《SPSS数据分析教程》 ——回归分析..
软件SPSS的回归分析功能-PPT课件
![软件SPSS的回归分析功能-PPT课件](https://img.taocdn.com/s3/m/a0efb1f476eeaeaad1f3303c.png)
“残差”复选框组:
“模型拟合度”复选框:
“R方变化”复选框:
• 模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检 验:R,R2和调整的R2, 标准误及方差分析表。 • 显示模型拟合过程中R2、F值和p值的改变情况。 • 提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自 变量间的相关矩阵。
【选项】按钮
• 注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
• “步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F 值来设置。 • “在等式中包含常量”复选框:用于决定是否在模型中包括常数 项,默认选中。 • “缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不 分析任一选入的变量有缺失值的记录(按列表排除个案)而无论 该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失 值的记录(按对排除个案);将缺失值用该变量的均数代替(使 用均值替代)。
“描述性”复选框:
“部分相关和偏相关性”复选框:
• 显示自变量间的相关、部分相关和偏相关系数。
“共线性诊断”复选框:
• 给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差 膨胀因子(VIF)等。
以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
【绘制】按钮
step4:线性回归结果
【Anova】 (analysisofvariance方差分析)
• 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著 性概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。 如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义, 应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我 们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验 的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价 与系数的检验,在多元回归中这两者是不同的。
SPSS回归分析过程详解
![SPSS回归分析过程详解](https://img.taocdn.com/s3/m/aa89b29a77eeaeaad1f34693daef5ef7ba0d12ec.png)
线性回归的假设检验
01
线性回归的假设检验主要包括拟合优度检验和参数显著性 检验。
02
拟合优度检验用于检验模型是否能够很好地拟合数据,常 用的方法有R方、调整R方等。
1 2
完整性
确保数据集中的所有变量都有值,避免缺失数据 对分析结果的影响。
准确性
核实数据是否准确无误,避免误差和异常值对回 归分析的干扰。
3
异常值处理
识别并处理异常值,可以使用标准化得分等方法。
模型选择与适用性
明确研究目的
根据研究目的选择合适的回归模型,如线性回 归、逻辑回归等。
考虑自变量和因变量的关系
数据来源
某地区不同年龄段人群的身高 和体重数据
模型选择
多项式回归模型,考虑X和Y之 间的非线性关系
结果解释
根据分析结果,得出年龄与体 重之间的非线性关系,并给出 相应的预测和建议。
05 多元回归分析
多元回归模型
线性回归模型
多元回归分析中最常用的模型,其中因变量与多个自变量之间存 在线性关系。
非线性回归模型
常见的非线性回归模型
对数回归、幂回归、多项式回归、逻辑回归等
非线性回归的假设检验
线性回归的假设检验
H0:b1=0,H1:b1≠0
非线性回归的假设检验
H0:f(X)=Y,H1:f(X)≠Y
检验方法
残差图、残差的正态性检验、异方差性检验等
非线性回归的评估指标
判定系数R²
简单易懂的SPSS回归分析基础教程
![简单易懂的SPSS回归分析基础教程](https://img.taocdn.com/s3/m/841406e1970590c69ec3d5bbfd0a79563c1ed4c7.png)
简单易懂的SPSS回归分析基础教程章节一:SPSS回归分析基础概述SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)回归分析是一种常用的统计方法,用于研究自变量对因变量的影响程度以及变量之间的关系。
本章将介绍SPSS回归分析的基本概念和目的,以及相关的统计指标。
SPSS回归分析的目的是建立一个数学模型,描述自变量与因变量之间的关系。
通过这个模型,我们可以预测因变量的变化,以及各个自变量对因变量的贡献程度。
回归分析包括简单回归分析和多元回归分析,本教程主要讲解简单回归分析。
在SPSS回归分析中,我们需要了解一些统计指标。
其中,相关系数(correlation coefficient)用于衡量自变量与因变量之间的线性关系强度。
回归系数(regression coefficient)描述自变量对因变量的影响程度,可用于建立回归方程。
残差(residual)表示实际观测值与回归模型预测值之间的差异。
下面我们将详细介绍SPSS回归分析的步骤。
章节二:数据准备和导入在进行SPSS回归分析之前,我们需要准备好数据集,并将数据导入SPSS软件。
首先,我们需要确定因变量和自变量的测量水平。
因变量可以是连续型数据,如身高、体重等,也可以是分类数据,如满意度水平等。
自变量可以是任何与因变量相关的变量,包括连续型、分类型或二元变量。
其次,我们需要收集足够的样本量,以获取准确和可靠的结果。
在选择样本时,应该遵循随机抽样的原则,以保证样本的代表性。
最后,我们将数据导入SPSS软件。
通过依次点击“File”、“Open”、“Data”,选择数据文件,并设置变量类型、名称和标签等信息。
完成数据导入后,我们就可以开始进行回归分析了。
章节三:简单回归分析步骤简单回归分析是一种研究一个自变量与一个因变量之间关系的方法。
下面将介绍简单回归分析的步骤。
第一步,我们需要确定自变量和因变量。
SPSS回归分析
![SPSS回归分析](https://img.taocdn.com/s3/m/7aed904d854769eae009581b6bd97f192279bfd1.png)
SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。
在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。
接下来,我将详细介绍SPSS回归分析的步骤和意义。
一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。
在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。
二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。
数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。
2. 变量选择:选择需要作为自变量和因变量的变量。
自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。
可以通过点击"Variable View"选项卡来定义变量的属性。
3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。
然后将因变量和自变量添加到正确的框中。
4.回归模型选择:选择回归方法和模型。
SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。
然后,选择要放入回归模型的自变量。
可以进行逐步回归或者全模型回归。
6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。
可以使用SPSS的统计模块来生成残差,并进行残差分析。
7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。
要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。
因此,在解释回归结果时要慎重。
SPSS多元线性回归分析实例操作步骤
![SPSS多元线性回归分析实例操作步骤](https://img.taocdn.com/s3/m/8b8f16aff80f76c66137ee06eff9aef8941e48e7.png)
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。
首先,准备好您的数据。
数据应该以特定的格式整理,通常包括自变量和因变量的列。
确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。
打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。
在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。
这将打开多元线性回归的对话框。
在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。
接下来,点击“统计”按钮。
在“统计”对话框中,您可以选择一些常用的统计量。
例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。
根据您的具体需求选择合适的统计量,然后点击“继续”。
再点击“图”按钮。
在这里,您可以选择生成一些有助于直观理解回归结果的图形。
比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。
选择完毕后点击“继续”。
然后点击“保存”按钮。
您可以选择保存预测值、残差等变量,以便后续进一步分析。
完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。
结果通常包括多个部分。
首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。
R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。
其次是方差分析表,用于检验整个回归模型是否显著。
如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。
最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。
回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。
《SPSS回归分析》ppt课件
![《SPSS回归分析》ppt课件](https://img.taocdn.com/s3/m/1e98d34bb0717fd5370cdc54.png)
.
-3.666
.002
从表中可知因变量与自变量的三次回归模型为: y=-166.430+0.029x-5.364E-7x2+5.022E-12x3
9.2 曲线估计
➢拟合效果图
从图形上看出其拟合效果非常好。
8.3 曲线估计
说明:
曲线估计是一个自变量与因变量的非线性回归过程,但 只能处理比较简单的模型。如果有多个自变量与因变量呈非 线性关系时,就需要用其他非线性模型对因变量进行拟合, SPSS 19中提供了“非线性”过程,由于涉及的模型很多,且 非线性回归分析中参数的估计通常是通过迭代方法获得的, 而且对初始值的设置也有较高的要求,如果初始值选择不合 适,即使指定的模型函数非常准确,也会导致迭代过程不收 敛,或者只得到一个局部最优值而不能得到整体最优值。
8.1 回归分析概述
(3)回归分析的一般步骤
第1步 确定回归方程中的因变量和自变量。 第2步 确定回归模型。 第3步 建立回归方程。 第4步 对回归方程进行各种检验。
➢拟合优度检验 ➢回归方程的显著性检验 ➢回归系数的显著性检验
第5步 利用回归方程进行预测。
主要内容
8.1 回归分析概述 8.2 线性回归分析 8.3 曲线估计 8.4 二元Logistic回归分析
8.3 曲线估计
(2) 统计原理
在曲线估计中,有很多的数学模型,选用哪一种形式的回 归方程才能最好地表示出一种曲线的关系往往不是一个简单的 问题,可以用数学方程来表示的各种曲线的数目几乎是没有限 量的。在可能的方程之间,以吻合度而论,也许存在着许多吻 合得同样好的曲线方程。因此,在对曲线的形式的选择上,对 采取什么形式需要有一定的理论,这些理论是由问题本质决定 的。
《SPSS数据分析教程》 ——回归分析..共43页
![《SPSS数据分析教程》 ——回归分析..共43页](https://img.taocdn.com/s3/m/0051ff3a81c758f5f71f6750.png)
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
如何使用统计软件SPSS进行回归分析
![如何使用统计软件SPSS进行回归分析](https://img.taocdn.com/s3/m/08ef8338178884868762caaedd3383c4ba4cb469.png)
如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
SPSS(第7章回归分析)
![SPSS(第7章回归分析)](https://img.taocdn.com/s3/m/ca21650cf78a6529647d53e4.png)
表7—23 回归模型的一般性统计量表 Model 1 2 R .831a .985b R square .690 .970 Adjusted Square .662 .965 Std.Error of the Estimate 8.671 2.808
a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列:列出了回归方程模型的编号;第二列表示回归方程的 复相关系数;第三列为回归方程的复相关系数的平方;第四列表示调 整了的复相关系数的平方。第五列为预测值的标准差。 从表中可看出,随着自变量个数的增加,复相关系数及其平方相 应增加,这表明回归效果是越来越好。还可看出,预测值的标准差越 来越来小,这也正表明回归方程越来越符合观测情况。
Total 2670.523 a.Predictors(Constant),x4 b.Predictors(Constant),x4,x1 c.Dependent Variable:Y
表中第一列为回归方程模型的编号;第二列列出了回归的平方和; 第三列为回归的自由度;第四列为均值平方;第五列为F值;第六列为 统计量大于F值的概率。 从表中可看出,当只有变量x4进入回归方程时,自变量与因变量 之间完全无线性关系的概率为0.001 ;当x1也进入方程之后,自变量 与因变量之间完全无线性关系的概率为0.000,这表明拒绝假设;所有 的回归因子的系数为0。
输出相关残差的durbinwatson统计量残差和预测值的统计量输出满足选择条件的观测量诊断表设置奇异值的判断条件输出所有有关测量的残差值选择回归系输出有关回归系数及其相关测量输出回归系数的95的置信区间输出协方差和相关矩图73statistics对话框201566图74plots对话框x轴和y轴中有一个是源变量标准化的预测值标准化的残差删除的残差修正后的预测值
SPSS的线性回归分析分析
![SPSS的线性回归分析分析](https://img.taocdn.com/s3/m/0cbfa37130126edb6f1aff00bed5b9f3f90f72ab.png)
SPSS的线性回归分析分析SPSS是一款广泛用于统计分析的软件,其中包括了许多功能强大的工具。
其中之一就是线性回归分析,它是一种常用的统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。
线性回归分析是一种用于解释因变量与自变量之间关系的统计技术。
它主要基于最小二乘法来评估自变量与因变量之间的关系,并估计出最合适的回归系数。
在SPSS中,线性回归分析可以通过几个简单的步骤来完成。
首先,需要加载数据集。
可以选择已有的数据集,也可以导入新的数据。
在SPSS的数据视图中,可以看到所有变量的列表。
接下来,选择“回归”选项。
在“分析”菜单下,选择“回归”子菜单中的“线性”。
在弹出的对话框中,将因变量拖放到“因变量”框中。
然后,将自变量拖放到“独立变量”框中。
可以选择一个或多个自变量。
在“统计”选项中,可以选择输出哪些统计结果。
常见的选项包括回归系数、R方、调整R方、标准误差等。
在“图形”选项中,可以选择是否绘制残差图、分布图等。
点击“确定”后,SPSS将生成线性回归分析的结果。
线性回归结果包括多个重要指标,其中最重要的是回归系数和R方。
回归系数用于衡量自变量对因变量的影响程度和方向,其值表示每个自变量单位变化对因变量的估计影响量。
R方则反映了自变量对因变量变异的解释程度,其值介于0和1之间,越接近1表示自变量对因变量的解释程度越高。
除了回归系数和R方外,还有其他一些统计指标可以用于判断模型质量。
例如,标准误差可以用来衡量回归方程的精确度。
调整R方可以解决R方对自变量数量的偏向问题。
此外,SPSS还提供了多种工具来检验回归方程的显著性。
例如,可以通过F检验来判断整个回归方程是否显著。
此外,还可以使用t检验来判断每个自变量的回归系数是否显著。
在进行线性回归分析时,还需要注意一些统计前提条件。
例如,线性回归要求因变量与自变量之间的关系是线性的。
此外,还需要注意是否存在多重共线性,即自变量之间存在高度相关性。
用SPSS做回归分析
![用SPSS做回归分析](https://img.taocdn.com/s3/m/b102369851e2524de518964bcf84b9d528ea2c0e.png)
用SPSS做回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并预测一个或多个因变量如何随着一个或多个自变量的变化而变化。
SPSS(统计软件包的统计产品与服务)是一种流行的统计分析软件,广泛应用于研究、教育和业务领域。
要进行回归分析,首先需要确定研究中的因变量和自变量。
因变量是被研究者感兴趣的目标变量,而自变量是可能影响因变量的变量。
例如,在研究投资回报率时,投资回报率可能是因变量,而投资额、行业类型和利率可能是自变量。
在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,并导入数据:首先打开SPSS软件,然后点击“打开文件”按钮导入数据文件。
确保数据文件包含因变量和自变量的值。
2.选择回归分析方法:在SPSS中,有多种类型的回归分析可供选择。
最常见的是简单线性回归和多元回归。
简单线性回归适用于只有一个自变量的情况,而多元回归适用于有多个自变量的情况。
3.设置因变量和自变量:SPSS中的回归分析工具要求用户指定因变量和自变量。
选择适当的变量,并将其移动到正确的框中。
4.运行回归分析:点击“运行”按钮开始进行回归分析。
SPSS将计算适当的统计结果,包括回归方程、相关系数、误差项等。
这些结果可以帮助解释自变量如何影响因变量。
5.解释结果:在完成回归分析后,需要解释得到的统计结果。
回归方程表示因变量与自变量之间的关系。
相关系数表示自变量和因变量之间的相关性。
误差项表示回归方程无法解释的变异。
6.进行模型诊断:完成回归分析后,还应进行模型诊断。
模型诊断包括检查模型的假设、残差的正态性、残差的方差齐性等。
SPSS提供了多种图形和统计工具,可用于评估回归模型的质量。
回归分析是一种强大的统计分析方法,可用于解释变量之间的关系,并预测因变量的值。
SPSS作为一种广泛使用的统计软件,可用于执行回归分析,并提供了丰富的功能和工具,可帮助研究者更好地理解和解释数据。
通过了解回归分析的步骤和SPSS的基本操作,可以更好地利用这种方法来分析数据。
SPSS数据分析教程线性回归分析总结
![SPSS数据分析教程线性回归分析总结](https://img.taocdn.com/s3/m/5f78991589eb172dec63b720.png)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
通过样本数据建立一个回归方程后,不能立 即就用于对某个实际问题的预测。因为,应用 最小二乘法求得的样本回归直线作为对总体回 归直线的近似,这种近似是否合理,必须对其 作各种统计检验。一般经常作以下的统计检验。
31
60.00
56.00
53.00
52.00
51.00
1.08
1.00
21.00
52.00
52.00
69.00
58.00
57.00
62.00
1.00
1.00
23.00
56.00
55.00
57.00
39.00
44.00
46.00
1.69
1.00
15.00
50.00
50.00
68.00
46.00
45.00
56.00
4
• 在回归分析中,因变量y是随机变量,自变 量x可以是随机变量,也可以是非随机的确定 变量;而在相关分析中,变量x和变量y都是随 机变量。
• 相关分析是测定变量之间的关系密切程度, 所使用的工具是相关系数;而回归分析则是侧 重于考察变量之间的数量变化规律,并通过一 定的数学表达式来描述变量之间的关系,进而 确定一个或者几个变量的变化对另一个特定变 量的影响程度。
63
表7-2员工多个心理变量值和员工满意度数据
z1
z2
z3
z4
z5
z6
z7
Z8
满意度
66.00
64.00
Spss线性回归分析讲稿ppt课件
![Spss线性回归分析讲稿ppt课件](https://img.taocdn.com/s3/m/72d1292024c52cc58bd63186bceb19e8b8f6eca7.png)
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
spss第五讲回归分析PPT课件
![spss第五讲回归分析PPT课件](https://img.taocdn.com/s3/m/89d71555ba68a98271fe910ef12d2af90242a8da.png)
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)
残
差
0
残
残
差
差
0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
9-3(回归分析)—SPSS之回归分析课件PPT
![9-3(回归分析)—SPSS之回归分析课件PPT](https://img.taocdn.com/s3/m/fd8e06f4336c1eb91b375db1.png)
4、S形曲线
y
a
1 bex
y
b>1 b=1
b<1
x
a>0 b>0
y
O
x
步骤
1、调入数据。 2、由graphs=>scatter做散点图观察数据满足何种曲线。 3、依次选取菜单:
Analyze=>regression=>curve estimation 4、将自变量选入independent框中,因变量选入
第2节 曲线回归
应用回归分析
一、可ห้องสมุดไป่ตู้性化的曲线有很多,例如以下几种:
1、 2、 3、 4、 5、 6、
二、以下几种常用的曲线:
1、双曲线 y a b x
y
y
x
a>0 b<0
应用回归分析
a>0 b>0
x
2、指数曲线 y=aebx
应用回归分析
y
b<0
y
b>0
x
x
3、幂函数曲线 y=axb
应用回归分析
dependent框中。 5、在models框中选择合适的曲线。 6、Plot Models :绘制回归线;
Display ANOVA table:输出各个模型的方差分析表和 各回归系数显著性检验结果
步骤
7. save:保存变量. Save Variables:保存预测值,残差,预测区间 Predict Cases:预测个案 Predict from estimation period through last case: 通过最后一个个案预测周期 Predict through:预测条件
实例分析
例1: 教育支出的相关因素分析
(1)画教育支出和年人均消费性支出的关系 (2)利用二次,三次,复合,幂函数模型进行分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章学习目标
掌握线性回归分析的基本概念 掌握线性回归的前提条件并能进行验证 掌握线性回归分析结果的解释 掌握多重共线性的判别和处理 能用线性回归模型进行预测
回归分析的基本概念
什么是回归分析
回归分析是研究变量之间相关关系的一种统计方法 如果两个变量之间的Pearson相关系数绝对值较大, 从散点图看出变量间线性关系显著,那么下一步就是 应用回归分析的方法来找出变量之间的线性关系。 例如,房屋的价格和房屋的面积,地理位置,房龄和 房间的个数都有关系。又比如,香烟的销量和许多地 理和社会经济因素有关,像消费者的年龄,教育,收 入,香烟的价格等。
回归模型的显著性的F检验
总平方和SST反映因变量Y的波动程度或者不确 定性,在建立了Y对X的回归方程后,总平方和 SST分解成回归平方和SSR与参差平方和SSE两 部分。其中SSR是由回归方程确定的,SSE是不 能由自变量X解释的波动,是由X之外的未加控 制的因素引起的。这样,SST中能够由自变量 解释的部分为SSR,不能由自变量解释的部分 为SSE。这样回归平方和越大,回归的效果越 好,据此构造F检验统计量
回归术语
对于有一个响应变量的线性回归,当p=1时, 我们称为简单线性回归(Simple Linear Regression,或称为一元线性回归),当 p>2 时我们称为多元线性回归(Multiple Linear Regression)。
回归和相关分析
回归分析是在相关分析的基础上,确定了变量 之间的相互影响关系之后,准确的确定出这种 关系的数量方法。因此,一般情况下,相关分 析要先于回归分析进行,确定出变量间的关系 是线性还是非线性,然后应用相关的回归分析 方法。在应用回归分析之前,散点图分析是常 用的探索变量之间相关性的方法。
我们希望根据观测值估计出简单回归方程中 的待定系数¯0和¯1,它们使得回归方程对应 的响应变量的误差达到最小,该方法即为最 小二乘法。 也就是求解¯0和¯1,使得
S( 0 , 1 ) ( yi 0 1 xi ) 2
n
达到最小。 ˆ ˆ 0 1 ,则回归方程为 把得到的解记为 ˆ ˆX ˆ Y
0 1
i 1
ˆ ˆx ˆi 或者 y 0 1 i 预测误差为
ˆi ei yi y
SPSS在输出回归系数的估计值的同时还会给出 回归系数估计值的标准误差值;SPSS 还可以 给出预测值和各种预测误差
回归方程拟合程度检验
回归方程的检验也就是验证两个变量之间的线性关系 的确在统计上显著。一般进行如下的假设检验 ,它 包括 1)常数项的t检验 H0: ¯0 = 0 ˆ ) 检验统计量为: 常数项的估计值的标准误差为 s.e.( 0
决定系数R2
平方和定义
SST Hale Waihona Puke yi y ) 2i 1
n
ˆi y )2 SSR ( y
ˆi ) 2 SSE ( yi y
i 1
n
i 1 n
三者之间的关系为:
SST = SSR +SSE R^2 = SSR /SST
R2的解释
决定系数R2的大小反映了回归方程能够解释的 响应变量总的变差的比例,其值越大,回归方 程的拟合程度越高。 一般情况下,随着预测变量个数的增大,决定 系数的值也变大,因此在多重回归分析中,需 要反映回归方程中预测变量的个数,即引入了 调整的决定系数。
SSR/ p SSR/ 1 MSR 回归均方 F SSE/(n p 1) SSE /(n 2) MSE 残差均方
SPSS在回归输出结果的ANOVA表中给出SSR, SSE,SST和F统计量的取值,同时给出F值的显 著性值(即p值)。
用回归方程预测
在一定范围内,对任意给定的预测变量取值, 可以利用求得的拟合回归方程进行预测。其预 测值为:
回归分析的分类
根据回归函数的形式,回归分析可以分为线性 回归和非线性回归:
线性回归: Y= ¯0 +¯1 X1+¯2 X2 + +¯p Xp +²
(y)
非线性回归 如果预测变量和响应变量之间有上页(¤)所示 的关系,但是不能表示为(y)所示的线性方程 的形式,我们称该回归关系为非线性回归。
ˆ 0 t 0 ˆ) s.e.( 0
回归系数显著性检验
2)回归系数的显著性检验 H0: ¯1 =0 检验统计量为:
ˆ 1 1 t ˆ) s.e.( 1
回归的三个平方和
我们把拟合值和真实值的差值的平方和称为残 差平方和,记为SSE;把由于采用拟合回归直 线后预测值较采用响应变量均值提高的部分的 平方和称为回归平方和,记为SSR;真实值和 响应变量均值的平方和称为总平方和,记为 SST。
回归方程
回归关系一般用下列方程表示
Y=f(X1,X2,,Xp)+² (¤) Y被称作因变量,或者响应变量;而X1,X2,,Xp称 作自变量、控制变量、解释变量或者预测变量;而 f(.)则称为回归函数, ² 为随机误差或随机干扰,它 是一个分布与自变量无关的随机变量,我们常假定 它是均值为0的正态变量。
应用回归分析的步骤
步骤1:写出研究的问题和分析目标 步骤2:选择潜在相关的变量 步骤3:收集数据 步骤4:选择合适的拟合模型 步骤5:模型求解 步骤6:模型验证和评价 步骤7:应用模型解决研究问题
简单线性回归
简单线性回归的形式为:
Y = ¯0 +¯1 X +² 其中变量X为预测变量,它是可以观测和控制的;Y 为因变量或响应变量,它为随机变量; ² 为随机误 差。 通常假设² ~N(0,¾ 2),且假设与X无关。
回归模型的主要问题
进行一元线性回归主要讨论如下问题:
(1) 利用样本数据对参数¯0, ¯1和¾ 2,和进行点估计, 得到经验回归方程 (2) 检验模型的拟合程度,验证Y与X之间的线性相关 的确存在,而不是由于抽样的随机性导致的。 (3) 利用求得的经验回归方程,通过X对Y进行预测或 控制。
简单回归方程的求解