2013届高考理科数学第一轮复习测试题06

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A级基础达标演练

(时间:40分钟满分:60分)

一、选择题(每小题5分,共25分)

1.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的修筑方案共有().

A.8种B.12种

C.16种D.20种

解析修筑方案可分为两类,一类是“折线型”,用三条公路把四个村庄连在一

条曲线上(如图(1),A-B-C-D),有1

2A

4

4

种方法;另一类是“星型”,以某一个

村庄为中心,用三条公路发散状连接其他三个村庄(如图(2),A-B,A-C,A-D),有4种方法.共有12+4=16种方法.

图(1)图(2)

答案 C

2.(2012·汕头模拟)如图,用6种不同的颜色把

图中A、B、C、D四块区域分开,若相邻区域

不能涂同一种颜色,则不同的涂法共有().

A.400种B.460种

C.480种D.496种

解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A 不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.

答案 C

3.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有().

A.20种B.30种C.40种D.60种

解析分三类:甲在周一,共有A24种排法;

甲在周二,共有A23种排法;甲在周三,共有A22种排法;

∴A24+A23+A22=20.

答案 A

4.(2011·西安模拟)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有().

A.6种B.8种C.10种D.16种

解析如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法,故选C.

答案 C

5.(2012·杭州五校联考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是().

A.60 B.48 C.36 D.24

解析长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.

答案 B

二、填空题(每小题4分,共12分)

6.(2012·泉州模拟)将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)

解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二

行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.

答案240

7.(2012·马鞍山质检)数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.

解析必有1、4、9

一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.

答案12

8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.

解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类计数原理共有2C24+4=16场比赛.

答案16

三、解答题(共23分)

9.(11分)(2012·深圳模拟)如右图所示三组平

行线分别有m、n、k条,在此图形中

(1)共有多少个三角形?

(2)共有多少个平行四边形?

解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.

(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.

10.(12分)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种?

解先涂A、D、E三个点,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264(种).

B级综合创新备选

(时间:30分钟满分:40分)

一、选择题(每小题5分,共10分)

1.(2012·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有().A.16种B.18种C.37种D.48种

解析三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).

答案 C

2.(2011·全国高考)4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有().

A.12种B.24种C.30种D.36种

解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C24×2×2=24(种).

答案 B

二、填空题(每小题4分,共8分)

3.(2010·上海理)从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:

(1)∅,U都要选出;

(2)对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有________种不同的选法.

相关文档
最新文档