抗流感药物靶点及其抑制剂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗流感药物靶点及其抑制剂
流感病毒是一种负螺旋单链RNA病毒,属于正黏病毒科。根据病毒核蛋白(nucleoproteins,NP)及基质蛋白(matrix proteins,M1)的抗原决定簇不同,流感病毒被分为三类:甲型(A)、乙型(B)、丙型(C)。流感病毒颗粒结构大致相似(如图1),自内而外可分成核心、基质蛋白以及包膜三部分。病毒子通常呈圆形,长丝状。甲型和乙型流感病毒核酸有八个RNA节段,负责编码十种蛋白,包括血凝素(HA)、神经氨酸酶(NA)、酸性蛋白(PA)、碱性蛋白1(PB1)、PB2、核蛋白(NP)、基质蛋白(M1)、离子通道蛋白(M2)、非结构蛋白(NS1)、核输出蛋白(NEP或NS2)。此外,大多数甲型流感病毒还有线粒体靶向的寡聚PB1-F2蛋白[1],报道其与细胞凋亡以及病毒毒力有关。这些病毒RNA片段同NP 结合并缠绕形成病毒核糖核蛋白体(vRNP),vRNP再与三聚的RNA聚合酶(PA、PB1、PB2)结合形成核糖核苷酸,负责RNA的复制和转录,这种结合模式确保了病毒RNA对于核酸酶保持敏感。丙型流感病毒只有七个RNA节段。基因组分节段的特点为流感病毒高频率基因重配提供了条件。病毒核心被外部的脂蛋白膜包围,在脂膜上有基质蛋白M1,其是病毒颗粒的主要蛋白,并通过化学键结合到vRNP。M2蛋白为具有离子通道活性的跨膜蛋白。乙型流感病毒缺乏M2蛋白,但是一种叫做BM2的蛋白可以起到类似M2蛋白作用。病毒最外层的包膜是包裹基质蛋白的磷脂双分子层,该膜来源于宿主细胞的细胞膜。膜表面具有两类非常重要的“刺突”,即两种糖蛋白,HA和NA。乙型流感病毒表面抗原相对简单,仅有一种HA和一种NA。对于甲型流感,根据病毒表面抗原HA及NA的不同,其可进一步细分为16个HA亚型(H1 ~ H16)、9个NA亚型(N1 ~ N9)[2]。
图1 甲型流感病毒结构模式图[3]
三种类型流感病毒的宿主范围也是有区别的:甲型流感病毒能够感染哺乳类动物(人、猪、马等)和禽类,乙型流感病毒主要在人类和猪间传播,丙型流感病毒只在人类传播。另外,三种病毒的变异性及危害性从大到小依次是甲型、乙型、丙型,因此,对人类危害性最大的是甲型流感病毒。
流感病毒感染及增殖过程
图2 流感病毒感染及增殖机制[4]
如图2所示,流感病毒感染及增殖过程可大致分为黏附→内吞→融合→去包膜→入核→vRNA合成→蛋白合成→出核→组装→出芽→释放等阶段。
首先,流感病毒包膜表面抗原HA识别并粘附到宿主细胞膜表面糖脂或糖蛋白上的唾液酸(sialic acid,SA)受体上,在粘附阶段,神经氨酸酶的唾液酸酶活性阻止HA与气管上皮细胞粘液层唾液酸的结合,从而强化病毒感染。接着,在受体介导的细胞内吞作用下,结合于宿主细胞表面的病毒进入宿主细胞并形成胞内体(endosome)。胞内体内的低pH条件启动HA“融合域”构象转化,导致病毒包膜与胞内体膜发生融合。与此同时,非糖基化基质蛋白M2离子通道被激活,形成进入细胞内膜的内向质子流,引发基质蛋白M1与vRNP的解离。然后,vRNP被转运进入细胞核,启动病毒遗传信息的复制和转录。RdRP以及NP对流感病毒的转录和复制具有重要意义。新合成的NP以及RNA聚合酶也被转入细胞核,与新和成的vRNA结合形成子代vRNP。在非结构性的核输出蛋白NEP/NS2及基质蛋白M1介导下,核内形成的子代vRNP被转运出宿主细胞核进入细胞浆,经装配形成成熟病毒颗粒。出芽后的新病毒颗粒仍然通过HA-SA键吸附于宿主细胞表面,经NA水解SA释放子代病毒,造成病毒的扩散与传播[5]。
抗流感病毒靶点及其抑制剂
预防和治疗流感,通常采用疫苗和抗流感化学药物。流感病毒不断地变异,常规疫苗可能难以预防治疗新病毒引发的流感大爆发,因此,抗流感化学药物研究具有非常重要的意义。总的来说,目前的抗流感化学药物有两个大的研究方向,分别针对流感病毒本身功能蛋白和宿主细胞潜在靶点。
基于宿主的抗流感病毒靶标及抑制剂
基于宿主的抗流感病毒靶标包括蛋白酶和囊泡质子ATP酶以及激酶等,然而这类药物对于非感染组织的潜在毒性还有待评价。
(1)蛋白酶前体蛋白HA0剪切位点的性质决定了能够剪切HA0的宿主蛋白酶类型,直接影响病毒嗜组织性和致病力。在高致病性H5和H7禽流感病毒中,HA0剪切位点含有多碱基序列,可被宿主细胞内广泛存在的碱性氨基酸蛋白酶或者PC6蛋白酶剪切,引起鸟类致死性的全身感染[6, 7]。然而,在一般的甲型流感病毒中,蛋白酶剪切位点表达的是单个精氨酸残基,只能被内蛋白酶识别,同时这种蛋白酶仅在鸟类肠道以及鸟类与哺乳动物的呼吸道中表达,极大地限制病毒在宿主体内的传播[8, 9]。事实上,如图3所示,已知的蛋白酶抑制剂,包括萘莫司他(Nafamostat)、卡莫司他(Camostat)等,均对甲、乙型流感病毒表现出较好的体内外选择性抑制作用[5]。
图3 蛋白酶及V-ATPase抑制剂
(2)囊泡质子ATP酶(V-ATPase)选择性V-ATPase抑制剂通过升高前溶酶体内部pH,从而抑制HA从非融合构象向融合构象的转化,进而实现病毒复制的抑制。针对该靶点的化合物有1994年报道的Norakin(如图3)。
针对流感病毒自身功能蛋白的靶点及抑制剂
该类化学药物根据病毒作用部位不同,可分为三大类,分别针对病毒核心(RdRP、NP)、病毒基质蛋白(M2)、病毒包膜突触(HA、NA),下面就它们的抑制剂作简单介绍。
(1)RdRP 流感病毒RdRP进化中高度保守,与哺乳动物的RNA聚合酶完全
不同,流感病毒RdRP同时具有复制酶和核酸内切酶活性。感染早期阶段,RdRP 以vRNA为模板合成mRNA,具有转录功能;病毒感染晚期,RdRP构象转变,以vRNA为模板合成互补的cRNA,再以合成的cRNA为模板合成vRNA,从而实现复制功能。RdRP由异三聚的PA、PB1、PB2三个亚基构成,也称为3P复合体。
PB1位于3P复合体的核心,其N端和C端分别与PA亚基的C端、PB2亚基N端相连,形成稳定蛋白复合物。PB1亚基通过不同构象结合vRNA或cRNA,分别合成mRNA(或cRNA)、vRNA,从而履行转录、复制功能。其构象的转换也是PB2帽子结合位点与内切酶活性位点激活的一个原因[10]。如图4所示,化合物A 是近年报道的靶向PB1的化合物,其IC
值为0.5 µM[11]。
50
PB2亚基具有多重功能。首先,PB2亚基318-483位氨基酸残基区域能够与宿主mRNA引物帽结构结合[12],从而启动转录过程。其次,PB2亚基C端678-757位氨基酸残基区域存在二重核定位信号(NSL),与RNA聚合酶通过核孔转运至细胞核内有关。第三,PB2亚基能够增强聚合酶复合物的稳定性,这可能是PB2亚基能够增强流感病毒对外界温度适应性的原因[13]。最后,研究发现PB2亚基R702、K627分别与病毒宿主选择性[14]、致病性[15]有密切关系。如图4所示,化合物B 为近年报道的靶向PB2的化合物,其抑制A/H3N2的IC
为7.5 µM[16]。
50
图4 RdRP的抑制剂
PA也是3P复合体一个非常重要的亚基。Yuan[17]和Dias[18]分别在Mg2+、Mn2+存在下,获得了PA亚基N末端的晶体结构,验证了PA亚基内存在核酸内切酶活性位点,也表明该核酸内切酶具有双离子介导的作用机制。其次,PA亚基为磷酸化蛋白,1~247位氨基酸残基区域是其介导蛋白质水解的功能区,其水解活性与聚合酶活性呈正相关[19]。再者,PA亚基也能够与vRNA、cRNA启动子特异性