第一章-晶体学基础

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体、声光晶体)
3
1.1 晶体的基本概念
建材,金属,糖,盐,化学药品 晶体结构物理性质
晶体: 长程有序
单晶体 多晶体
固体 非晶体: 不具有长程序的特点,短程有序。
准晶体: 有长程取向性,而没有长程的平移对称性。
4
晶体的外形和晶面角守恒定律
具有天然的而不是经过人为加工成的 规则集合多面体外形的固体称为晶体。
ab-141º47′, bc-120º00′, ac-113º08′
6
晶体内部构造的周期性
至少在微米量级范围内原子排列具有周期性。
(a)石英晶体 (b)石英玻璃
晶体:远程有序性 非晶:近程有序 晶体是具有格子构 造的固体
7
晶体的基本性质
格子构造:共性
格子形状;化学组成:个性
O
Cl
自限性:自发形成封闭的凸几何多面体
现象:(1)由于外界条件限制,晶体可能不能生长成规则几何多
面体

(2)母液+理想的生长条件,不规则自行生长成规则的多

面体 结论:晶体本身具有自发地长成规则几何多面体外形的内在能力
现象:同种晶体外形不同,但是几何多面体上相应的两个晶

面的夹角总是严格相等的。
量 结论:晶面角守恒识别晶体,晶体对称性
5
无论多复杂的晶体外形,它定属于32点群中的 一个,绝不会找不到它所属的对称类型,也不 会再超出32个点群以外的新类型。
32个点群是研究晶体宏观对称性的依据。把对 称类型称为点群,即对称要素所规定的动作构 成数学上群的元素,又因为在组合中要求对称 要素至少必须相交一点。
24
晶体的32种对称类型(32点群)
轴 轴—面 mh
mv
C1
C2
C3
C4
C6
CS
C2h C3h
C4h
C6h
C2V C3V
C4V
C6V
轴—21—面
无面 mh mv
D2
D3
D4
D6
D2h D3h D4h
D6h
D2d D3d
轴—m—i
Ci
C3i
S4
正四面体
T Th Td
正八面体
O Oh
25
晶体的32种对称类型(32点群)
特征对称元素中,高轴次的个数愈多,对称性高。晶系 从对称性由高到低的划分。
空间点阵晶体 结点微粒重心 单位平行六面体晶胞 面网晶面 行列晶棱 11
晶系和布拉维空间格子 立方
三方
abc 90 120
abc
90
正交(斜方) abc
90
六角 abc 90 120
三斜
abc
正方 abc
90
单斜 abc
90 12
(有限图形中可成立)和微观要素(无限图形中可成
立)
点,线,面
14
举例:一朵花,有五个花瓣
对称图形:花 阶次:5 对称要素:直线
等同图形:一个花瓣,是相等图形 对称动作:旋转
15
举例:雪花,六角
对称图形:雪花 阶次:6 对称要素:直线
等同图形:一个角 对称动作:旋转
16
晶体的宏观对称要素
对称中心:倒反操作
1.3 晶体的对称性
对称性:几何形态在一些方向上表现出自相重 合的特性
宏观对称性:几何外形和宏观物理性质的对称 性
微观对称性:内部微观结构的对称性
13
晶体的对称操作
对称:相同部分有规律的重复
对称操作:联系对称图形中各个相同部分,能够使对
称图形复原的动作
倒反,平移,旋转,反映,及其组合 对称要素:施行对称操作时所借助的要素,分为宏观
晶系
特征对称元素
所属点群
晶胞参数
立方晶系 六方晶系
四方晶系
三方晶系 正交晶系 单斜晶系 三斜晶系
三个 4或四个 3 一个 6 或 6
一个 4 或 4
1.2 晶体构造的点阵理论和晶系 的划分
空间点阵:用抽象的几何点来代替实际晶体结 构中的微粒,使其三维重复的纯几何图形
一维点阵
b
a
晶体结构 的周期性
二维点阵:平行四边形
三维点阵:平行六面体顶点
性质:(1)两个阵点决定一个行列(2)三个点决定一个 面网(3)三个行列定一个空间格子(4)平移复原
晶体的宏观对称要素
旋转倒反轴
20
晶体的宏观对称要素及符号
1
I
m
M
1
L1
2
L2
3
L3
4
L4
6
L5
4
L
4 i
21
说明:
1;
2 m;
3 31
63m
4 41
22
晶体的32种对称类型(32点群)
八种宏观对称要素之间究竟存在着多少种组 合方式Fra Baidu bibliotek即晶体的宏观对称类型有多少种呢?
(1)对称要素间是相互作用的,两个对称要素相组 合,必然产生新的对称要素来;
(2)对称要素间的组合不是任意的,需要满足:
A-参加组合的对称要素必须至少相交于一点。这是因为 晶体的外形是有限的、封闭的多面体。
B-晶体是一种点阵结构,对称要素的组合结果不容许产 生与点阵结构不相容的对称要素来。(5、7····等)
23
晶体的32种对称类型(32点群)
将八种晶体的宏观基本对称要素i,m,1,2,3,4,6, 进行组合,一共能够得到32种组合方式,也叫 32个点群。
9
单位平行六面体的划分
1、平行六面体可以反映整个 空间点阵的对称性
2、不违反空间点阵对称性的 条件下,平行六面体上棱与 棱之间的直角关系尽量多
3、体积最小
六个参数,平行六面体常数
七大晶系
10
晶系和布拉维空间格子
晶胞:对应于平行六面体,具体晶体基本构造 的基本单位
晶胞常数:对应的平行六面体常数
1. 晶体学基础
1.1 晶体的基本概念 1.2 点阵理论和晶系划分 1.3 晶体的对称性 1.4 晶棱晶面方向的标记
1
教学目的: 掌握和理解晶体的基本特征,晶系的
划分,常见的晶体结构;理解空间点阵理 论和布拉维格子的概念;掌握晶体对称性, 描述晶体的方法和术语
2
激光晶体 半导体晶体 非线性光学晶体 调制晶体(包括电光晶体、磁光晶体、弹光晶
A
C
晶面数+晶顶数=晶棱数+2
O1
A1
O
各向异性:宏观性质随观察方向变化
对称性:几个方向上异向同性
A*
B
Na晶 Cl体结1构 0) 0( 面示意图
均匀性:同一方向上任意两点物理性质相同
最小内能性:质点处于引力和斥力平衡,内能最小
解理性:沿某些确定方位的晶面劈裂
熔点固定:熔化过程温度不变
8
M (x ,y ,z) M '( x , y , z)
C
对称面:反映操作
P
旋转轴:绕直线旋转一定角度后自行重合
n 3 6 / ,n 0 1 ,2 ,3 ,4 ,6
Ln
旋转倒反轴:先绕轴旋转,再定点倒反
17
晶体的宏观对称要素
对称中心:倒反操作
18
晶体的宏观对称要素
对称面:反映操作
19
相关文档
最新文档