量子物理学的诞生普朗克量子假设 光电效应 爱因斯坦光量子理论
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hν为能量子。
普朗克黑体辐射公式
或 普朗克的量子假设突破了经典物理学的观 念,第一次提出了微观粒子具有分立的能量值, 既微观粒子的能量是量子化的。
理论曲线 实验曲线
一维谐振子的能 量取分立值
实验值与理论值 符合的很好
例3 音叉尖端的质量为 0.05kg,振动频率为 480Hz, 振幅为1mm。 求尖端振动的量子数。 解 机械振动能量为:
1.组成腔壁的原子、分子可视为带电的一维线性 谐振子,谐振子能够与周围的电磁场交换能量。
2.每个谐振子的能量不是任意的数值, 频率为ν的 谐振子,其能量只能为 hν, 2 hν, …分立值。 h =
6.626×10 –34 J·s ,为普朗克常数。
3.当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍:
1.实验原理
T 为真空管, K 为发 射电子的阴极, A 为阳极 ,用一定频率和强度的单 色光照射K时, 金属将释放 出光电子, 若在两极 上加 一定的电压 U , 则回路中 就出现光电流。
量子物理学的诞生普朗 克量子假设 光电效应 爱
因斯坦光量子理论
2020年5月17日星期日
第15章 量子物理基础
15.1 量子物理学的诞生——普朗克量子假设 15.2 光电效应 爱因斯坦光子假说 15.3 康普顿效应及光子理论的解释 15.4 氢原子光谱 玻尔的氢原子理论 15.5 微观粒子的波粒二象性 不确定关系 15.6 波函数 一维定态薛定谔方程 15.7 氢原子的量子力学描述 电子自旋 15.8 原子的电子壳层结构
2、 平衡热辐射
物体可辐射能量也可吸收能量,当辐射和吸收的 能量恰相等时称为热平衡。此时物体温度恒定不变。
3、 描述热辐射的物理量
1.单色辐出度 在温度为T 的物体的单位面积上,在单位时间内,
单位波长范围内所辐射出的电磁波能量,称为单色辐出 度 Mλ( T )。
单位:W/m3
反映了物体在不同温度下辐射能按波长分布的情况。
宏观振子量子数很大,振动能量的分立不可能观 察到。
15.2 光电效应 爱因斯坦光量子理论
一、光电效应的实验规律
金属及其化合物在光照射下发射电子的现象称为 光电效应。逸出的电子为光电子,所测电流为光电流 。
光电效应现象是德国物理学家赫兹于1887年研究 电磁波的性质时偶然发现的。
当时赫兹只是注意到用紫外线照射在放电电极上时, 放电比较容易发生,却不知道这一现象产生的原因。
称为斯忒藩玻耳兹曼常量 。 定律表示单位时间单位表面积上辐射出的各种波 长电磁波的总能量与温度之间的关系。
2. 维恩位移定律
当黑体的热力学温度升高时,峰值波长向短波方 向移动。
为常数。
维恩定律是由经典统计物理导出的半经验公式, 在短波波段与实验符合的很好,而在长波波段有明显 的差异。
例1 从太阳光谱中测得单色辐出度的峰值所对应的波 长约为483nm, 试估算太阳表面的温度。
音叉尖端振动能量为ε时的量子数:
宏观振子的量子数非常大, 基元能量非常小:
例4 一个质量为m =1kg 的球,挂在劲度系数 k =10N/m的弹簧下,作振幅 A=0.04m的谐振动,求振 子能量的量子数。如果量子数改变,能量变化率是多 少? 解 振子的振动频率为
振子的能量
量子数
量子数变化1,能量变化 , 能量变化率
2.辐出度 在单位时间内,从温度为T 的物体的单位面积上所
辐射出的电磁波的总能量, 称为辐出度 M( T )。
反映了不同温度下物体单位面积发射的辐射功率大小。 3)单色吸收比 和单色反射比
对不透明物体: 实验表明在相同的温度下,物体不同,颜色不
同的表面,总辐射出射度是不同的,辐射本领大的 物体,吸收本领也大。
黑体辐射的瑞利—金斯公式
瑞利—金斯公式是由经典统计物理和经典电动力学得出的, 其在长波波段与实验符合的很好,而在短波波段有明显的差异 ,既历史上的 “紫外灾难”。
或
紫外灾难其实质说明了经典理论具有一定的缺陷。
经典物理的困难
紫外灾难
瑞利 — 金斯公式 (1900年)
实验曲线
维恩公式 (1896年)
四 、普朗克量子假说
二 、绝对黑体和黑体辐射的基本规律
1、绝对黑体
能够全部吸收各种波长的电磁辐射能而不发生反 射和透射的物体称为绝对黑体。
如果每次反射吸收10%,电磁波 在空腔内反射100次后, 只剩余 0.90100 = 2.656×10- 5 。
黑体的吸收本领最大,辐射本领 也最大。辐射的电磁波含有各种频率 成分,并随黑体的温度而变化。
解 天空中的太阳可看成为黑体中的小孔, 由维恩位移 定律知太阳表面的温度为:
例2 设有温度为慑氏 20 度的黑体。 求1.其单色辐出度的峰值所对应的波长是多少?
2.辐出度是多少? 解 1. 由维恩位移定律
2.由斯特藩-玻耳兹曼定律
三、经典物理的解释及困难
维恩经验公式
假设黑体辐射能谱分布与麦克斯韦分子速率分布类似 ,该公式与实验曲线波长短处符合得很好,但在波长很长 处与实验曲线相差较大。
实 白天从远处看建筑物的窗口。 例 金属冶炼炉上的小孔。
2、基尔霍夫定律
在平衡辐射的条件下,物体的单色辐出度和单色 吸收系数之比是一个与温度和频率有关的普适量,而 该普适量就是绝对黑体的单色辐出度。
3、黑体辐射的实验规律 1). 黑体辐出度的实验测定:
P L2
A
L1
B1
A为黑体 B1、P、B2为分光系统 C为热电偶 B2
15.1 量子物理学的诞生—普朗克量子假设
量子概念最初是普朗克在研究黑体辐射时提出来的。
一、热辐射
辐射在任何温度下 都在发射各种波长的电磁波,这 种由于物体中的分子、原子受到 激发而发射电磁波的现象称为热 辐射。所辐射电磁波的特征仅与 温度有关。
固体在温度升高 时颜色的变化 800 K 1000 K 1200 K 1400 K
C
测定黑体辐出度的实验简图
2).实验曲线
黑体的实验曲线
可见光
5000 K 4000 K 在一定温度下,曲线有一极大值,对应的波长 称为峰值波长λm 。 各种单色辐出度随温度的升高 而增加。
3). 实验定律 1.斯忒藩玻耳兹曼定律
黑体的辐出度曲线下的面积(总辐射能)与黑体 的热力学温度的四次方成正比:
普朗克黑体辐射公式
或 普朗克的量子假设突破了经典物理学的观 念,第一次提出了微观粒子具有分立的能量值, 既微观粒子的能量是量子化的。
理论曲线 实验曲线
一维谐振子的能 量取分立值
实验值与理论值 符合的很好
例3 音叉尖端的质量为 0.05kg,振动频率为 480Hz, 振幅为1mm。 求尖端振动的量子数。 解 机械振动能量为:
1.组成腔壁的原子、分子可视为带电的一维线性 谐振子,谐振子能够与周围的电磁场交换能量。
2.每个谐振子的能量不是任意的数值, 频率为ν的 谐振子,其能量只能为 hν, 2 hν, …分立值。 h =
6.626×10 –34 J·s ,为普朗克常数。
3.当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍:
1.实验原理
T 为真空管, K 为发 射电子的阴极, A 为阳极 ,用一定频率和强度的单 色光照射K时, 金属将释放 出光电子, 若在两极 上加 一定的电压 U , 则回路中 就出现光电流。
量子物理学的诞生普朗 克量子假设 光电效应 爱
因斯坦光量子理论
2020年5月17日星期日
第15章 量子物理基础
15.1 量子物理学的诞生——普朗克量子假设 15.2 光电效应 爱因斯坦光子假说 15.3 康普顿效应及光子理论的解释 15.4 氢原子光谱 玻尔的氢原子理论 15.5 微观粒子的波粒二象性 不确定关系 15.6 波函数 一维定态薛定谔方程 15.7 氢原子的量子力学描述 电子自旋 15.8 原子的电子壳层结构
2、 平衡热辐射
物体可辐射能量也可吸收能量,当辐射和吸收的 能量恰相等时称为热平衡。此时物体温度恒定不变。
3、 描述热辐射的物理量
1.单色辐出度 在温度为T 的物体的单位面积上,在单位时间内,
单位波长范围内所辐射出的电磁波能量,称为单色辐出 度 Mλ( T )。
单位:W/m3
反映了物体在不同温度下辐射能按波长分布的情况。
宏观振子量子数很大,振动能量的分立不可能观 察到。
15.2 光电效应 爱因斯坦光量子理论
一、光电效应的实验规律
金属及其化合物在光照射下发射电子的现象称为 光电效应。逸出的电子为光电子,所测电流为光电流 。
光电效应现象是德国物理学家赫兹于1887年研究 电磁波的性质时偶然发现的。
当时赫兹只是注意到用紫外线照射在放电电极上时, 放电比较容易发生,却不知道这一现象产生的原因。
称为斯忒藩玻耳兹曼常量 。 定律表示单位时间单位表面积上辐射出的各种波 长电磁波的总能量与温度之间的关系。
2. 维恩位移定律
当黑体的热力学温度升高时,峰值波长向短波方 向移动。
为常数。
维恩定律是由经典统计物理导出的半经验公式, 在短波波段与实验符合的很好,而在长波波段有明显 的差异。
例1 从太阳光谱中测得单色辐出度的峰值所对应的波 长约为483nm, 试估算太阳表面的温度。
音叉尖端振动能量为ε时的量子数:
宏观振子的量子数非常大, 基元能量非常小:
例4 一个质量为m =1kg 的球,挂在劲度系数 k =10N/m的弹簧下,作振幅 A=0.04m的谐振动,求振 子能量的量子数。如果量子数改变,能量变化率是多 少? 解 振子的振动频率为
振子的能量
量子数
量子数变化1,能量变化 , 能量变化率
2.辐出度 在单位时间内,从温度为T 的物体的单位面积上所
辐射出的电磁波的总能量, 称为辐出度 M( T )。
反映了不同温度下物体单位面积发射的辐射功率大小。 3)单色吸收比 和单色反射比
对不透明物体: 实验表明在相同的温度下,物体不同,颜色不
同的表面,总辐射出射度是不同的,辐射本领大的 物体,吸收本领也大。
黑体辐射的瑞利—金斯公式
瑞利—金斯公式是由经典统计物理和经典电动力学得出的, 其在长波波段与实验符合的很好,而在短波波段有明显的差异 ,既历史上的 “紫外灾难”。
或
紫外灾难其实质说明了经典理论具有一定的缺陷。
经典物理的困难
紫外灾难
瑞利 — 金斯公式 (1900年)
实验曲线
维恩公式 (1896年)
四 、普朗克量子假说
二 、绝对黑体和黑体辐射的基本规律
1、绝对黑体
能够全部吸收各种波长的电磁辐射能而不发生反 射和透射的物体称为绝对黑体。
如果每次反射吸收10%,电磁波 在空腔内反射100次后, 只剩余 0.90100 = 2.656×10- 5 。
黑体的吸收本领最大,辐射本领 也最大。辐射的电磁波含有各种频率 成分,并随黑体的温度而变化。
解 天空中的太阳可看成为黑体中的小孔, 由维恩位移 定律知太阳表面的温度为:
例2 设有温度为慑氏 20 度的黑体。 求1.其单色辐出度的峰值所对应的波长是多少?
2.辐出度是多少? 解 1. 由维恩位移定律
2.由斯特藩-玻耳兹曼定律
三、经典物理的解释及困难
维恩经验公式
假设黑体辐射能谱分布与麦克斯韦分子速率分布类似 ,该公式与实验曲线波长短处符合得很好,但在波长很长 处与实验曲线相差较大。
实 白天从远处看建筑物的窗口。 例 金属冶炼炉上的小孔。
2、基尔霍夫定律
在平衡辐射的条件下,物体的单色辐出度和单色 吸收系数之比是一个与温度和频率有关的普适量,而 该普适量就是绝对黑体的单色辐出度。
3、黑体辐射的实验规律 1). 黑体辐出度的实验测定:
P L2
A
L1
B1
A为黑体 B1、P、B2为分光系统 C为热电偶 B2
15.1 量子物理学的诞生—普朗克量子假设
量子概念最初是普朗克在研究黑体辐射时提出来的。
一、热辐射
辐射在任何温度下 都在发射各种波长的电磁波,这 种由于物体中的分子、原子受到 激发而发射电磁波的现象称为热 辐射。所辐射电磁波的特征仅与 温度有关。
固体在温度升高 时颜色的变化 800 K 1000 K 1200 K 1400 K
C
测定黑体辐出度的实验简图
2).实验曲线
黑体的实验曲线
可见光
5000 K 4000 K 在一定温度下,曲线有一极大值,对应的波长 称为峰值波长λm 。 各种单色辐出度随温度的升高 而增加。
3). 实验定律 1.斯忒藩玻耳兹曼定律
黑体的辐出度曲线下的面积(总辐射能)与黑体 的热力学温度的四次方成正比: