马来酸的红外光谱定性分析讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八马来酸的红外光谱定性分析

【实验目的】

1.了解傅立叶变换红外光谱仪的基本构造及工作原理;

2.掌握红外光谱分析的基础实验技术;

3.学会用傅立叶变换红外光谱仪进行样品测试;

4.掌握几种常用的红外光谱解析方法。

【实验要求】

利用所学过的红外光谱知识对马来酸的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。

【实验原理】

红外光是一种波长介于可见光区和微波区之间的电磁波。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。

分子吸收红外光子,从低的振动能级向高的振动能级跃迁时,而产生红外吸收光谱。在分子中发生振动能级跃迁所需要的能量大于转动能级跃迁所需要的能量,所以发生振动能级跃迁的同时,必然伴随转动能级的跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。只有偶极矩大小或方向有一定改变的振动才能吸收红外光,发生振动能级跃迁,产生红外光谱。不引起偶极变化的振动,无红外光谱吸收带。

π和c为常数,吸收频率随键的强度的增加而增加,随键连原子的质量增加而减少。化学键的力常数越大,原子折合质量越小,则振动频率越高,吸收峰将出现在高波数区(即短波区)。当振动频率和入射光的频率一致时,入射光就被吸收。因而同一基团基本上总是相对稳定地在某一稳定范围内出现吸收峰。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定

吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。

【仪器与试剂】

1.仪器:FTIR920型傅立叶变换红外光谱仪(天津拓普光学仪器厂)

2.试剂:马来酸(分析纯)、溴化钾(光谱纯)。

3.红外光谱仪(FT)的构造及工作原理

(1)光源红外光谱仪(FTIR)中所用的光源通常是一种惰性固体,用电加热使之发射高强度连续红外辐射,如空冷陶瓷光源。随着科技的发展,一种黑体空腔光源被研制出来。它的输出能量远远高于空冷陶瓷光源,可达到60%以上。

(2)迈克尔逊干涉仪其作用是将光源发出的红外辐射转变成干涉光,特点是输出能量大、分辨率高、波数精度高(它采用激光干涉条纹准确测定光差,故使其测定的波数更为精确)、且扫描平稳、重线性好。

(3)探测器其作用是将光信号转变为电信号,特点是扫描速度快(一般在1s内可完成全谱扫描)、灵敏度高。

(4)计算机特点是各种数据处理快,且具有色散型红外光谱仪所不具备的多种功能。

(5)样品池用能透过红外光的透光材料制作样品池的窗片,通常用KBr或NaCl 做样品池的窗片。

(6)红外光谱仪(FTIR)的工作原理

FTIR是基于光相干性原理而设计的干涉型红外光谱仪。它不同于依据光的折射和衍射而设计的色散型红外光谱仪。它与棱镜和光栅的红外光谱仪比较,称

为第三代红外光谱仪。但由于干涉仪不能得到人们业已习惯并熟知的光源的光谱图,而是光源的干涉图。为此可根据数学上的傅立叶变换函数的特性,利用电子计算机将其光源的干涉图转换成光源的光谱图。亦即是将以光程差为函数的干涉图变换成以波长为函数的光谱图,故将这种干涉型红外光谱仪称为傅立叶变换红外光谱仪。确切地说,即光源发出的红外辐射经干涉仪转变成干涉光,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅立叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。

【试样的制备】

测定试样的红外光谱时,必须依据试样的状态,分析的目的和测定装置的种类等条件,选择能够得到最满意的结果的试样制备方法。若选择的试样制备方法不合适,也就不能充分发挥测定的效力,甚至还可能导致错误的结论,因而不能轻视试样的制备及处理方法。这是因为要获得一个良好的光谱记录,除了与仪器性能有关外,还要受到操作技术的影响。而在操作技术中,一是试样的制备及处理技术,一是光谱的记录条件。所以,在红外光谱法中,试样的制备及处理占有重要的地位。如果试样处理不当,那么即使仪器的性能很好,也不能得到满意的红外光谱图。一般来说,在制备试样时应注意下述各点。

(1)试样的浓度和测试厚度应选择适当,浓度太小,厚度太薄,会使一些弱的吸收峰和光谱的细微部分不能显示出来;过大,过厚,又会使强的吸收峰超越标尺刻度而无法确定它的真实位置。

(2)试样中不应含有游离水。水分的存在不仅会侵蚀吸收池的盐窗,而且水分本身在红外区有吸收,将使测得的光谱图变形。

(3)试样应该是单一组分的纯物质。多组分试样在测定前应尽量预先进行组分分离(如采用色谱法、精密蒸馏、重结晶、区域熔融法等),否则各组分光谱相互重叠,以致对谱图无法进行正确的解释。

试样的制备,根据其集聚状态可进行如下。

1.固体试样

(1)压片法在红外光谱的测定上被广泛用于固体试样调制剂的有KBr、KCl,它们的共同特点是在中红外区(4000~400cm-1)完全透明,没有吸收峰。被测样品与它们的配比通常是1:100,即取固体试样1~3mg,在玛瑙研钵中研细,再加入100~300mg磨细干燥的KBr或KCl粉末,混合研磨均匀,使其粒度在2.5μm(通过250目筛孔)以下,放入锭剂成型器中。加压(5~10t/cm2)3分钟

相关文档
最新文档