工程方法,并通过实验验证了文中分析的正确性及抑制方法的实用性。关键词:分布电容;反激变换器;高频高压;斜坡补偿

中图分类号:T M46 文献标识码:A

文章编号:100323076(2006)0420067204

1 引言

随着应用场合输入、输出电压等级的提高,以及为适应小型化要求而采用更高开关频率的发展趋势下,反激变换器的正常运行及性能优化越来越受到

其变压器寄生参数的限制[1]

。变压器的寄生参数主要是漏感和分布电容。很多研究人员对该变换器中变压器漏感已作了详实的研究,得出很多有意义的

结论[2,3]

。本文主要针对变压器另一重要的寄生参数———分布电容对电路工作的影响进行研究,探讨变压器漏感与分布电容的有效控制措施及合理匹配方案,从而优化整机性能。首先给出计及漏感和分布电容的变压器模型,继而给出了变压器分布电容对电路工作的影响,分析了具体的工作模态,从而归纳出一些有意义的结论。基于以上研究,提出控制寄生参数及合理匹配漏感和分布电容的措施。

2 计及分布电容的变压器模型

很多文献在讨论变压器寄生参数对反激变换器

整机工作的影响时,只对漏感进行了详细的讨论,而忽略了分布电容的影响,这在开关频率相对较低情况下尚可接受,但随着开关频率的提高及输入输出电压等级的提高,分布电容对整机工作的影响程度会大大增加,采用只考虑漏感的变压器模型已无法准确预测变换器的工作情况及解释实际工作中出现

的一些特殊现象[4,5]

,必须采用同时考虑漏感和分布电容的变压器模型,来逼近真实情况。

文献[6]给出四种仅考虑分布电容时的变压器模型,这些模型具有不同的精度,适用于开关电源的E MI 传导分析,并不适合于实际电路分析。采用有限元分析方法,进行数值求解可获得较精确的变压

器模型,但计算量较大[7]

。经过对比分析,本文认为文献[8]提出的变压器模型较为适用于工程应用分析,其中两绕组的变压器可以用图1所示的二端口网络表示。变压器模型由电感、电容、电阻和一个两绕组的理想变压器组成。其中,L s1、L s2、L m 分别表示原副边漏感和磁化电感;R 1、R 2、R m 分别代表与原副边铜损及变压器铁损相对应的折算阻值,这三个参数均与开关频率有一定关系。C s1、C s2分别代表原边、副边的匝间电容,C s12代表原边绕组与副边绕组之间的分布电容。

图1 考虑分布参数时的两绕组变压器模型

Fig.1 T w o 2port trans former representation with stray capacitance

作为机内辅助电源,反激变换器较多地应用于

输入高压、输出低压的场合,在原理分析及设计中,上述模型可作进一步的等效简化处理。因原边匝数一般较多,常绕成多层结构,

原边绕组等效分布电容和漏感均较大,而对于高压输入,开关转换时分布电容储能变化较大,对变换器产生的影响也较大。而副边匝数一般较少,等效分布电容和漏感均较小,且输出低压,分布电容储能变化较小,相应产生的影响也较小,故忽略副边绕组的寄生参数。从而得到图2所示的简化等效模型。

图2 高频变压器简化模型

Fig.2 S im plified circuit m odel of high 2frequency trans former

3 分布电容对反激变换器的影响

文中以图3所示RC D 箝位反激变换器在DC M

工作模式下的情况为例,分析变压器分布电容对高压高频反激变换器的影响,给出主要工作模态分析。

在分析之前,作如下假设:(1)箝位二极管D 1为理想器件,所有电感、电容均为理想元件;(2)输出滤波电容C o 足够大。

图3 RC D 箝位反激变换器

Fig.3 Flyback converter with RC D clam p netw ork

计及分布电容和漏感后,变换器每周期共有图4所示的5个主要工作模态,图5给出主要工作

波形。

(1)模态1 [t 0~t 1]

开关管S 开通之前,变压器绕组电压电流为零,C s 储能为零,S 承受的电压为V DS =V in 。t =t 0时刻,S 导通,等效分布电容C s 两端电压将发生变化,电容C s 通过开关管充电,在输入电压一定时,充电电流幅值取决于开关管的开通速度。至t =t 1时刻,开关管完全导通,即C s 两端电压等于V in 时,原边电流才开始线性上升。如图4(a )所示。

(2)模态2 [t 1~t 2]

如图4(b )所示,在t 1~t 2时段内,开关管S 处于通态,原边电流线性上升,磁化电感储存能量。(3)模态3 [t 2~t 3]

如图4(c )所示,t 2时刻,S 管关断,但由于L s

和C s 之间的能量交换以及S 管结电容充电,L m 中的磁化电流不能迅速传递到副边,具有一定的延迟时间。在此期间内,变压器原边漏感会产生幅度很高的反电势,如果不对它进行吸收,它会与变压器初级线圈之间的分布电容进行来回充放电,即产生高频振铃。加上RC D 箝位网络后,由于箝位电容C 充电时与变压器初级线圈之间的分布电容并联,C 的作用会使产生振铃的频率大大降低,幅度也降低。此能量转换过程将一直持续到t 3时刻,等效分布电容充电至V Cs =-V o Πn 。(4)模态4 [t 3~t 4]

t 3时刻,等效分布电容充电至V Cs =-V o Πn ,副

边二极管导通,变压器磁化电流线性下降。在此模态中原边开关管S 承受的电压为:V DS =V in +V o Πn ,直至t 4时刻,L m 中能量传递结束。(5)模态5 [t 4~t 5]

t 4时刻,磁化电感能量释放完毕,副边二极管

关断。绕组分布电容与漏感、功率管漏源寄生电容发生谐振,V Cs 、V DS 波形出现振荡,其振荡衰减过程与电路阻尼程度有关。

由上分析可见,高频高压反激变换器中变压器分布电容对电路的影响可以归纳为:

(1)原副边绕组的寄生电容会对电路产生影

响。在绕组电压发生变化时,分布电容中的能量发生变化,就会在变压器内部和主电路回路中产生高频的振荡环流,使变压器和功率器件的损耗增加,并且产生高频电磁辐射。如果采用峰值电流控制,采样到的原边电流波形的正确性直接影响到变换器的闭环稳定性。

(2)变压器绕组电压越高,分布电容储存的能量越大,在开关管导通瞬间,这部分能量瞬时流动,在变压器内部及主电路中产生较大电流尖峰,影响开关管工作的可靠性。所以,应对变压器分布电容进行合理控制。

(3)开关管开通速度越快,绕组电压的变化速度就越快,从而绕组分布电容中的能量流动也会越快,形成较大电流尖峰。开关管开通速度较慢,虽然

86 电工电能新技术

第25卷

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2009,版权所有,仅供试用。

相关文档
最新文档