模型跟踪
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In this paper, in [33] proposed self-repairing control of some of the basic concepts, control surface using five different single plane relationship between the control surfaces, combined with self-repairing flight control requirements of the basic assumptions, proposed self-healing control the structure; Based on this control structure, a new actuator/control surface failure describes the form of self-repairing control law to solve the fixed control vector into the solution, simplifying the traditional self-healing control law process.
For no fault plane is designed based on backstepping (Backstepping) speed, slip angle tracking control law to ensure trouble-free tracking performance of aircraft; Backstepping design for the virtual control law on the differential control law due to the complexity of the issue, derived dynamic surface (Dynamic surface) Adaptive backstepping speed, slip angle tracking control law, and strict proof is given;
In the actuator/control surface failure on the basis of the parameters of the model for the actuator/control surface stuck actuator faults and defects, respectively, and the defect is designed stuck fault vector under the control of the parameters fixed adaptive law, and the form of a theorem gives the closed-loop characteristics of the restored system.
Thought for the adaptive control based on adaptive control law can not be repaired to ensure fault parameters converge to the true value of the inadequate use of the actuator/control surface parameter model, a fault line identification model parameters, according to estimates of fault parameters and the basic control law structure of active self-healing control of vector control since the restoration program. Since the program's control law, while failure occurs in almost immediate effect, to place the actuator failure or damage the aircraft's self-healing process and the transition from conventional rehabilitation program compared with control steadily and rapidly. Fault parameters and can provide real value for the failure to provide useful information when found.
In this paper the rigorous proof of fault diagnosis and self-repairing control comprehensive study on the repair capacity of various faults, this method ensures that the repair time is short, good quality repair process control, repair, and other aspects of the higher capacity needs. The simulation results also support the conclusion.
Diagnosis
Self-healing control
Efficiency loss matrix
Differential compensation matrix
Repair control vector
Actuator / control surface
Adaptive control
High-gain observer
Dynamic surface
backstepping control
模型跟踪的主要思想是让飞控系统的信号和参考
模型的信号实时比较, 将信号误差反馈给控制器以调节
系统的性能, 使之在故障情况下依然与参考模型保持一
致。文献[ 10 ]基于伪逆思想设计了模型跟踪重构方法,
保证飞机在故障情况下仍有很好的模型跟
踪性能。基
于特征值配置的容错控制方法在文献[ 11 ] 中进行了讨
论。容错跟踪控制后飞控系统性能的下降程度在文献
[ 12 - 13 ]中进行了详细分析。多模型方法在飞控系统
的容错控制中也得到了很好的应用[ 14 - 16 ] , 相对于单模
型跟踪, 多模型方法可以提供更大的设计自由度, 首先
设定多个不同状态的模型及其控制器, 依据转换标准判
断当前飞机状态与哪一个模型最接近并转换到相应控
制器上, 实现故障系统的控制重构
线性二次型调节作为有力的线性系统分析工具也被运
用在飞控系统中。大部分相关方法都属于被动容错控制的
范畴,如文献[9 ] 。而文献[17 ]利用线性二次型优化理论提
出一种渐近调节的主动容错控制方案, 在维持系统性能的
同时有效克服了由于故障检测和诊断的延时[ tF , tR ]对系统
产生的影响。
自适应重构由于其方法的灵活性和多样性, 在飞控系
统的容错控制中起着重要的作用。文献[14 ]基于卡尔曼滤
波方法提出一种飞控系统故障检测估计和容错集成设计方
案。在献[18 ]中,线性矩阵不等式方法运用在飞机自适应
重构跟踪控制中。文献[19 ]将故障后的重构转化为扰动抑
制问题,并在直升机系统上进行了实验。考虑到飞控系统
的某些状态不可测,基于观测器的容错控制方法也得到了
深入研究[21 - 23 ] ,主要思想是用故障诊断观测器同时估计出
状态和故障的值,并将估计值用于容错控制器的设计。文
献[24 ]利用多模型自适应方法和滑模设计思想, 有效地识
别出故障类型并进行控制器的调节。在文献[25 - 26 ]中,
几种基于自适应估计的模型识别和重构方法进行了比较。
文献[8 ]针对飞机舵面故障的不同类型,在自适应故障检测
的基础上,按重要程度将故障分为轻微故障和严重故障,分
别对两者运用不同的策略, 保证了容错及时性和计算复杂
性的平衡。
在飞行控制领域, 飞机模型其实际上是强非线性且强
耦合的,而在将非线性飞机模型线性化时必然产生线性化
误差,这会导致模型的不匹配。同时,现代化飞机具有大迎
角过失速机动能力,其飞行包络已经极大地扩展,这使得传
统的基于线性模型已经无法满足要求。目前, 基于非线性
飞控系统的容错控制也取得了一些成果, 这些成果的基本
思想和线性模型类似, 如模型跟踪、自适应重构等等, 但具
体方法有很大不同。
在文献[ 32 - 33 ] 中, 非线性飞控系统首先被化为
严格反馈控制型, 然后将观测器和回步设计相结合, 针
对舵面卡死故障设计容错控制律。容错系统的性能分
析( 在[ 0 , tF ] , [ tF , tD ] , [ tD , tR ] , [ tR , ∞) 各时间段的性
能) 在文献[ 34 ] 中进行了
详细分析。文献[ 35 ] 用
Markov 模型对故障过程建模, 运用“覆盖”( coverage)
的概念分析了系统的可容错性。文献[ 36 ] 提出了基于
非线性动态逆的容错控制方法。
。文献[27 - 29 ]运用
神经网络进行在线识别以保证容错控制器的设计, 文献
[30 ]将自适应和神经网络相结合提出了一种鲁棒飞控系统
容错方法。文献[20 ]将多模型匹配及在线模糊辨识的思想
与伪逆重构控制方法相结合, 提出了一种新的智能型重构
控制策略。文献[31 ]提出一种基于模糊观测器的飞控系统
容错控制方案。
[ 27 ] Ho L W , Yen G G. Real2time reconfigurable cont rol system
design using on2line neural estimator [ C] ∥Proc. of the 2002
I nternat ional J oint Conf . on Neural Networks , Honol uluo,
US A , 2002 : 559 - 564.
[ 28 ] Weerdt E de , Chu Q P , Mulder J A. Neural network aerody2
namic model identification for aerospace reconfiguration [ C] ∥
Proc. of A IA A Gui dance , N avi gation , and Cont rol Conf er2
ence , S an Francisco , US A , 2005 ; 1 - 30.
[ 29 ] Napolitano M R , An Y, Seanor B A. A fault tolerant flight
cont rol system for sensor and act uator failures using neural net2
works[J ] . A i rcraf t Desi gn , 2000 , 3 (2) :103 - 128.
[ 30 ] 杨浩,姜斌,王骏. 基于神经网络的飞控系统重构方法[ C] ∥第
24 届中国控制会议论文集, 2005 : 1420 - 1424.
[ 31 ] 董敏. 基于模糊观测器的故障诊断与容错控制研究[D] . 南京
航空航天大学,2007.
[ 20 ] Ye D , Yang G H. Adaptive fault2tolerant t racking cont rol a2
gainst actuator fault s wit h application to flight cont rol [ J ] .
I E EE Trans . on Cont rol S ystems Technology , 2006 , 14 (6) :
1088 - 1096.
[ 21 ] Jiang B , Wang J L , Soh Y. Robust fault diagnosis for a class of linear systems wit h uncertainty [ J ] . J ournal of Gui dance ,Cont rol and Dy namics , 1999 , 22 (5) :736 - 740.
[ 22 ] Jiang B , Wang J L , Soh Y. An adaptive technique for robust diagnosis of fault s wit h independent effect on system output
[J ] . I nternat ional J ournal of Cont rol , 2002 , 75 ( 11 ) : 792- 802.
[ 23 ] Jiang B , Chowdhury F N. Fault estimation and accommodation for linear MIMO discrete2time systems [ J ] . I E EE Trans . on
Cont rol S ystem Technology , 2005 , 13 (3) : 493 - 499.
[ 24 ] Boskovic J D , Li S M , Mehra R K. Robust supervisory fault tolerant flight cont rol system[ C] ∥Proc. of the A merican Cont rol Conf erence , V i rginia , USA , 2001 : 1815 - 1820.
A. Armaou and M. Demetriou. Robust detection and accommodation of incipient component and actuator faults in nonlinear distributed processes. AIChE Journal, 54:2651-2662, 2008.
F. Bateman, H. Noura, and M. Ouladsine. A fault tolerant control strategy for an unmanned aerial vehicle based on a sequential quadratic programming algorithm. In IEEE, Conference on Decision and Control, pages 423-42
8, Cancun, Mexico, 2008.
M. Benosman and K. Lum. On-line references reshaping and control re-allocation for non-minimum phase nonlinear fault tolerant control. In IFAC 17th Word Congress, pages 2563-2569, 2008.
M. Benosman and K.Y. Lum. Application of absolute stability theory to robust control against loss of actuator effectiveness. IET Control Theory and Applications, 3(6):772-788, June 2009.
M. Benosman and K.Y. Lum. On-line references reshaping and control re-allocation for nonlinear fault tolerant control. IEEE, Transactions on Control Systems Technology, 17(2):366-379, March 2009.
C. Bonivento, A. Isidori, L. Marconi, and A. Paoli. Implicit fault-tolerant control: application to induction motors. Automatica, 40(3):355-371, 2004.
N. El-Farra. Integrated fault detection and fault-tolerant control architectures for distributed processes. Ind. Eng. Chem. Res., 45:8338-8351, 2006.
N. El-Farra and S. Ghantasala. Actuator fault isolation and reconfiguration in transport-reaction processes. AIChE Journal, 53:1518-1537, 2007.
B. Jiang and F. Chowdhury. Fault estimation and accommodation for linear MIMO discret-time systems. IEEE, Transactions on Control Systems Technology, 13(3):493-499, 2005.
B. Jiang and F. Chowdhury. Parameter fault detection and estimation of a class of nonlinear systems using observers. Journal of Franklin Institute, 342(7):725-736, 2005.
M. Mahmoud, J. Jiang, and Y. Zhang. Stabilization of active fault tolerant control systems with imperfect fault detection and diagnosis. Stochastic Analysis and Applications, 21(3):673-701, 2003.
P. Maybeck. Multiple model adaptive algorithms for detecting and compensating sensors and actuators/surface failures in aircraft flight control systems. Int. Journal of Robust and Nonlinear Control, 9:1051-1070, 1999.
P. Mhaskar. Robust model predictive control design for fault tolerant control of process systems. Ind. Eng. Chem. Res., 45:8565-8574, 2006.
P. Mhaskar, N. El-Farra, and P. Christodes. Predictive control of switched nonlinear systems with scheduled mode transistions. IEEE, Transactions on Automatic Control, 50:1670-1680, 2005.
P. Mhaskar, A. Gani, and P. Christodes. Fault-tolerant control of nonlinear processes: Performance-based reconguration and robustness. Int. Journal of Robust and Nonlinear Control, 16:91-111, 2006.
P. Mhaskar, C. McFall, A. Gani, P. Christodes, and J. Davis. Isolation and handling of actuator faults in nonlinear systems. Automatica, 44(1):53-62, January 2008.
H. Niemann and J. Stoustrup. Reliable control using the primary and dual Youla parametrization. In IEEE, Conference on Decision and Control, pages 4353-4358, 2002.
N. Wu, Y. Zhang, and K. Zhou. Detection, estimation, and accommodation of loss of control effectiveness. Int. Journal of Adaptive Control and Signal Processing, 14:775-795, 2000.
X. Zhang, M. Polycarpou, and T. Parisini. Integrated design of fault diagnosis and accommodation schemes for a class of nonlinear systems. In IE
EE, Conference on Decision and Control, pages 1448-1453, 2001.