临床药代动力学研究及相关问题 PPT课件
合集下载
临床药物代谢动力学与药效学课件
•23
药物特异作用的机制—受体学说
l 受体的基本概念:受体是糖蛋白或脂蛋 白构成的实体,存在于细胞膜、胞浆或细 胞核内。各种不同的受体有特异的结构和 构形,受体上有多种功能部位,受体的存 在已得到多方证实,有的受体已能分离提 纯,弄清了分子结构,对受体的功能、信 息的转导等过程也有了相当深的了解。受 体学说已被公认是阐明生命现象和药物作 用机制的基本理论。
反映药物从体内消除快慢的指标,
是制定给药方案的重要依据。一次给药
后经过3.32个t1/2体内剩10%,经过6.64 t1/2各体内剩1%。
•临床药物代谢动力学与药效学
•10
药代动力学基本概念
3、生物利用度(F):药物吸收进入体内的速度与程度。 F = AUCiv×100% 影响F的因素: 1) 吸收前的药物降解; 2) 吸收后的首过
•临床药物代谢动力学与药效学
•27
药物特异作用的机制—受体学说
l 受体激动药激动受体的基本过程: l 1)影响细胞膜上的离子通道; l 2)与G蛋白偶联而激活膜上的某些酶; l 3)受体本身包含某种酶,受体激动后可 l 直接激活这些酶而转导信息;
4) 通过调节基因转录,影响特异活性蛋 白质的生成。
•临床药物代谢动力学与药效学
•5
药物的体内过程
三、生物转化(代谢) :指药物在体内发生的 化学结构改变。通过代谢可以产生4方面的 结果:
l 1)成为无活性物质; l 2)使无活性药物变为有活性的代谢 l 产物; l 3)转化为其它活性物质; l 4)产生有毒物质。
•临床药物代谢动力学与药效学
•6
药物的体内过程
•14
药代动力学基本概念
5、药时曲线:以时间为横坐标,以药物数 量为纵坐标作出的曲线。在药代动力学研 究中,大多是通过血样或尿样中药物浓度 的测定,绘制药时曲线,形象地表示某药 的药代动力学特征。
第二章 药代动力学 PPT课件
从给药时至峰值浓度的时间称为达峰时间,在应用须密切观察
和控制最大作用的药物(如降血糖药)时,更应注意这一参数。
残留期是指药物浓度已降至最小有效浓度以下,但尚未 自体内完全消除的时间。此期的长短与消除速度有关。如在 此时间内第二次给药,则需考虑前次用药的残留作用。一次
用药的时效曲线提供的信息可作为制定临床用药方案的参考
多数药物经代谢转化后失活,其代谢物的药理作用减弱或消失,
称灭活;
有些药物经代谢转化后,其代谢产物的药理活性与母药相当; 还有些药物本身无活性或活性较低,经代谢转化后变成有活性或
活性强的产物,称活化。
有些由无毒或毒性小的药物变成毒性代谢物,如异烟肼的乙酰 化代谢产物对肝脏有较大的毒性。
药物的生物转化酶主要是肝微粒体中的细胞色素P450酶 系,也称肝药酶。P450酶系是一个庞大的多功能酶系,它由 多种酶组成。 肝药酶的特点是专一性很低、活性和含量是不稳定的,且 个体差异大,又易受某些药物的影响。有些药物能使肝药酶的 活性增强或合成增加称为肝药酶诱导剂,可加速药物自身和其
五、药物的排泄及影响因素
药物在体内经吸收、分布、代谢后,以原形或代谢产物
经不同途径排出体外的过程称排泄(excretion)。 肾排泄 药物及其代谢物经肾排泄,包括肾小球滤过、
肾小管分泌及肾小管重吸收三种方式。 尿液pH值的改变可影响药物排泄。尿液偏酸性时,弱碱 性药物解离型多,脂溶性低,重吸收少,排泄多,而弱酸性 药物则相反。
主动转运: 即逆浓度或电位梯度的转运,药物由低浓度一侧向
高浓度一侧转运。
特点 是在转运过程中消耗能量;需要载体转运,载体对药物 有特异的选择性。因此,如果两个药物均由相同的载体转运, 则它们之间存在竞争性抑制现象,且转运能力有饱和性。如药 物自肾小管的分泌排泄过程属于主动转运。
[课件]药代动力学在新药研究中的应用PPT
三、设计方法
• 一个受试制剂与一个参比制剂比较的情况 下,采用两制剂双周期交叉试验设计,以 减少不同试验周期和个体差异对试验结果 的影响。 • 受试者按随机原则分成两组。一组受试者 先服用受试制剂,后服用参比制剂;另一 组受试者先服用参比制剂,后服用受试制 剂。通常应间隔 1周或2周。半衰期长的药 物,需有更长的间隔时间。
表1-3
日内变异
加样浓度 (mg·L) 0.26 0.29 0.22 检出浓度 0.24
精密度试验
日间变异
9.84 9.10 10.22 10.27 19.68 20.49 19.03 21.08 0.26 0.29 0.25 0.30 9.84 9.72 9.38 9.21 19.68 21.54 19.56 18.26
3P87/3P97(practical pharmacokinetic program)
• 国家药品评审中心组织 • 中国药理学会数学专业委员会编制 • 国内应用最广 • 可处理各种途径的线性和非线性药动学模 型
• 主要功能:
可处理不同房室数的各种线性和非线性药动学 模型的时间血浓数据,并打印药动学参数及各 种图表 计算机自动给出可能的房室数及权重系数的计 算结果 对多剂量组数据进行批处理及统计分析 用户可自定义房室模型、权重系数、计算方法、 收敛精度、初始值等进行研究分析 提供12种模型,其中9种属于一级速率消除的 线性房室模型,3种属于M ichaelisMenten消除的一房室非线性模型
§2 临床前药代动力学研究
1.研究目的: • 了解新药在体内动态变化规律,阐明ADME过程。 • 为药理毒理研究中的安全性与有效性提供依据。 2、检测方法: • 建立检测方法要求同上! • 放射性核素标记药物,用前要进行纯度检查,放化纯度 >95% • 标准曲线与线性范围: – 要指明药物的化学纯度 – 要制备药物在不同生物介质中的标准曲线。 – 在所测浓度范围内,药物自生物样品的回收率不低于 70%。
药理学第二章药物代谢动力学PPT课件
半衰期(T1/2)
总结词
描述药物在体内消除一半所需时间的参数。
详细描述
半衰期是药物在体内消除一半所需的时间,它是药物代谢动力学的重要参数之一。T1/2值越短,药物 消除越快。药物的消除途径、代谢速率和排泄速率等因素都会影响T1/2值。
清除率(Cl)
总结词
描述肾脏清除药物的能力的参数。
详细描述
清除率是指肾脏清除药物的能力,它是药物代谢动力学的重要参 数之一。Cl值越大,肾脏清除药物的能力越强。药物的排泄速率 、尿液pH值和尿液流量等因素都会影响Cl值。
二室模型
总结词
二室模型考虑了药物在体内分布的不均 匀性,将身体分为中央室和周边室两个 部分。
VS
详细描述
二室模型将身体分为中央室和周边室两个 部分,中央室包括血液和主要的脏器,周 边室包括其他组织。该模型适用于药物在 体内分布不均匀,且在中央室和周边室的 转运速率不同的情况。
微生物模型
总结词
微生物模型是用于描述药物在微生物中的代谢和消除过程的模型,常用于药物制剂的微 生物学质量控制。
05
药物代谢动力学的实际应用
个体化给药方案设计
根据患者的年龄、体重、性别、生理状态等因素,制定个性化的给药方案,确保 药物在体内达到最佳的治疗效果。
通过监测患者的药物代谢情况,调整给药剂量和频率,以实现最佳的治疗效果并 减少不良反应。
新药研发与评价
药物代谢动力学是新药研发的重要环 节,用于评估药物的吸收、分布、代 谢和排泄等特性。
疾病状态
疾病状态可以影响药物的吸收、分布、代谢和排泄,导致药 物代谢动力学参数的变化。
肝肾功能不全的患者对药物的代谢和排泄能力较弱,需要调 整药物剂量。
药物代谢动力学学PPT课件
药物代谢的酶系统
药物代谢的类型与产物
氧化反应
通过加氧的方式将药物转化为极性更强的代谢物,易于排泄。例如,苯妥英钠在肝内氧化为苯妥英。
还原反应
通过加氢的方式将药物还原为更易排泄的形式。例如,硝苯地平在肝内还原为硝苯啶。
水解反应
通过加水的方式将药物分解为更易排泄的形式。例如,阿司匹林在肝内水解为水杨酸。
中药代谢动力学研究
THANKS
感谢您的观看。
半衰期计算公式
半衰期可以反映药物在体内的消除速度,对于制定给药方案和调整用药剂量具有重要的指导意义。同时,半衰期也是判断药物是否易于蓄积中毒的重要依据。
半衰期的意义
半衰期计算
07
CHAPTER
药物代谢动力学在临床上的应用
根据患者的生理、病理状况和药物代谢特征,制定个体化的给药方案,确保药物疗效和安全性。
药物代谢动力学学ppt课件
目录
药物代谢动力学概述 药物吸收 药物分布 药物代谢 药物排泄 药物代谢动力学参数计算 药物代谢动力学在临床上的应用
01
CHAPTER
药物代谢动力学概述
药物代谢动力学是研究药物在体内吸收、分布、代谢和排泄的学科,主要关注药物在体内的动态变化过程。
药物代谢动力学对于新药研发、临床合理用药、药物疗效和安全性评价等方面具有重要意义,是药理学和药物治疗学的重要基础。
清除率的意义
03
清除率可以反映机体对药物的代谢能力,是制定给药方案的重要依据。
清除率计算
1
2
3
表观分布容积是指药物在体内达到动态平衡时,体内药量与血浆药物浓度的比值,是反映药物在体内分布广度的指标。
表观分布容积定义
表观分布容积(Vd)= (总药量)/(血浆药物浓度),其中总药量和血浆药物浓度可通过实验测定。
药物代谢动力学ppt课件
4、经皮给药 脂溶性 促皮吸收剂
精选课件
15
精选课件
16
吸收速度与程度主要取决于药物的理
化性质、剂型、剂量和给药途径。 1)消化道吸收 (1)口腔粘膜:脂溶性药物如硝酸甘油 (舌下给药)以简单扩散方式被吸收。 (2)胃:小的水溶性分子如酒精可自胃
粘膜吸收。 (3)小肠、大肠:大多数药物在小肠被
吸收。
精选课件
44
静脉注射2g磺胺药,其血药浓度为 10mg% , 经 计 算 其 表 观 分 布 容 积 为
D
A、0.5L B、2L
C、5L
D、20L
E、200L
精选课件
45
(三)血浆清除率
每单位时间内能将多少升血中的某药全 部消除(L/min或h)。
消除速率常数(K)
某单位时间内药物被消除的百分速率数。
(2)时量曲线用普通坐标时为曲线,血 药浓度改为对数尺度时呈直线。
精选课件
39精选课件ຫໍສະໝຸດ 40四、药代动力学重要参数
• 生物利用度 • 表观分布容积 • 血浆清除率 • 血浆半衰期
精选课件
41
(一)生物利用度:
不同剂型的药物能吸收并经首过消除 后进入体循环的相对份量及速度。
A(进入体循环药物量) F(生物利用度)=
由于有特殊的转运系统,所以水溶性大分子 物质也能选择性地通过生物膜。
精选课件
7
精选课件
8
(2)影响扩散速度的因素:
①膜两侧的药物浓度差。
②药物的理化性质:分子量小、脂 溶性大、极性小、非解离型的药物易 通过生物膜转运,反之难跨膜转运。
精选课件
9
2、主动转运:是一种逆浓度(或电位) 差的转运。
特点:需要载体,消耗能量,有饱和 现象和竞争性抑制。
精选课件
15
精选课件
16
吸收速度与程度主要取决于药物的理
化性质、剂型、剂量和给药途径。 1)消化道吸收 (1)口腔粘膜:脂溶性药物如硝酸甘油 (舌下给药)以简单扩散方式被吸收。 (2)胃:小的水溶性分子如酒精可自胃
粘膜吸收。 (3)小肠、大肠:大多数药物在小肠被
吸收。
精选课件
44
静脉注射2g磺胺药,其血药浓度为 10mg% , 经 计 算 其 表 观 分 布 容 积 为
D
A、0.5L B、2L
C、5L
D、20L
E、200L
精选课件
45
(三)血浆清除率
每单位时间内能将多少升血中的某药全 部消除(L/min或h)。
消除速率常数(K)
某单位时间内药物被消除的百分速率数。
(2)时量曲线用普通坐标时为曲线,血 药浓度改为对数尺度时呈直线。
精选课件
39精选课件ຫໍສະໝຸດ 40四、药代动力学重要参数
• 生物利用度 • 表观分布容积 • 血浆清除率 • 血浆半衰期
精选课件
41
(一)生物利用度:
不同剂型的药物能吸收并经首过消除 后进入体循环的相对份量及速度。
A(进入体循环药物量) F(生物利用度)=
由于有特殊的转运系统,所以水溶性大分子 物质也能选择性地通过生物膜。
精选课件
7
精选课件
8
(2)影响扩散速度的因素:
①膜两侧的药物浓度差。
②药物的理化性质:分子量小、脂 溶性大、极性小、非解离型的药物易 通过生物膜转运,反之难跨膜转运。
精选课件
9
2、主动转运:是一种逆浓度(或电位) 差的转运。
特点:需要载体,消耗能量,有饱和 现象和竞争性抑制。
药物代谢动力学(第六章)非房室模型PPT课件
02
房室模型适用于药物分布较为局限、消除较快的情况,而非房室模型则更适用 于药物分布广泛、消除缓慢的情况。
03
非房室模型可以更准确地描述药物在体内的实际过程,因为它避免了房室模型 对药物分布的简化假设。
应用场景与优势
应用场景
非房室模型适用于研究那些在体内分布广泛、消除缓慢的药物,如某些抗生素、抗癌药 物等。它也适用于研究药物在特殊生理状态下的动力学行为,如新生儿、老年人、疾病
03
非房室模型的数学表达
微分方程与差分方程
微分方程
描述药物在体内的动态变化,通过建立药物浓度与时间的关系式来描述药物在体内的吸收、分布、代谢和排泄过 程。
差分方程
将时间离散化,通过建立药物浓度在不同时间点的关系式来描述药物在体内的动态变化。
模型的数值解法
离散化方法
将微分方程或差分方程进行离散化,将连续的时间变量转换为离散 的数值,通过迭代或直接计算求解模型。
03
02
分布容积
描述药物在体内的分布情况,反映 药物在体内的分布范围。
排泄速率常数
描述药物从体内排出的速率,反映 药物的排泄能力。
04
04
非房室模型在药常数(Ka): 预测药物在体内的吸收速 度。
药物消除速率常数(Ke): 预测药物在体内的消除速 度。
复杂药物制剂的模型建立
1 2 3
概述
复杂药物制剂如纳米药物、脂质体等具有特殊的 物理化学性质,其药物代谢动力学行为与传统药 物有所不同。
具体方法
针对复杂药物制剂的特点,需要建立特定的药物 代谢动力学模型,以准确描述其在体内的吸收、 分布、代谢和排泄过程。
发展趋势
随着新药研发中对药物制剂的要求越来越高,复 杂药物制剂的模型建立将成为研究热点。
药物代谢动力学研究基本理论PPT课件
要点二
早期临床试验阶段
通过药物代谢动力学研究,评估药物的疗效和安全性,为 后续临床试验的设计和实施提供指导。
药物剂型设计与优化
剂型设计
根据药物代谢动力学研究结果,设计适合不同给药途径 和剂型的药物制剂,以提高药物的生物利用度和治疗效 果。
剂型优化
通过药物代谢动力学研究,对现有药物剂型进行优化, 改善药物的释放特性和稳定性,提高药物的疗效和安全 性。
机遇
随着新技术和新方法的不断涌现,药物代谢动力学研究将迎来更多发展机遇,如拓展研究领域、提高研究效率等。 同时,与其他学科的交叉融合也将为药物代谢动力学研究带来新的突破和进展。
感谢您的观看
THANKS
个体化用药与精准医疗
个体化用药
药物代谢动力学研究有助于了解不同个体对药物的反 应差异,为个体化用药方案的制定提供科学依据。
精准医疗
结合基因组学、蛋白质组学等多学科研究成果,通过药 物代谢动力学研究,实现精准医疗,提高治疗效果并降 低不良反应的发生率。
05
药物代谢动力学研究展望
药物代谢动力学与其他学科的交叉融合
表观分布容积(Vd)
总结词
表观分布容积是描述药物在体内分布程度的参数。
详细描述
表观分布容积(Vd)是指在生理学条件下,药物在体内达到动态平衡时,按血浆中药物浓度计算应占的 容积。Vd值越大,表明药物在体内的分布越广泛。Vd的大小与药物的脂溶性、组织亲和力以及血流灌注 等因素有关。了解药物的Vd有助于预测药物在不同个体内的分布情况。
清除率(Cl)
总结词
清除率是描述药物从体内消除速度的参数。
详细描述
清除率(Cl)是指单位时间内从体内清除的 药物量与血浆药物浓度的比值。清除率是评 价药物从体内消除速度的重要参数,反映了 肝脏、肾脏等排泄器官的功能。药物的清除 率受到多种因素的影响,如肝肾功能、年龄、 疾病状态等。了解药物的清除率有助于预测
《药物动力学》课件
药物动力学PPT课件大 纲
汇报人:
目录
添加目录标题
01
药物动力学模型
04
药物动力学概述
02
药物代谢过程
03
药物动力学参数
05
药物动力学在临床上 的应用
06
添加章节标题
药物动力学概述
药物动力学的定义
药物动力学研究药物在体内 的行为和作用机制
药物动力学是研究药物在体内 的吸收、分布、代谢和排泄的 科学
药物动力学的发展历程
19世纪初:药物动力学概念提出 19世纪末:药物动力学理论初步形成 20世纪初:药物动力学实验方法建立 20世纪中叶:药物动力学模型建立 20世纪末:药物动力学计算机模拟技术发展 21世纪初:药物动力学与分子生物学、基因组学等交叉学科融合
药物代谢过程
药物的吸收
吸收途径:口服、 注射、吸入等
药物动力学参数
表观分布容积的概念和计算方法
概念:表观分布容积是指药物在体内分布的体积,通常用Vd表示
计算方法:Vd=Dose/Cmax,其中Dose为给药剂量,Cmax为最大血药浓度
影响因素:药物的脂溶性、血浆蛋白结合率、组织亲和力等
临床意义:表观分布容积是药物动力学研究的重要参数,对于药物剂量设计和给药方案制定具有重 要意义。
给药方案的制定和优化
药物动力学在临床上的应用:根据 药物动力学原理制定给药方案
给药方案的优化:根据患者的个体 差异和病情变化进行优化
添加标题
添加标题
添加标题
添加标题
给药方案的制定:考虑药物的吸收、 分布、代谢和排泄过程
药物动力学在临床上的应用实例: 如糖尿病、高血压等疾病的治疗
药物疗效的评估和预测
药物动力学模型:描述药 物在体内的吸收、分布、 代谢和排泄过程
汇报人:
目录
添加目录标题
01
药物动力学模型
04
药物动力学概述
02
药物代谢过程
03
药物动力学参数
05
药物动力学在临床上 的应用
06
添加章节标题
药物动力学概述
药物动力学的定义
药物动力学研究药物在体内 的行为和作用机制
药物动力学是研究药物在体内 的吸收、分布、代谢和排泄的 科学
药物动力学的发展历程
19世纪初:药物动力学概念提出 19世纪末:药物动力学理论初步形成 20世纪初:药物动力学实验方法建立 20世纪中叶:药物动力学模型建立 20世纪末:药物动力学计算机模拟技术发展 21世纪初:药物动力学与分子生物学、基因组学等交叉学科融合
药物代谢过程
药物的吸收
吸收途径:口服、 注射、吸入等
药物动力学参数
表观分布容积的概念和计算方法
概念:表观分布容积是指药物在体内分布的体积,通常用Vd表示
计算方法:Vd=Dose/Cmax,其中Dose为给药剂量,Cmax为最大血药浓度
影响因素:药物的脂溶性、血浆蛋白结合率、组织亲和力等
临床意义:表观分布容积是药物动力学研究的重要参数,对于药物剂量设计和给药方案制定具有重 要意义。
给药方案的制定和优化
药物动力学在临床上的应用:根据 药物动力学原理制定给药方案
给药方案的优化:根据患者的个体 差异和病情变化进行优化
添加标题
添加标题
添加标题
添加标题
给药方案的制定:考虑药物的吸收、 分布、代谢和排泄过程
药物动力学在临床上的应用实例: 如糖尿病、高血压等疾病的治疗
药物疗效的评估和预测
药物动力学模型:描述药 物在体内的吸收、分布、 代谢和排泄过程
药物代谢动力学ppt课件精选全文完整版
• 主动转运(active transport) • 易化扩散(facilitated diffusion)
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。