仿真结果分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仿真结果与系统方案分析
——物流系统仿真原理与应用
目录 Content
1 本章简介 2 基础知识 3 理论支持 4 结果分析 5 结果处理
01
本章简介
仿真结果分析 系统方案分析
仿真结果分析 为什么要做仿真结果分析?
1. 本章简介
系统方案分析 如何进行仿真实验,保证结果可靠?
如何分析仿真实验结果?
停留时间少于5分钟 的顾客比例 0.917 0.916 0.952 0.822 0.840 0.866 0.783 0.782 0.873 0.779
2.仿真结果的瞬态与稳态特征
瞬态特征:
对于仿真输出结果所构成的随机过程Y1,Y2, …,Yn,设条件概率Fi(y︱I)=P(Yi≤y︱I),i=1,2, …,n;Fi(y︱I)具有初始条 件I,在i时刻的瞬时分布。一般的,不同时刻的随机变量服从不同的瞬时分布。
单服务台排队系统初始队列长度对第I个顾客的影响
3.系统仿真的类型
系统仿真
终止型仿真 非终止型仿真
稳态仿真 稳态周期仿真
(1)定义:
3.1终止型仿真
终止型仿真是由一个“固有事件”E来确定仿真运行时间长短的一类仿真。
固有事件E的发生时刻记为TE。被仿真的系统满足一定的初始条件,在零时刻开始运行,在TE时刻结束运行。 (2)特点:
1.动态系统变化过程
例题
某银行有5位出纳,到达银行的顾客排成一个队列,每位出纳员一次为一个顾客服务。银行上午9点开门,下午5点 关门,但继续为在下午5时已经在银行内的顾客服务完毕。要求确定顾客在银行办理业务需要等待的时间。
No. 顾客数目
1
484
2
475
3
484
4
483
5
455
6
461
7
451
8
486
每周运行5天,每天16小时;(2)忽略在每个班次开始和结束时所损失的生产能力,即忽略上班时准备时间和下
班时整理时间;(3)在一个工作日中生产连续进行。当系统运行很长时间后,已经排除了系统故障,工人也能
熟练操作。
(4)案例解析:
设Ni为在第i个小时内制造的零件数目。如果随机过程N1,N2, …具有稳态分布,该稳态分布所对应的随机变量为N。 那么我们需要知道的是,一个小时制造零件数目的期望值v=E(N)。该公司需要知道生产系统经过多长时间系统才 能够达到正常运行状态,为此需要进行稳态仿真。
3.2.2稳态周期仿真
(1)定义: 并不是所有非终止型仿真都趋向于存在稳态分布,有时系统状态会出现某种周期性的变动。定义Yic为在第i个周 期内的随机变量,随即过程Y1c、 Y2c,……具有稳态分布Fc,对这类过程的仿真被称为稳态周期仿真。
如何评价对比设计方案?
本章主要解决的问题
02
基础知识
动态系统变化过程 仿真系统的瞬态与稳态特性 系统仿真的类型
1.动态系统变化过程
确定性过程
随机过程
在每个固定时刻t,事物的变化结果是 在每个固定时刻t,事物的变化结果是
确定的,可以用t的某个确定性函数描 随机的,以某种可能性出现多个(有限
述,这一类变化过程称为确定性过程。 或无限多)结果中的一个,可以用于t
②可以定义结束时间E=20000台电冰箱配送完毕;
③在事件E结束后将系统清零,在该时刻以后的数据均没有意义;
所以:这个仿真是终止型仿真。
3.2非终止型仿真
(1)定义: 是没有确定运行时间长短的固有事件的一类仿真。 (2)特点: 仿真对象是连续运行的系统,或至少在很长时间内运行的系统。
(3)举例: 某制造公司每天运行16个小时(分2个班次),当天未完成的工作 留在第二天继续进行。用仿真方法确定每个班 次的平均产量。 (4)案例解析: 如果把仿真结束时刻设为仿真运行时间刚好够16个小时,那么每次仿真运行在零时刻的初始条件并不相同,不满 足终止仿真的条件。由于前一个工作日的结束状态被用作后一个工作日的初始条件,生产过程本质上是一个连续 的过程。需要仿真运行足够长的时间才能给出问题的答案。
9
502
10
475
服务结束时间(h)
8.12 8.14 8.19 8.03 8.03 8.32 8.09 8.19 8.15 8.24
平均排队时间(min)
1.53 1.66 1.24 2.34 2.00 1.69 2.69 2.86 1.70 2.60
平均对长
1.52 1.62 1.23 2.34 1.89 1.56 2.50 2.83 1.74 2.50
稳态特征:
对于所有的y和任意的I,如果当i→∞,存在Fi(y︱I) →F(y),则称为F(y)为随机过程Y1,Y2,…的稳态分布。
系统存在稳态并不表示在某次仿真运行中系统进入稳态后,不同时刻的随机变量取相同的数值,而是进入稳态后 不同时刻的随机变量服从相同的分布。这些随机变量也可能是不独立的。稳态分布F(y)不依赖于初始条件I,但是 瞬时分布Fi(y︱I)收敛于稳态分布的速率会依赖于初始条件I。
①在零时刻的系统初始条件相同;
②必须定义结束事件或结束时刻;
③在TE时刻系统被“清零”,或在该时刻以后的数据均没有意义。 (3)举例:
某个物流配送公司接到运输单,要求在20天内帮助电器总部仓库配送2万台电冰箱到门店,用仿真的方法确定满
足时间要求的、成本最少的生产方案。
(4)案例解析:
①每次仿真满足在零时刻的系统初始条件相同;
(1)定义:
3.2.1稳态仿真
稳态仿真是研究非终止型稳态行为的仿真,这些系统行为不受零时刻的初始条件影响。稳态仿真是为了了解系统
仿真经过多长时间能够到达正常运行状态而进行的。 (2)条件:
①足够长的仿真时间;
②如果必要,需要规定仿真的预热(warm up)时间;
(3)举例: 某公司准备建设一套新的生产系统,需要确定这套新系统运行很长时间后平均每小时的产量。假设:(1)系统
相关的某个随机变பைடு நூலகம்描述,这一类变化
过程称为随机过程。
(例:地铁到站时间间隔、闹钟各指针
的走动情况)
(例:地铁到站后上下地铁的客流量)
在大多数情况下,实际系统包含了一些随机特征。在建立仿真模型时,会使用随机数和随机变量来表示这些随机 特征,注意不能把单次仿真运行中获得的系统参数值作为该参数的“真值”,而应该把单次仿真运行的结果作为 一个样本数据,需要用若干次重复仿真运行所得到的仿真结果来估计系统参数的真值。
——物流系统仿真原理与应用
目录 Content
1 本章简介 2 基础知识 3 理论支持 4 结果分析 5 结果处理
01
本章简介
仿真结果分析 系统方案分析
仿真结果分析 为什么要做仿真结果分析?
1. 本章简介
系统方案分析 如何进行仿真实验,保证结果可靠?
如何分析仿真实验结果?
停留时间少于5分钟 的顾客比例 0.917 0.916 0.952 0.822 0.840 0.866 0.783 0.782 0.873 0.779
2.仿真结果的瞬态与稳态特征
瞬态特征:
对于仿真输出结果所构成的随机过程Y1,Y2, …,Yn,设条件概率Fi(y︱I)=P(Yi≤y︱I),i=1,2, …,n;Fi(y︱I)具有初始条 件I,在i时刻的瞬时分布。一般的,不同时刻的随机变量服从不同的瞬时分布。
单服务台排队系统初始队列长度对第I个顾客的影响
3.系统仿真的类型
系统仿真
终止型仿真 非终止型仿真
稳态仿真 稳态周期仿真
(1)定义:
3.1终止型仿真
终止型仿真是由一个“固有事件”E来确定仿真运行时间长短的一类仿真。
固有事件E的发生时刻记为TE。被仿真的系统满足一定的初始条件,在零时刻开始运行,在TE时刻结束运行。 (2)特点:
1.动态系统变化过程
例题
某银行有5位出纳,到达银行的顾客排成一个队列,每位出纳员一次为一个顾客服务。银行上午9点开门,下午5点 关门,但继续为在下午5时已经在银行内的顾客服务完毕。要求确定顾客在银行办理业务需要等待的时间。
No. 顾客数目
1
484
2
475
3
484
4
483
5
455
6
461
7
451
8
486
每周运行5天,每天16小时;(2)忽略在每个班次开始和结束时所损失的生产能力,即忽略上班时准备时间和下
班时整理时间;(3)在一个工作日中生产连续进行。当系统运行很长时间后,已经排除了系统故障,工人也能
熟练操作。
(4)案例解析:
设Ni为在第i个小时内制造的零件数目。如果随机过程N1,N2, …具有稳态分布,该稳态分布所对应的随机变量为N。 那么我们需要知道的是,一个小时制造零件数目的期望值v=E(N)。该公司需要知道生产系统经过多长时间系统才 能够达到正常运行状态,为此需要进行稳态仿真。
3.2.2稳态周期仿真
(1)定义: 并不是所有非终止型仿真都趋向于存在稳态分布,有时系统状态会出现某种周期性的变动。定义Yic为在第i个周 期内的随机变量,随即过程Y1c、 Y2c,……具有稳态分布Fc,对这类过程的仿真被称为稳态周期仿真。
如何评价对比设计方案?
本章主要解决的问题
02
基础知识
动态系统变化过程 仿真系统的瞬态与稳态特性 系统仿真的类型
1.动态系统变化过程
确定性过程
随机过程
在每个固定时刻t,事物的变化结果是 在每个固定时刻t,事物的变化结果是
确定的,可以用t的某个确定性函数描 随机的,以某种可能性出现多个(有限
述,这一类变化过程称为确定性过程。 或无限多)结果中的一个,可以用于t
②可以定义结束时间E=20000台电冰箱配送完毕;
③在事件E结束后将系统清零,在该时刻以后的数据均没有意义;
所以:这个仿真是终止型仿真。
3.2非终止型仿真
(1)定义: 是没有确定运行时间长短的固有事件的一类仿真。 (2)特点: 仿真对象是连续运行的系统,或至少在很长时间内运行的系统。
(3)举例: 某制造公司每天运行16个小时(分2个班次),当天未完成的工作 留在第二天继续进行。用仿真方法确定每个班 次的平均产量。 (4)案例解析: 如果把仿真结束时刻设为仿真运行时间刚好够16个小时,那么每次仿真运行在零时刻的初始条件并不相同,不满 足终止仿真的条件。由于前一个工作日的结束状态被用作后一个工作日的初始条件,生产过程本质上是一个连续 的过程。需要仿真运行足够长的时间才能给出问题的答案。
9
502
10
475
服务结束时间(h)
8.12 8.14 8.19 8.03 8.03 8.32 8.09 8.19 8.15 8.24
平均排队时间(min)
1.53 1.66 1.24 2.34 2.00 1.69 2.69 2.86 1.70 2.60
平均对长
1.52 1.62 1.23 2.34 1.89 1.56 2.50 2.83 1.74 2.50
稳态特征:
对于所有的y和任意的I,如果当i→∞,存在Fi(y︱I) →F(y),则称为F(y)为随机过程Y1,Y2,…的稳态分布。
系统存在稳态并不表示在某次仿真运行中系统进入稳态后,不同时刻的随机变量取相同的数值,而是进入稳态后 不同时刻的随机变量服从相同的分布。这些随机变量也可能是不独立的。稳态分布F(y)不依赖于初始条件I,但是 瞬时分布Fi(y︱I)收敛于稳态分布的速率会依赖于初始条件I。
①在零时刻的系统初始条件相同;
②必须定义结束事件或结束时刻;
③在TE时刻系统被“清零”,或在该时刻以后的数据均没有意义。 (3)举例:
某个物流配送公司接到运输单,要求在20天内帮助电器总部仓库配送2万台电冰箱到门店,用仿真的方法确定满
足时间要求的、成本最少的生产方案。
(4)案例解析:
①每次仿真满足在零时刻的系统初始条件相同;
(1)定义:
3.2.1稳态仿真
稳态仿真是研究非终止型稳态行为的仿真,这些系统行为不受零时刻的初始条件影响。稳态仿真是为了了解系统
仿真经过多长时间能够到达正常运行状态而进行的。 (2)条件:
①足够长的仿真时间;
②如果必要,需要规定仿真的预热(warm up)时间;
(3)举例: 某公司准备建设一套新的生产系统,需要确定这套新系统运行很长时间后平均每小时的产量。假设:(1)系统
相关的某个随机变பைடு நூலகம்描述,这一类变化
过程称为随机过程。
(例:地铁到站时间间隔、闹钟各指针
的走动情况)
(例:地铁到站后上下地铁的客流量)
在大多数情况下,实际系统包含了一些随机特征。在建立仿真模型时,会使用随机数和随机变量来表示这些随机 特征,注意不能把单次仿真运行中获得的系统参数值作为该参数的“真值”,而应该把单次仿真运行的结果作为 一个样本数据,需要用若干次重复仿真运行所得到的仿真结果来估计系统参数的真值。