原子荧光光谱仪操作步骤及原理分析2019_图文.ppt
原子吸收分光光度分析法原子荧光分析法.ppt
原子吸收光谱
分析法
atomic absorption
spectrometry,AAS
第五节 原子荧光光谱
分析法
atomic fluorescence spectrometry,AFE
一、概述
generalization
二、基本原理
basic theory
三、原子荧光光度计
atomic fluorescence spectrometry
铟原子:先热激发,再吸收光跃迁451.13nm;发射荧光
410.18nm, 图(d)A、C ;
a
b
c
d
11:26:44
(3)敏化荧光
受光激发的原子与另一种原子碰撞时,把激发能传递另 一个原子使其激发,后者发射荧光;
火焰原子化中观察不到敏化荧光; 非火焰原子化中可观察到。 所有类型中,共振荧光强度最大,最为有用。
光源:高强度空心阴极灯、无极放电灯、可调频激光器; 可调频激光器:高光强、窄谱线;
原子化装置:与原子吸收法相同; 色散系统:光栅、滤光器; 检测系统:
11:26:44
内容选择:
第一节 原子吸收光谱分析基本原理
basic principle of atomic absorption spectroscopy
(2)非共振荧光
当荧光与激发光的波长不相同时,产生非共振荧光;
分为:直跃线荧光、阶跃线荧光、anti-Stokes荧光三种;
直跃线荧光(Stokes荧光):跃回到高于基态的亚稳态时
所发射的荧光;荧光波长大于激发线波长(荧光能量间隔小
于激发线能量间隔);
a
b
c
d
11:26:44
直跃线荧光(Stokes荧光)
原子荧光光谱法基本原理ppt课件
原子荧光是原子蒸气受具有特征波长的光源照射后,其中一 些自由原子被激发跃迁到较高的能态,然后去活化回到某一 能态(常常是基态)而发射出特征光谱的物理现象。
当激发辐射的波长与产生的荧光波长相同时,称为共振荧光, 它是原子荧光分析中最主要的分析线。各元素都有其特定的 原子荧光光谱,根据原子荧光强度的高低可测得试样中待测 元素含量。这就是原子荧光光谱分析。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
一、基本原理
1、原子荧光光谱法基本原理 2、氢化物发生原理
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
仪器供电源为(22022)V;频率(501)Hz单相 交流电,应良好接地。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
五、仪器条件
气源要求
仪器使用时要用到氩气(Ar);纯度应大于 99.99%,同时购置氩气分压表(可用氧气分压 表替代),主压表表头:0~25MPa,分压表表 头:0~3.0MPa,供给仪器的氩气压力为0.20~ 0.26MPa
整机管路安装
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
五、仪器条件
环境条件
环境温度5℃~35℃,最适宜温度为15℃~30℃ 。 环境相对湿度不大于80%。 仪器应放置在平稳的工作台上,不得有阳光直射及强 烈电磁干扰。 仪器不应放置于具有强烈腐蚀(强酸,强碱)气体的环境 中。
原子荧光光谱精讲
4.检测器
•
常用的是日盲光电倍增管,在多元素原子荧光分析仪中, 也用光导摄象管、析象管做检测器。检测器与激发光束成 直角配置,以避免激发光源对检测原子荧光信号的影响。
5.氢化物发生器 • • • • (1) (2) (3) (4) 间断法 连续流动法 断续流动法 流动注射氢化物技术
4.原子荧光法测定原理 • 在一定实验条件下,荧光强度与被测元素的浓度成正比。 据此可以进行定量分析(线性关系,只在低浓度时成立) • 随着原子浓度的增加,由于谱线展宽效应、自吸、散射等 因素的影响会使得曲线出现弯曲
5.氢化物(蒸气)发生原子荧光法 • 1)原理 • 氢化物发生进样方法,是利用某些能产生初生态氢的还原 剂或化学反应,将样品溶液中的待测组分还原为挥发性共 价氢化物,然后借助载气流(氩气)将其导入原子光谱分 析系统进行测量。
2) 谱线简单、干扰小;
3) 线性范围宽(可达 3 ~ 5个数量级);
4) 易实现多元素同时测定(产生的荧光向各个方向发射)。
缺点 存在荧光淬灭效应、散射光干扰等问题。
二、原子荧光光谱法的基本原理
1.原子荧光的产生过程
+ e
e
原子荧光
基态的原子蒸气吸收特定波长光辐射的能量而被激发到较高的激发态, 然后受激原子去活化回到较低的激发态或基态时便发射出一定波长的辐射 ———原子荧光
氢化物发生的优点: 分析元素能够与可能引起干扰的样品基体分离,消除了干 扰。 与溶液直接喷雾进样相比,氢化物法能将待测元素充分预 富集,进样效率接近100%。 连续氢化物发生装置易实现自动化。 不同价态的元素氢化物发生的条件不同,可进行价态分析。
氢化物反应种类 • 1)金属酸还原(Marsh反应) • 2)硼氢化物酸还原体系
原子荧光光谱法
原子荧光光谱法原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
一、原子荧光光谱法原理1.1原子荧光的类型以及荧光猝灭(1)共振荧光当原子受到波长为入A的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长入F的荧光。
这一类荧光称为共振荧光。
(2)直跃线荧光荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。
(3)阶跃线荧光当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。
(4)热助阶跃线荧光原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。
小于光源波长称为反stoke效应。
(5)热助反stokes荧光(略)某一元素的荧光光谱可包括具有不同波长的数条谱线。
一般来说,共振线是最灵敏的谱线。
处于激发态的原子寿命是十分短暂的。
当它从高能级阶跃到低能级时原子将发出荧光。
M*TM+hr除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。
在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。
荧光猝灭有下列几类型:1)与自由原子碰撞M*+X=M+XM*T激发原子X、MT中性原子2)与分子碰撞M*+AB=M+AB这是形成荧光猝灭的主要原因。
AB可能是火焰的燃烧产物;3)与电子碰撞M*+e-=M+E-此反应主要发生在离子焰中4)与自由原子碰撞后,形成不同激发态M*+A=M x+AM*、M x为原子M的不同激发态5)与分子碰撞后,形成不同的激发态M*+AB=M x+AB6)化学猝灭反应M*+AB=M+A+BA、B为火焰中存在的分子或稳定的游离基2.荧光强度与分析物浓度间关系原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系I f二①I根据比尔一朗伯定律厅叫口•e-KLN]式中:①-原子荧光量子效率I-被吸收的光强I0-光源辐射强度K一峰值吸收系数L一吸收光程N一单位长度内基态原子数按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:I f二①I0KIN当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即I=aC f上式线性关系,只在浓度低时成立。
原子荧光光谱法PPT课件
原子荧光仪分为两类,色散型和非色散型。 荧光仪与原子吸收仪相 似,但光源与其他部件不在一条直线上,而是900 直角,而避免激发光 源发射的辐射对原子荧光检测信号的影响。
滤光片 非色散型
激发光源:空心阴极灯或氙 弧灯
原子化器:与原子吸收法相同
色散系统:色散型-光栅 非色散型-滤光片
原子荧光光谱法
Atomic Fluorescence Spectrometry(AFS)
.
1
一、概述
原子荧光光谱法的特点
(1) 有较低的检出限,灵敏度高。 (2) 干扰较少,谱线比较简单。 (3) 仪器结构简单,价格便宜。 (4) 分析校准曲线线性范围宽,可达3~5个数量级。 (5) 由于原子荧光是向空间各个方向发射的,比较容易
色散型
检测系统:光电倍增管
数据处理和仪器控制系统
氢化物发生系统
.
7
氢化物(蒸气)发生 原子荧光法
原理
As、Sb、Bi、Se、Te、Pb、Sn、Ge 8个 元素可形成气态氢化物,Cd、Zn形成气态 组分,Hg形成原子蒸气。
气态氢化物、气态组分通过原子化器原子 化形成基态原子,基态原子蒸气被激发而 产生原子荧光
光学系统
简化结构;光程短; 增强荧光信号强度
.
原子荧光仪器2结2 构
通道
单道、双道、三道、四道 优势: 多元素同时测定;单道增强
多通道设计
.
原子荧光仪器2结3 构
检测器
日盲光电倍增管
检测波长范围: 160nm~320nm
.
原子荧光仪器2结4 构
制作多道仪器,因而能实现多元素同时测定。
(6) 缺点 存在荧光淬灭效应、散射光干扰等问题;
原子荧光光谱分析法 共15页
2019/7/22
二、基本原理
1.原子荧光光谱的产生过程
过程: 当气态原子受到强特征辐射时,由基态跃迁到激 发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸 收光波长相同或不同的荧光;
特点: (1)属光致发光;二次发光; (2)激发光源停止后,荧光立即消失; (3)发射的荧光强度与照射的光强有关; (4)不同元素的荧光波长不同; (5)浓度很低时,强度与蒸气中该元素的密度成正比,定 量依据(适用于微量或痕量分析);
Pb原子:吸收线283.13 nm;荧光线407.78nm; 同时存在两种形式:
铊原子:吸收线337.6 nm;共振荧光线337.6nm;
直跃线荧光535.0nm;
a
b
c
d
2019/7/22
阶跃线荧光:
光照激发,非辐射方式释放部分能量后,再发射荧光返回
基态;荧光波长小于激发线波长(荧光能量间隔大于激发线能
2019/7/22
一、概述
原子在辐射激发下发射的荧光强度来定量分析的方法; 1964年以后发展起来的分析方法;属发射光谱但所用仪器 与原子吸收仪器相近;
1.特点
(1) 检出限低、灵敏度高 Cd:10-12 g ·cm-3; Zn:10-11 g ·cm-3;20种元素优于AAS
(2) 谱线简单、干扰小 (3) 线性范围宽(可达3~5个数量级) (4) 易实现多元素同时测定(产生的荧光向各个方向发射)
量间隔);非辐射方式释放能量:碰撞,放热;
光照激发,再热激发,返至高于基态的能级,发射荧光,
图(c)B、D ;
a
b
Cr原子:吸收
c
d
线359.35nm;再
6.3原子荧光光谱法
2.主要部件
光源:高强度空心阴极灯、无极放电灯、可调频激 光器。
可调频激光器:高光强,窄谱线。 原子化装置:与原子吸收法相同。 色散系统:光栅、滤光器。 检测系统。
07:18:27
6.3.4 AFS的特点与应用
特点: 检出限低,灵敏度高,谱线简单,干扰小,线性范围
宽(3~5个数量级),选择性极佳,不需基体分离等。 Cd的检出限可达10-12 g ·mL-1 ,Zn可达10-11 g ·mL-1 20多种元素检出限优于AAS,易实现多元素同时测定。 不足之处:
07:18:27
3.荧光猝灭与荧光量子效率
荧光猝灭: 受激发原子与其他原子碰撞,能量以热 或其他非荧光发射方式给出,产生非荧光去激发过程, 使荧光减弱或完全不发生的现象。
荧光猝灭程度与原子化气氛有关,氩气气氛中荧光 猝灭程度最小。如何恒量荧光猝灭程度?
荧光量子效率: = F f / F a
F f 发射荧光的光量子数;F a吸收的光量子数。 荧光量子效率≈1
Pb原子:吸收线283.13 nm,荧光线407.78 nm, 同时存在两种形式。
铊原子:吸收线337.6 nm,共振荧光线337.6 nm,
直跃线荧光535.0 nm。
a
b
c
d
07:18:27
阶跃线荧光:
光照激发,非辐射方式释放部分能量后,再发射荧光返
回基态;荧光波长小于激发线波长(荧光能量间隔大于激
07:18:27
4.待测原子浓度与荧光的强度
当光源强度稳定、辐射光平行、自吸可忽略 ,发射 荧光的强度 If 正比于基态原子对特定频率吸收光的吸收 强度 Ia :
If = ·Ia
在理想情况下:
If Φ I0 A K0 l N K c