非线性微分方程积分边值问题的研究(宋文晶,郭斌 著)思维导图

合集下载

【2024版】微分方程PPT(罗兆富等编)第九章-非线性偏微分方程的Adomian分解法

【2024版】微分方程PPT(罗兆富等编)第九章-非线性偏微分方程的Adomian分解法

在求解线性微分方程时, Adomian分解法将方程中的
未知函数u分裂成一个无穷级数
u(x, y) un (x, y) n0
(9.1.01)
而得到其解, 其中级数的通项un(x, y)由递推方式确定.
然而, 将(9.1.01)代入非线性微分方程时, 由于非线性
项的存在, 我们得不到un递推公式.
例如方程
第九章 非线性偏微分方程 的
Adomian分解法
第一节 非线性项的Adomian多项式分解 第二节 用Adomian分解法解非线性偏微分方程
第三节 数学物理中的几个著名偏微分方程 第四节 非线性常微分方程的Adomian分解法
1
机动 目录 上页 下页 返回 结束
第一节 非线性项的Adomian多项式分解
15
机动 目录 上页 下页 返回 结束
将这些求出的un代入(9.1.01)就得到方程(9.2.01)的级 数形式的解.
学者们的研究表明, 如果方程(9.2.01)存在精确解, 则 所得到的级数解将快速收敛到精确解. 但在具体问题中, 如果级数的和函数不容易求出, 则可取适当选取项数从 而得到高精度的数值解.
机动 目录 上页 下页 返回 结束
例3. 计算F(u)=uux的Adomian多项式.
解:
F (u)
uux
1 2
(u
2
)
x
的Adomian多项式已求出,
1 G(u) , 由例1,
2
x
只须对其乘以
1 2
G(u)=u2 的 再关于x求一
阶导数就得到F(u)=uux的Adomian多项式:
A0 u0u0x A1 u1xu0 u1u0x

5

具积分边值条件四阶微分方程解的存在性

具积分边值条件四阶微分方程解的存在性
收稿 日期 :2 0 1 2 一 u一 3 O .
第 5 1 卷
第 4期
吉 林 大 学 学 报 (理 学 版 )
J o u r n a l o f J i l i n Un i v e r s i t y( S c i e n c e E d i t i o n )
V0 1 . 5】 NO. 4
2 0 1 3年 7月
S ONG We n — j i n g ,GAO We n — j i e 。
( 1 .I n s t i r “ t e( , /App l i e d Ma t h e ma t i c s ,Ji l i n Un i v e r s i t y o f Fi n a n c e a n d E( o n o mi c s ,Ch a n gc h u n 1 3 0 1 1 7,C h i n a 2 .I n s t i t u t e o f Ma t h e ma t i c s ,Ji l i n Un i v e r s i t y,C h a n g c h u n 1 3 0 0 1 2,C h i n a)
Ex i s t e nc e o f S o l u t i o n s f o r a Fo u r t h Or d e r Di f f e r e n t i a l Equ a t i o n
wi t h I n t e g r a l Bo u n d a r y Co n di t i o ns
0 引 言 与预 备 知识
积分 边值 问题 源于热 传 导 问题 、半 导体 问题 。 及水 动力 学 问题Ⅲ ,目前 已有许 多研 究 结果 。 . 本文 基 于文献 [ 4 — 5 ] ,研究 下列 具有 积分 边值 条件 的 四阶常 微分方 程解 的存 在性 :

非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性

非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性

2021年第42卷第1期中北大学学报(自然科学版)V o l.42 N o.12021 (总第195期)J O U R N A LO FN O R T HU N I V E R S I T YO FC H I N A(N A T U R A LS C I E N C EE D I T I O N)(S u m N o.195)文章编号:1673-3193(2021)01-0006-07非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性李晓卫,贾宏恩,郭平(太原理工大学数学学院,山西太原030024)摘要:主要对非线性随机分数阶积分微分方程半隐式欧拉方法的收敛性进行了针对性研究,证明了此类半隐式欧拉方法具有强一阶收敛性.此外,在精确解满足均方稳定性的前提下,研究了非线性随机分数阶积分微分方程半隐式欧拉解的均方稳定性,最后利用数值算例验证了数值解的收敛性.关键词:随机分数阶积分微分方程;半隐式欧拉方法;收敛性;均方稳定性中图分类号: O242.28文献标识码:A d o i:10.3969/j.i s s n.1673-3193.2021.01.002C o n v e r g e n c e a n dS t a b i l i t y o f S e m i-I m p l i c i t E u l e r-M a r u y a m aS o l u t i o n f o rN o n l i n e a r S t o c h a s t i cF r a c t i o n a lI n t e g r o-D i f f e r e n t i a l E q u a t i o n sL IX i a o-w e i,J I A H o n g-e n,G U OP i n g(S c h o o l o fM a t h e m a t i c a l S c i e n c e s,T a i y u a nU n i v e r s i t y o f T e c h n o l o g y,T a i y u a n030024,C h i n a)A b s t r a c t:T h i s p a p e r i sm a i n l y c o n c e r n e dw i t h t h e c o n v e r g e n c e a n a l y s i s o f t h e s e m i-i m p l i c i tE u l e r-M a-r u y a m a(E M)m e t h o df o r t h en o n l i n e a rS F I D E s.I t i s p r o v e dt h a t t h es e m i-i m p l i c i tE M s o l u t i o no f S F I D E s s h a r e s s t r o n g f i r s t o r d e r s h a r p c o n v e r g e n c e.F u r t h e r m o r e,o n t h e p r e m i s e t h a t t h e e x a c t s o l u-t i o n s a t i s f i e s t h em e a n-s q u a r e s t a b i l i t y,w e r e s e a r c h e d t h em e a n-s q u a r e s t a b i l i t y o f t h e s e m i-i m p l i c i t E M s o l u t i o n o f t h e n o n l i n e a r S F I D E s.A t l a s t,s o m e n u m e r i c a l e x a m p l e sw e r e p r e s e n t e d t o d e m o n s t r a t e t h e c o n v e r g e n c e o f t h e n u m e r i c a l s o l u t i o n s.K e y w o r d s:s t o c h a s t i c f r a c t i o n a l i n t e g r a l d i f f e r e n t i a l e q u a t i o n;s e m i-i m p l i c i tE u l e r-M a r u y a m am e t h o d;c o n v e r g e n c e;m e a n-s q u a r e s t a b i l i t y0引言积分微分方程是现代数学的重要分支,是人们解决各种实际问题的有效工具,它广泛应用于几何㊁力学㊁物理㊁电子技术㊁自动控制㊁航天㊁生命科学等领域,如反应堆动力学[1]㊁种群动态[2]和分层介质中的波传播[3],并且随着现实生活中的许多随机因素(如噪声等)被考虑进来,随机积分微分方程引起了国内外众多学者的关注与研究.在现有研究中,随机积分微分方程被应用于随机力驱动的粘弹性结构构件的力学行为[4]㊁期权定价[5]及人口增长模型中[6].此外,一些学者证明了随机积分微分方程解的存在性㊁唯一性和稳定性[7-10].但在许多情况下,随机积分微分方程的精确解很难找到,因此,寻找求解此类方程近似解的数值方法引起了许多学者的关注.如,对于具有乘性噪声的随机微分方程,T o c i n oA等[11]提出了一种二阶显式R u n g e K u t t a格式,对于具有恒收稿日期:2020-04-26作者简介:李晓卫(1995-),女,硕士生,主要从事计算数学的研究.定扩散系数的标量方程,还得到了两种三阶R u n g e K u t t a格式;B a b u s k a I等[12]采用蒙特卡罗G a l e r k i n法和随机G a l e r k i n有限元方法求解随机扩散和载荷系数的随机线性椭圆偏微分方程,当采用少量随机参数描述噪声时,随机G a l e r k i n法为首选方法;M a l e k n e j a dK等[13]利用块脉冲函数求解随机沃尔泰拉积分方程,得到了精度较高的近似解.随着分数阶微积分的发展,分数阶积分微分方程出现在信号处理的统计力学领域[14-16].目前,越来越多的研究者对随机分数阶积分微分方程进行了深入研究,探讨了此类方程解的存在性㊁唯一性和稳定性[17-18].而且,研究人员还研究了一些数值格式,并对这些数值格式的性质进行了探讨,如利用谱配置方法㊁欧拉方法以及径向基方法求解该类方程,并讨论了这些方法的性质[19-21].此外,F a e d o-G a l e r k i n方法㊁L e g e n d r e小波方法以及对应的收敛性也被研究和证明[22-23].半隐式欧拉格式已被用于多种方程中,如随机受电弓方程和随机微分延迟方程[24-25],其精确解的稳定性已被证明[26].本文主要目的是给出随机分数阶积分微分方程的半隐式欧拉格式的收敛性分析和相应离散数值解的稳定性分析.本文给出了一些必要的符号与准备,以及与原始方程对应的随机沃尔泰拉积分方程;分析了随机分数阶积分微分方程的半隐式欧拉格式的收敛性与收敛阶;给出了半隐式欧拉格式数值解的稳定性;最后通过数值算例验证了本文的理论分析.1符号与准备工作在本文中,设(Ω,F,P)为具有满足一般条件的σ域F t t⩾0的完备概率空间,㊃为R d空间上的欧拉范数.如果A为向量或矩阵,其转置表示为A T,且若A为矩阵,其F范数用A= t r a c e(A T)A来表示.如果Z为集合,其指标函数用I Z来表示,即当xɪZ时,I Z x=1;否则,值为0.设T>0,L10,T;R n表示一族所有R n值可测的F t适应过程f={f(t)}0ɤtɤT使得ʏT0f(t)d t<ɕ成立;设L2(0,T;R nˑm)表示一族所有(nˑm)矩阵值可测的F t适应过程{f(t)}0ɤtɤT使得ʏT0f(t)2d t<ɕ成立.考虑以下d维非线性随机分数阶积分微分方程Dαy(t)=Ø(t)+ʏt0k1(t,s,y(s))d s+ʏt0k2(t,s,y(s))d W(s),tɪ[0,T],y(0)=y0,(1)式中:Dα为α(αɪ(0,1])阶C a p u t o分数阶导数;ØɪC([0,T];R d);设Q=(t,s)ʒ0ɤsɤtɤT, k1ɪL1(QˑR d;R d),k2ɪL2(QˑR d;R dˑr);W(t)表示定义在完备概率空间上的r维标准布朗运动; y0为F0可测R d值的随机变量使得E y02<ɕ成立.定义1对函数fʒ[0,+ɕ)ңR d的α阶R i e m a n n-L i o u v i l e分数阶积分算子定义如下Iαf(t)=1Γ(α)ʏt0(t-τ)α-1f(τ)dτ,α>0且I0f(t)=f(t),其中Γ(α)为G a m m a函数,Γ(α)ʉʏ+ɕ0e-t tα-1d t定义2对于函数fɪCγ([0,+ɕ))的α阶C a p u t o导数可以记作Dαf(t)=1Γ(γ-α)ʏt0f(γ)(τ)(t-τ)α+1-γdτ,式中:γ-1<α<γ,γɪN+.由富比尼定理,式(1)可转化为以下随机沃尔泰拉积分方程(这两个方程的具体转化可参考文献[18])y(t)=Φ(t)+ʏt0K1(t,s,y(s))d s+ʏt0K2(t,s,y(s))d W(s),(2)其中tɪ[0,T],y(0)=y0,Φ(t)=y0+1Γ(α)ʏt0(t-τ)α-1Ø(τ)dτ, K i(t,s,y(s))=1Γ(α)ʏt s(t-τ)α-1k i(τ,s,y(s))dτ,i=1,2.假设1对于任意(t,s)ɪQ,k1(t,s,0)与k2(t,s,0)是连续有界的函数,且存在正常数l i, i=1, ,4,使得Ø,k j满足如下条件Ø(t1)-Ø(t2)ɤl1t1-t2,k j(t1,s,y)-k j(t2,s,y)ɤl2(1+|y|)t1-t2, k j(t,s1,y)-k j(t,s2,y)ɤl3(1+|y|)s1-s2, k j(t,s,y1)-k j(t,s,y2)ɤl4y1-y22,7(总第195期)非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性(李晓卫等)对任意t,t1,t2,s,s1,s2ɪ[0,T],y,y1,y2ɪR d, j=1,2均成立.在假设1的条件下,得到以下定理[18].定理1存在正常数L i,i=1, ,5,使得Φ(t),K j(j=1,2)满足以下条件Φ(t1)-Φ(t2)ɤL1t1-t2,K j(t1,s,y)-K j(t2,s,y)ɤL2(1+|y|)t1-t2, K j(t,s1,y)-K j(t,s2,y)ɤL3(1+|y|)s1-s2,K j(t,s,y)2ɤL4(1+y2)t-s2, K j(t,s,y1)-K j(t,s,y2)ɤL5y1-y2,对任意t1,t2ɪ[0,T],s1,s2ɪ[0,T],t,sɪ[0, T],yɪR d均成立.下文中C代表一个任意的正常数.2半隐式欧拉格式的收敛性与收敛阶精确解的存在性㊁唯一性和稳定性已在一些文献中有研究[18].本节讨论半隐式欧拉方法的收敛性与收敛阶.首先,将整个时间区间分割为N个小区间,对于Nȡ1,令h=T/N,t n=n h,对于n=0,1, 2, ,N,当t=t n+1时,y(t n+1)=Φ(t n+1)+ʏt n+10K1(t n+1,s,y(s))d s+ʏt n+10K2(t n+1,s,y(s))d W(s)=Φ(t n+1)+ðn i=0ʏt i+1t i K1(t n+1,s,y(s))d s+ðn i=0ʏt i+1t i K2(t n+1,s,y(s))d W(s)ʈΦ(t n+1)+hðn i=0K1(t n+1,t i,y(t i+1))+ðn i=0K2(t n+1,t i,y(t i))ΔW i,因此,定义Y n+1=Φ(t n+1)+hðn i=0K1t n+1,t i,Y i+1+ðn i=0K2t n+1,t i,Y iΔW i.(3)对n=0,1,2, ,N-1及Y0=y(0)=y0,当sɪ[t n,t n+1)时,定义s=t n以及Y1(t)=ðN n=0Y n I[t n,t n+1)(t),(4)^Y1(t)=ðN n=0Y n+1I[t n,t n+1)(t),(5)则得到以下半隐式欧拉格式Y(t)=Φ(t)+ʏt0K1(t,s,^Y1(s))d s+ʏt0K2(t,s,Y1(s))d W(s).(6)引理1假定假设1满足,那么存在一个常数C>0以及h1=13T3L4>0,使得对于h<h1有E(|Y n+12)ɤC,E(Y(t)2)ɤC.证明由式(3)和基本不等式,有Y n+12ɤ3Φ(t n+1)2+3h2ðn i=0K1t n+1,t i,Y i+12+3ðn i=0K2t n+1,t i,Y iΔW i2.对上述不等式两端同时取期望,有E|Y n+1|2ɤ3EΦ(t n+1)2+3h2Eðn i=0K1t n+1,t i,Y i+12+3Eðn i=0K2t n+1,t i,Y iΔW i2ɤ6EΦ(t n+1)-Φ(0)2+Φ(0)2+3n+1h2ðn i=0E K1t n+1,t i,Y i+12+3ðn i=0E|K2t n+1,t i,Y iΔW i|2ɤ6EΦ(t n+1)-Φ(0)2+Φ(0)2+3n+1h2L4ðn i=0E((1+Y i+12)|t n+1-t i|2)+ 3h L4T2ðn i=0(1+E|Y i|2)ɤ6L21T2+ 6E y02+3h L4T3ðn i=0(1+E|Y i+1|2)+3h L4T2ðn i=0(1+E|Y i|2),则得到1+E(|Y n+1|2)ɤ6L21T2+6E y02+11-3T3L4h+ 3T3L4h+3T2L4h1-3T3L4hðn i=0(1+E|Y i|2).由离散G r o n w a l l不等式1+E(|Y n+1|2)ɤ6L21T2+6E y02+11-3T3L4h e3T3L4n h+3T2L4n h1-3T3L4hɤ6L21T2+6E y02+11-3T3L4h e3T4L4+3T3L41-3T3L4hʒ=C,及Y(t)的连续性,得到8中北大学学报(自然科学版)2021年第1期E Y(t)2ɤC.引理2假定满足假设1,在h<m i n(1,h1)的情况下,存在一个与h无关的正常数C,使得E Y(t)-^Y1(t)2ɤC h2,E Y(t)-Y1(t)2ɤC h2.证明对于任意的tɪ[0,T],存在一个整数n使得tɪ[t n,t n+1),由式(4)~式(6),得到Y(t)-Y1(t)=Y(t)-Y n=Φ(t)-Φt n+ʏt n0K1t,s,^Y1(s)-K1t n,s,^Y1(s)d s+ʏt t n K1t,s,^Y1(s)d s+ʏt n0K2(t,s,Y1(s))-K2(t n,s,Y1(s))d W(s)+ʏt t n K2(t,s,Y1(s))d W(s).再由基本不等式,C a u c h y-S c h w a r t z不等式和I tô等距,得E Y(t)-Y1(t)2ɤ5EΦ(t)-Φt n2+ 5T Eʏt n0K1t,s,^Y1(s)-K1(t n,s,^Y(s))2d s+ 5h Eʏt t n K1t,s,^Y1(s)2d s+ 5Eʏt n0K2(t,s,Y1(s))-K2(t n,s,Y1(s))2d s+ 5Eʏt t n K2t,s,Y1(s)2d sɤ5L21t-t n2+ 10T Eʏt n0L221+^Y1(s)2t-t n2d s+ 5h Eʏt t n L41+^Y1(s)2t-s2d s+ 10Eʏt n0L221+Y1(s)2t-t n2d s+ 5Eʏt t n L41+Y1(s)2t-s2d sɤ5L21h2+10T h2L22Eʏt n01+^Y1(s)2d s+ 5h3L4Eʏt t n1+^Y1(s)2d s+ 10L22h2Eʏt n01+Y1(s)2d s+ 5L4h2Eʏt t n1+Y1(s)2d sɤ5L21h2+10T h2L22ʏt n01+E^Y1(s)2d s+ 5h3L4ʏt t n1+E(^Y1(s)2)d s+ 10L22h2ʏt n01+E Y1(s)2d s+5L4h2ʏt t n1+E(Y1(s)2)d sɤC h2.同理,Y(t)-^Y1(t)=Y(t)-Y n+1=Φ(t)-Φ(t n+1)+ʏt0K1t,s,^Y1(s)-K1t n+1,s,^Y1(s)d s-ʏt n+1t K1t n+1,s,^Y1(s)d s+ʏt0K2(t,s,Y1(s))-K2(t n+1,s,Y1(s))d W(s)-ʏt n+1t K2t n+1,s,Y1(s)d W(s).再由基本不等式,C a u c h y-S c h w a r t z不等式和I tô等距,得E Y(t)-^Y1(t)2ɤ5EΦ(t)-Φ(t n+1)2+ 5T Eʏt0K1t,s,^Y1(s)-K1(t n+1,s,^Y1(s))2d s+ 5h Eʏt n+1t K1t n+1,s,^Y1(s)2d s+ 5Eʏt0K2(t,s,Y1(s))-K2(t n+1,s,Y1(s))2d s+ 5Eʏt n+1t K2t n+1,s,Y1(s)2d sɤ5L21t-t n+12+10T Eʏt0L221+^Y1(s)2t-t n+12d s+ 5h Eʏt n+1t L41+^Y1(s)2t n+1-s2d s+ 10Eʏt0L221+Y1(s)2t-t n+12d s+ 5Eʏt n+1t L41+Y1(s)2t n+1-s2d sɤ5L21h2+10T h2L22ʏt01+E(^Y1(s)2)d s+ 5h3L4ʏt n+1t1+E^Y1(s)2d s+ 10L22h2ʏt01+E(Y1(s)2)d s+ 5L4h2ʏt n+1t1+E(Y1(s)2d sɤ5L21h2+C T2h2L22+C L4h4+C L22h2T+C L4h3ɤC h2.定理2在引理1的假设下,存在一个与h无关的正常数M使得E(|y(t)-Y(t)|2)ɤM h2,对任何tɪ[0,T]均成立.证明用式(2)减去式(6),并由基本不等式, C a u c h y-S c h w a r t z不等式和I tô等距,得E y(t)-Y(t)2ɤ9(总第195期)非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性(李晓卫等)6Eʏt0[K1(t,s,y(s))-K1(t,s,Y(s))]d s2+ʏt0[K1(t,s,Y(s))-K1(t,s,Y(s))d s2+ʏt0[K1(t,s,Y(s))-K1(t,s,^Y1(s))]d s2+ʏt0[K2(t,s,y(s))-K2(t,s,Y(s))]d W(s)2+ʏt0[K2(t,s,Y(s))-K2(t,s,Y(s))]d W(s)2+ʏt0[K2(t,s,Y(s))-K2(t,s,Y1(s))]d W(s)2.对上述6项分别进行处理得到Eʏt0[K1(t,s,y(s))-K1(t,s,Y(s))]d s2ɤT E(ʏt0L25|y(s)-Y(s)|2d sɤT L25ʏt0E(|y(s)-Y(s)|2)d s, Eʏt0[K1(t,s,Y(s))-K1(t,s,Y(s))]d s2ɤT Eʏt0[K1(t,s,Y(s))-K1(t,s,Y(s))]2d sɤT Eʏt0L23(1+|Y(s)|)2|s-s|2d sɤ2T h2L23ʏt0(1+E(|Y(s)|2))d sɤC h2L23T2, Eʏt0[K1(t,s,Y(s))-K1(t,s,^Y1(s))]d s2ɤT Eʏt0[K1(t,s,Y(s))-K1(t,s,^Y1(s))]2d sɤT L25ʏt0E(|Y(s)-^Y1(s)|2)d sɤC h2T2L25.采用同样的处理方式,得到Eʏt0[K2(t,s,y(s))-K2(t,s,Y(s))]d W(s)2ɤL25ʏt0E(|y(s)-Y(s)|2)d s,Eʏt0[K2(t,s,Y(s))-K2(t,s,Y(s))]d W(s)2ɤC T h2L23,Eʏt0K2t,s,Y(s)-K2t,s,Y1(s)d W(s)2ɤC h2L25T,那么E y(t)-Y(t)2ɤ(C L23T2+C L25T2+C L23T+C L25T)h2e T(T+1)L25ɤM h2. 3半隐式欧拉格式的稳定性本节在假设1的条件下研究式(6)的数值解的稳定性.定义3设Y n+1nȡ1为式(6)具有初始解ξ对应的解,X n+1nȡ1为式(6)对应初始值为λ的另一个解.对于任意的ε>0,存在一个正常数δ>0使得当E|ξ-λ|2<δ时,有E Y n+1-X n+12ɤε成立,即式(6)的解是均方稳定的.定理3设{y(t)}tȡ0,{x(t)}tȡ0分别为式(1)对应于初始值η和φ的精确解,那么,如果满足假设1,对于任意的hɤ13L25T,式(1)的精确解是均方稳定的.证明由式(2)得y(t)-x(t)=η-φ+ʏt0K1(t,s,y(s))-K1t,s,x(s)d s+ʏt0K2(t,s,y(s))-K2t,s,x(s)d W(s).对上式两端同时取期望,得E|y(t)-x(t)|2ɤ3Eη-φ2+3T Eʏt0|K1(t,s,y(s))-K1t,s,x(s)|2d s+ 3Eʏt0K2(t,s,y(s))-K2t,s,x(s)d W(s)2ɤ3Eη-φ2+3L25(T+1)ʏt0E|y(s)-x(s)|2d s.再由G r o n w a l l不等式得E y(t)-x(t)2ɤ3e x p3L25T T+1Eη-φ2.因此,对于任意的ε>0,存在一个常数δ>0,当Eη-φ2<δ时,有E|y(t)-x(t)|2ɤε.定理4 设Y n+1nȡ1,X n+1nȡ1分别为式(6)对应于初始值ξ和λ的数值解,那么如果假设1成立,则式(6)的数值解就是均方稳定的.证明由式(3)得到Y n+1-X n+12=|ξ-λ+hðn i=0K1t n+1,t i,Y i+1-K1t n+1,t i,X i+1+ðn i=0K2t n+1,t i,Y i-K2t n+1,t i,X iΔW i2ɤ3ξ-λ2+3h2ðn i=0[K1t n+1,t i,Y i+1-K1t n+1,t i,X i+1]2+ 3ðn i=0K2t n+1,t i,Y i-K2t n+1,t i,X iΔW i2.01中北大学学报(自然科学版)2021年第1期对上述不等式两侧同时取期望,得E Y n +1-X n +12ɤ3E ξ-λ2+3h 2Eðni =0K 1t n +1,t i ,Y i +1 -K 1t n +1,t i ,X i +12+3E ðni =0K 2t n +1,t i ,Y i -K 2t n +1,t i ,X i ΔW i 2ɤ3E |ξ-λ|2+3h 2(n +1)ðni =0E K 1t n +1,t i ,Y i +1-K 1t n +1,t i ,X i +1 2+3h ðni =0E |K 2t n +1,t i ,Y i -K 2t n +1,t i ,X i |2ɤ3E |ξ-λ|2+3L 25T h ðni =0E Y i +1-X i +12+3L 25h ðni =0E |Y i -X i |2,则E |Y n +1-X n +1|2ɤ31-3L 25T h E |ξ-λ|2+3L 25T h +3L 25h 1-3L 25T h ðni =0E |Y i -X i |2. 再由离散G r o n w a l l 不等式得E |Y n +1-X n +1|2ɤ31-3L 25T h E |ξ-λ|2e 3L 25T n h +3L 25n h 1-3L 25T h ɤ31-3L 25T h e 3L 25T (T +1)1-3L 25T h E |ξ-λ|2. 因此,对任何的ε>0,存在一个正常数δ>0,当E |ξ-λ|2<δ时,有E |Y n +1-X n +1|2<ε成立.4 数值算例本节给出一个数值算例以验证随机分数阶积分微分方程半隐式欧拉方法的收敛率.类似于文献[18],使用样本均值逼近期望,更准确地说,使用以下表达衡量在最后时刻t N 上的均方误差.ε=11000ð1000i =1|y (i )(t N )-Y (i )(t N )|212,式中:y (i )(t N )和Y (i )(t N )分别为精确解与数值解.例1 考虑1维随机分数阶积分微分方程且γ=1,D αy (t )=s i n (t )Γ(2)+ʏt(2t -s )s i n (2s y (s ))d s +ʏt(2t +s )c o s (2s y (s ))d W (s ),式中:t ɪ[0,1],且初始值y (0)=0.注意到函数Ø,k 1,k 2均满足先前的假设条件,且将在时间步长为h =2-11下的数值解作为随机分数阶积分方程的精确解.在相同布朗路径上任意取3个不同的时间步长,即h =2-6,2-7,2-8,并分别求得其半隐式欧拉格式的数值解及相应的误差ε,相关结果如图1所示.图1 例1中半隐式欧拉格式的均方误差F i g .1 M e a n s q u a r e e r r o r o f s e m i -i m pl i c i t e u l e r s c h e m e i n e x a m pl e 1当α=0.45与α=0.65时,图像斜率接近于1,即半隐式欧拉方法的一阶收敛率得到验证.参考文献:[1]L e v i n J J ,N o h e l JA .O n a s y s t e mo f i n t e gr o -d i f f e r -e n t i a l e q u a t i o n so c c u r r i n g i nr e a c t o rd y n a m i c s [J ].T h eA r c h i v ef o rR a t i o n a l M e c h a n i c sa n d A n a l ys i s ,1962,11(1):210-243.[2]G a r n i e r J .A c c e l e r a t i n g s o l u t i o n s i n i n t e gr o -d i f f e r e n -t i a l e q u a t i o n s [J ].S I A MJ o u r n a l o nM a t h e m a t i c a lA -n a l ys i s ,2010,43(4):1955-1974.[3]P a n a s e n k oG ,P s h e n i t s y n aN .H o m o g e n i z a t i o n o f i n -t e g r o -d i f f e r e n t i a l e q u a t i o n o f B u r g e r s t y p e [J ].A p pl i -c a b l eA n a l y s i s ,2008,87(12):1325-1336.[4]A l e k s e y D .S t a b i l i t y o f a c l a s s o f s t o c h a s t i c i n t e gr o -d i f f e r e n t i a l e q u a t i o n s [J ].S t o c h a s t i cA n a l y s i s&A p -pl i c a t i o n s ,1995,13(5):517-530.[5]C o n tR ,T a n k o vP .F i n a n c i a lm o d e l l i n g w i t h j u m pp r o c e s s e s [M ].B o c a R a t o n :C h a pm a na n d H a l l /C R C ,2004.[6]K h o d a b i nM ,M a l e k n e j a dK ,R o s t a m iM ,e t a l .I n -t e r p o l a t i o n s o l u t i o n i n g e n e r a l i z e d s t o c h a s t i c e x p o n e n -t i a l p o p u l a t i o n g r o w t hm o d e l [J ].A p pl i e dM a t h e m a t -i c a lM o d e l l i n g ,2012,36(3):1023-1033.[7]S a t h a n a n a t h a nS ,P e d j e uJC .F u n d a m e n t a l p r o p e r -t i e s o f s t o c h a s t i c i n t e g r o -d i f f e r e n t i a l e qu a t i o n s -I :e x -i s t e n c e a n d u n i q u e n e s s r e s u l t s [J ].I J P A M ,2003,7(3):339-358.[8]R a oANV ,T s o k o sCP .O n t h e e x i s t e n c e ,u n i qu e -11(总第195期)非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性(李晓卫等)n e s s,a n d s t a b i l i t y b e h a v i o r o f a r a n d o ms o l u t i o n t o a n o n l i n e a r p e r t u r b e ds t o c h a s t i c i n t e g r od i f f e r e n t i a l e-q u a t i o n[J].I n f o r m a t i o n&C o n t r o l,1975,27(1): 61-74.[9]R e nY,X i aN.E x i s t e n c e,u n i q u e n e s s a n d s t a b i l i t y o f t h e s o l u t i o n s t o n e u t r a l s t o c h a s t i c f u n c t i o n a l d i f f e r e n-t i a l e q u a t i o n sw i t h i n f i n i t e d e l a y[J].A p p l i e dM a t h e-m a t i c s&C o m p u t a t i o n,2009,210(1):72-79. [10]M a r i e-A m e l i eM,S a i dH.E x i s t e n c e a n du n i q u e n e s so f v i s c o s i t y s o l u t i o n s f o r s e c o n do r d e r i n t e g r o-d i f f e r-e n t i a l e q u a c t i o n sw i t h o u t m o n o t o n i c i t y c o n d i t i o n s[J].M a t h e m a t i c s,a r X i v:1411.2266v1:1-14. [11]T o c i n oA,A r d a n u y R.R u n g eK u t t am e t h o d s f o r n u-m e r i c a ls o l u t i o no fs t o c h a s t i cd i f f e r e n t i a le q u a t i o n s[J].J o u r n a l o fC o m p u t a t i o n a l a n d A p p l i e d M a t h e-m a t i c s,2002,138(2):219-241.[12]B a b u s k a I,T e m p o n eR,Z o u r a r i sG E.G a l e r k i n f i-n i t e e l e m e n t a p p r o x i m a t i o no f s t o c h a s t i c e l l i p t i c p a r-t i a l d i f f e r e n t i a l e q u a t i o n s[J].S I A MJ o u r n a l o nN u-m e r i c a l A n a l y s i s,2004,42(2):800-825.[13]M a l e k n e j a dK,K h o d a b i nM,R o s t a m iM.An u m e r i-c a lm e t h o df o rs o l v i n g m-d i me n s i o n a l s t o c h a s t i cI tôV o l t e r r a i n t e g r a l e q u a t i o n sb y s t o c h a s t i co p e r a t i o n a l m a t r i x[J].C o m p u t e r s&M a t h e m a t i c sw i t hA p p l i c a-t i o n s,2012,63(1):133-143.[14]P a n d aR,D a s hM.F r a c t i o n a l g e n e r a l i z e d s p l i n e s a n d s i g n a l p r o c e s s i n g[J].S i g n a lP r o c e s s,2006,86: 2340-2350.[15]C h o wTS.F r a c t i o n a l d y n a m i c s o f i n t e r f a c e s b e t w e e n s o f t n a n o p a r t i c l e s a n dr o u g hs u b s t r a t e s[J].P h y s i c s L e t t e r sA,2005,342(1-2):148-155. [16]T i e nDN.F r a c t i o n a l s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n sw i t h a p p l i c a t i o n st of i n a n c e[J].J o u r n a lo f M a t h e-m a t i c a lA n a l y s i sa n d A p p l i c a t i o n s,2013,397(1): 334-348.[17]D a i X,B u W,X i a oA.W e l l-p o s e d n e s s a n dE Ma p-p r o x i m a t i o n f o r n o n-L i p s c h i t z s t o c h a s t i c f r a c t i o n a l i n-t e g r o-d i f f e r e n t i a l e q u a t i o n s[J].J o u r n a l o fC o m p u t a-t i o n a l a n d A p p l i e d M a t h e m a t i c s,2019,356: 377-390.[18]L i nA,H uL.E x i s t e n c e r e s u l t s f o r i m p u l s i v e n e u t r a ls t o c h a s t i c f u n c t i o n a li n t e g r o-d i f f e r e n t i a li n c l u s i o n sw i t hn o n l o c a l i n i t i a lc o n d i t i o n s[J].C o m p u t e r s&M a t h e m a t i c s w i t h A p p l i c a t i o n s,2010,59(1): 64-73.[19]T a h e r i Z,J a v a d i S,B a b o l i a nE.N u m e r i c a l s o l u t i o no fs t o c h a s t i cf r a c t i o n a l i n t e g r o-d i f f e r e n t i a le q u a t i o nb y t h es p ec t r a lc o l l o c a t i o n m e t h o d[J].J o u r n a lo fC o m p u t a t i o n a l a n dA p p l i e dM a t h e m a t i c s,2017,321:336-347.[20]H uP,H u a n g C.S t a b i l i t y o f E u l e r-M a r u y a m am e t h-o d f o r l i n e a r s t o c h a s t i c d e l a y i n t e g r o-d i f f e r e n t i a l e q u a-t i o n s[J].M a t h e m a t i c a N u m e r i c aS i n i c a,2010,32(1):105-112.[21]M i r z a e eF,S a m a d y a rN.O n t h en u m e r i c a l s o l u t i o n o f f r a c t i o n a l s t o c h a s t i c i n t e g r o-d i f f e r e n t i a le q u a t i o n s v i am e s h l e s s d i s c r e t e c o l l o c a t i o nm e t h o d b a s e d o n r a-d i a l b a s i sf u n c t i o n s[J].E n g i ne e r i n g A n a l y s i s w i t hB o u n d a r y E l e m e n t s,2018,100(3):246-255.[22]C h a u d h a r y R,P a n d e y D N.A p p r o x i m a t i o no f s o l u-t i o n s t o s t o c h a s t i c f r a c t i o n a l i n t e g r o-d i f f e r e n t i a l e q u a-t i o nw i t hd e v i a t e da r g u m e n t[J].D i f f e r e n t i a lE q u a-t i o n s a n dD y n a m i c a l S y s t e m s,2017,3:1203-1223.[23]M o j a h e d f a rM,T a r i A,M a r z a b a dAT.S o l v i n g t w o-d i me n s i o n a lf r a c t i o n a l i n t eg r o-d i f f e r e n t i a le q u a t i o n sb y l e g e n d r e w a v e l e t s[J].B u l l e t i n o ft h eI r a n i a nM a t h e m a t i c a l S o c i e t y,2017,43(7):2419-2435.[24]F a nZ,L i uM,C a oW.E x i s t e n c e a n du n i q u e n e s s o f t h e s o l u t i o n sa n dc o n v e r g e n c eo f s e m i-i m p l i c i tE u l e rm e t h o d sf o rs t o c h a s t i c p a n t o g r a p h e q u a t i o n s[J]. J o u r n a l o f M a t h e m a t i c a lA n a l y s i sa n d A p p l i c a t i o n s, 2007,325(2):1142-1159.[25]L i uM,C a oW,F a nZ.C o n v e r g e n c e a n d s t a b i l i t y o f t h e s e m i-i m p l i c i t E u l e rm e t h o d f o r a l i n e a r s t o c h a s t i c d i f f e r e n t i a l d e l a y e q u a t i o n[J].J o u r n a l o fC o m p u t a-t i o n a l a n dA p p l i e dM a t h e m a t i c s,2004,170(2):255-268.[26]A b o u a g w aM,L i u J,L i J.C a r a t héo d o r y a p p r o x i m a-t i o na n ds t a b i l i t y o fs o l u t i o n st on o n-L i p s c h i t zs t o-c h a s t i c f r a c t i o n a ld i f f e r e n t i a le q u a t i o n so fI tôD o o b t y p e[J].A p p l i e d M a t h e m a t i c sa n d C o m p u t a t i o n, 2018,329:143-153.21中北大学学报(自然科学版)2021年第1期。

非线性常微分方程边值问题的有限解析法

非线性常微分方程边值问题的有限解析法

非线性常微分方程边值问题的有限解析法文章摘要:本文分析了非线性常微分方程边值问题的解析解类型及其有限解析法,以及在解析过程中应用的数值方法,同时还介绍了有限解析法的优点和缺点,总结出解决非线性常微分方程边值问题的有效方法。

非线性常微分方程边值问题是由一组不可积分的常微分方程组构成的边值问题。

它在物理学、工程学和科学计算等研究中,有重要的理论意义和实际应用,但它的分析和解析解往往不容易,因此,传统的数值方法无法解决这类棘手的问题。

因此,开发针对不同特殊情况下的有限解析法,成为近几十年来解决非线性常微分方程边值问题的研究重点。

首先,本文介绍了解这类问题的几种基本方法,包括对称矩阵变换、函数变量变换、解析有理化等方法。

随后,本文研究了解析有理化及其应用,介绍了在有限解析法中应用的正则变换方法,以及其在求解非线性常微分方程边值问题中的利用方法。

此外,文章还讨论了实际应用中出现的一些问题,以及针对这些问题的有效解决方法。

最后,本文总结了解决非线性常微分方程边值问题的有效方法,尤其是利用有限解析法的解决方法,以及围绕此方法的一些有用的应用。

从上文可以看出,解决非线性常微分方程边值问题既有解析方法,也有数值方法,而有限解析法介于二者之间,是一种有效的数值与解析结合的方法,可以有效的解决非线性常微分方程边值问题。

总的来说,有限解析法是一种有效的解决非线性常微分方程边值问题的方法,具有较高的效率和准确性。

然而,它也存在一定的不足,如计算量大、结果依赖于参数等。

因此,在实际应用中,有必要在准确性与效率之间进行取舍,以较少的计算量获取满足要求的解。

从本文讨论可以知道,有限解析法是一种有效的解决非线性常微分方程边值问题的方法,它既可以获取精确的解,又可以提高计算效率,是现代工程计算中的有效工具。

因此,有限解析法在理论研究和实际应用中将发挥重要作用,为解决现代工程技术中存在的复杂问题提供新思路。

三阶非线性微分方程三点边值问题的渐近解(英文)

三阶非线性微分方程三点边值问题的渐近解(英文)

三阶非线性微分方程三点边值问题的渐近解(英文)
姚静荪
【期刊名称】《应用数学》
【年(卷),期】2009(22)2
【摘要】本文通过引入伸长变量和使用边界层校正项的方法构造了一类三阶非线性微分方程三点边值问题的形式渐近解,然后利用高阶微分不等式理论,证明了此解的一致有效性.
【总页数】6页(P437-442)
【关键词】奇异摄动;三点边值问题;微分不等式
【作者】姚静荪
【作者单位】安徽师范大学数学系
【正文语种】中文
【中图分类】O175.14
【相关文献】
1.三阶非线性微分方程边值问题解的渐近估计 [J], 王国灿
2.非线性三阶常微分方程的非线性三点边值问题解的存在性 [J], 沈建和;余赞平;周哲彦
3.带有偏差变元的三阶非线性微分方程的解的渐近性质(英文) [J], 任崇勋
4.一类三阶非线性积分微分方程三点边值问题的奇摄动解 [J], 汪用征;周晓
5.奇摄动三阶半线性三点边值问题的高阶渐近解 [J], 陈福松;肖蓬
因版权原因,仅展示原文概要,查看原文内容请购买。

(应用数学专业论文)一类非线性常微分方程边值问题的求解方法及其解的定性分析

(应用数学专业论文)一类非线性常微分方程边值问题的求解方法及其解的定性分析

烟台大学硕士学位论文一类非线性常微分方程边值问题的求解方法及其解的定性分析姓名:***申请学位级别:硕士专业:应用数学指导教师:***20080401摘 要 本文基于非线性弹性力学的有限变形理论,将不可压缩超弹性材料组成的球形结构(如实心球体、初始状态含有微孔的球体、球壳)内部的空穴生成和增长问题归结为一类非线性常微分方程的边值问题,并对其进行了比较系统的研究,得到了一些新的理论结果和数值计算结果. 主要的工作和结论如下:1. 研究了由各向同性不可压缩的超弹性材料组成的实心球体在给定的表面径向拉伸死载荷作用下的空穴分岔问题. 得到了描述球体内部空穴生成和增长的空穴分岔方程. 特别地,对于各向同性的Rivlin- Saunders材料,给出了此类材料中有空穴现象出现的条件. 证明了空穴分岔方程的非平凡解在分岔点附近可以局部向左或向右分岔,这与其它各向同性不可压缩的超弹性材料中的空穴生成和增长现象有明显的不同. 最后,利用最小势能原理分析了空穴分岔方程解的稳定性和实际稳定的平衡状态. 2. 研究了在给定的表面拉伸死载荷作用下,由横观各向同性不可压缩的neo-Hookean 材料组成的球体内部预存微孔的增长问题. 利用材料的不可压缩条件和边界条件,得到了描述拉伸死载荷与微孔增长量之间的平衡关系的方程,并结合数值例图详细讨论了材料参数和结构参数对微孔增长的影响. 3. 研究了由横观各向同性不可压缩的Ogden材料组成的球壳在其内、外表面分别受到突加恒定载荷作用下的径向有限变形问题. 讨论了材料参数和结构参数对球壳内表面半径增长的影响,同时给出了相应的数值模拟. 关键词:不可压缩超弹性材料;预存微孔;球壳;有限变形;稳定性 AbstractBased on the finite deformation theory of Nonlinear Elasticity, the problems of cavity formation and growth in the interior of the spherical structures (such as a solid sphere, a sphere with an initial micro-void, a spherical shell) are described as a class of nonlinear ordinary differential equations with boundary conditions, where the structures are composed of incompressible hyper-elastic materials. These problems are discussed systemically, and s ome new theoretical and numerical results are obtained. The main works and results are as follows:1. A cavitated bifurcation problem is examined for a solid sphere composed of a class of isotropic incompressible hyper-elastic material s, where the surface of the sphere is subjected to a prescribed radially tensile dead-load. A cavitated bifurcation equation that describes cavity formation and growth in the interior sphere is obtained. Particularly, for the isotropic Rivlin-Saunders materials, the conditions of cavitation in the interior of this class of materials are presented. It is proved that the nontrivial solution can bifurcate locally to the left or the right near the bifurcation point, which is quite different from other isotropic incompressible hyper-elastic materials. Finally, the stability of the solutions and the actual stable equilibrium state are discussed by using the minimal potential principle.2. Under a prescribed uniform tensile dead-load, the growth of the pre-existing micro-void at the center of the sphere composed of the transversely isotropic incompressible neo-Hookean materials is examined. By using the incompressibility constraint and the boundary condition, an equation that describes the equilibrium relation between the tensile dead-load and the measure of void growth is obtained. The effects of material a nd structure parameters on the growth of the micro-void are discussed in detail with numerical examples.3. The radial finite deformation problem is examined for a spherical shell composed of the transversely isotropic incompressible Ogden materials, where the inner and the outer surfaces of the shell are subjected to different suddenly applied constant loads. The effects of material and structure parameters on the growth of the inner-surface are discussed. Simultaneously, the corresponding numerical simulations are given.Keywords: incompressible hyper-elastic material; pre-existing micro-void; spherical shell; finite deformation; stability烟台大学学位论文原创性声明和使用授权说明 原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。

两类奇异的非线性微分方程边值问题解的存在性分析

两类奇异的非线性微分方程边值问题解的存在性分析

摘要分数阶微积分已有很长的历史. 早在1695年,在Leibniz 和L’Hospital 的往来书信中就已经提到了分数阶微分的概念. 在近三个世纪内,人们对分数阶微积分理论的研究主要集中在数学的纯理论领域. 然而在最近几十年内,许多学者纷纷指出分数阶微积分非常适合于刻画具有记忆和遗传性质的材料和过程,这些性质在经典模型中是常常被忽视的.如今,分数阶微分方程模型越来越多地被用于描述声学、热学系统、材料力学、信号处理、系统辨识、控制理论、机器人科学以及其它应用领域中的问题.本文的工作如下:第一部分是绪论,主要简要介绍了分数阶微积分和分数阶微分方程的研究历史和发展现状,以及分数阶微分方程正解存在性方面的研究工作.第二部分研究了一类奇异的非线性semipositone Sturm-Liouville 边值问题正解的存在性. 我们的主要方法是对非线性部分()f y 进行重新定义,使其转化成非奇异的p ositone 边值问题, 然后应用锥上的不动点定理以及泛函分析的知识证明该奇异非线性s emipositone Sturm-Liouville 边值问题的正解的存在性.第三部分讨论了一类奇异的非线性分数阶微分方程Dirichlet 边值问题正解的存在性. 我们的主要思想是重新研究非线性部分0(,(),())f t x t D x t β+,使其转化为非奇异的分数阶微分方程边值问题,然后再对每一个重新定义的非线性部分为0(,(),())n f t x t D x t β+(N n ∈)的边值问题,证明其存在正解n x ,最后通过紧集上函数列极限的性质给出原奇异非线性分数阶微分方程Dirichlet 边值问题的正解的存在性.关键词:微分方程,分数阶微分方程,边值问题,正解,奇异性,不动点.AbstractFractional calculus has a long history. As early as in 1695, the concept of fractional differential was already mentioned in the correspondence of Leibniz and L'Hospital. During the past three centuries, the research of fractional calculus theory was mainly concentrated in the pure theoretical field of mathematics. However, in the recent several decades many scholars in succession pointed out that fractional calculus is very suitable to characterize materials and processes with memory and hereditary properties, which were often neglected in the classical models .Nowadays, fractional differential equation models are increasingly used to describe the problems in acoustics, thermal systems, material mechanics ,signal processing, system identification, control theory, robotics and other applied fields .This thesis is divided as follows:The first part is an introduction, briefly presents the research history and development status of the fractional calculus and fractional differential equations, and some past research works about the existence of positive solutions of the fractional differential equations.The second part studies a singular nonlinear semipositone Sturm-Liouville boundary value problem. We redefine the nonlinear part ()f y , and make the singular boundary value problem transform into a nonsingular positone boundary value problem, and then prove the existence of a positive solution for the original singular nonlinear boundary value problem by using the cone fixed point theorem as well as knowledge of functional analysis.The third part discusses the positive solution existence for Dirichlet boundary value problem of a singular nonlinear fractional differential equation. We study itsnonlinear part 0(,(),())f t x t D x t β+, and have it transform into a nonsingular boundaryvalue problem, and then prove the existence of a positive solution n x for eachboundary value problem with redefined nonlinear part 0(,(),())n f t x t D x t β+(N n ∈), andfinally we give the existence of a positive solution for the original Dirichlet boundary value problem via the limit properties of a sequence of functions on compact sets. Keywords: Differential equation, fractional differential equation, boundary value problem, positive solution, singularity, fixed point.目录摘要 (1)Abstract........................................................................................................I I 第一章绪论 (1)1.1分数阶微积分的历史 (1)1.2分数阶微分方程的研究现状 (2)第二章带有奇异的非线性Semipositone Sturm-Liouville边值问题解的存在性52.1 引言 (5)2.2 预备知识 (6)2.3 主要结果 (7)第三章带有奇异的非线性分数阶微分方程Dirichlet边值问题正解的存在性 173.1 引言 (17)3.2 预备知识 (19)3.3 主要结果 (29)参考文献 (31)攻读硕士期间发表的论文 (34)后记 (35)第一章 绪论1.1分数阶微积分的历史牛顿和莱布尼茨发明的微积分是现代数学和古典数学的分水岭,数学的发展和应用自此发生了根本性的变化,分析、几何和代数一同成为数学的三个基本研究方向和工具.对大多数研究人员和工程师而言,分数阶微积分也许还是一个新奇的概念和数学工具,但它实际上早在300多年前就已被提出,和传统的整数阶微积分有着一样久远的历史.莱布尼茨最先引入/n n d y dx 来表示导数,也正是因为这个符号的出现,促使了L’Hospital 对分数阶导数问题的思考.1695年9月,L’Hospital 在写给莱布尼茨的信中问到:“一个函数()f x 的n 阶导数可以表示为()n n d f x dx ,如果当12n =时会有怎样的结果.” 莱布尼茨在回信中写道:“这显然是一个悖论,但总有一天会得出有用的结论.”由此,分数阶微积分诞生了,在之后300多年的学习研究过程中,莱布尼茨的这句话已经得到了验证,至少他说对了一半,尤其是在二十世纪,大量有关分数阶微积分的应用被人们所发现.尽管分数阶微积分有了这些应用以及一些数学背景,然而它的物理意义却很难把握,分数阶微积分的定义也不像整数阶微积分那样完善.历史上,莱布尼茨、欧拉、拉普拉斯、Lacroix 和傅里叶都曾对分数阶导数做出过重要贡献,其中,欧拉迈出了关键的第一步.他注意到,当n 时非整数时,幂函数a x 的导数na n d x dx在数学上有意义.1812年,拉普拉斯提出了积分形式的的函数()x T t t dt -⎰的分数阶导数的思想.1819年,Lacroix 第一次给出了1/21/21/2d x dx =1823年,Abel 在求解等时曲线的积分方程时,第一次使用分数阶算子并用分数阶微积分来表示该方程的解.1832年,Liouville 成功的应用了自己提出的分数阶导数的定义,解决了势理论问题,此后,Liouvile 发表的一系列文章使他成为分数阶微积分理论的创始人.19世纪末,物理学家Heaviside发表的一系列文章表明,分数阶算子可以应用于求解特定的整数阶微分方程,从数学角度看,他的方法并不严格,但被证明对电缆中电流的传输这类问题非常有效.后来Heaviside的结果被证明是正确的,但他的处理过程在数学上并不完善,直到1919年Bromwich才把这一工作完善,Heaviside的想法极大的促进了分数阶算子的发展,但当时分数阶微积分还没有被应用于科学和工程的物理和力学建模.20世纪40年代,力学家Scott和Gerasimov分别独立的提出了介于牛顿流体和胡克定律表征的分数阶导数模型.地理学家Caputo和Mainardi将分数阶微积分方法运用到复杂黏弹性和流变介质,发展了若干的力学模型,更为重要的是,Caputo发展了一个不同于传统的Riemann-Liouville分数阶导数的新定义(被人们称为Caputo定义),克服了前者的强奇异性,并且自然的将初始条件含在定义中,在解决实际问题时得到了非常广泛的应用.1965年,美国耶鲁大学的Mandelbrot教授提出分形的概念,并首次指出自然界和工程中存在大量分数维的事实,并且整体与部分之间存在自相似现象,他认为分数阶布朗运动与Riemann-Liouville提出的分数阶微积分定义有紧密的内在联系.从此,作为分形几何和分形动力学的基础,分数阶算子理论特别是分数阶微分方程的研究开始得到广泛关注,分数阶微积分的研究重点也逐渐从纯数学领域转移到其它学科领域.20世纪末至今,由于反常扩散、多孔介质力学、非牛顿流体力学、黏弹性力学等研究的需要,分数阶导数的研究和应用再度引起广泛重视,成为多个领域学者研究的热点.1.2分数阶微分方程的研究现状现实的世界本质上是分数阶的.过去用整数阶微积分描述自然界中的事物,但自然界中许多现象依靠传统的整数阶微积分是不能精确描述的,必须对传统的微积分进行拓展才能更好的描述与研究这样的现象.分数阶微分方程是扩展传统微积分学的一种直接方式,即允许微分方程中对函数的导数阶次选择分数,而不是现有的整数.目前,分数阶算子的定义主要有Riemann-Liouville型、Caputo型、Grunwald-Letnikov型,Weyl型、Erdelyi-Kober型、Riesz型以及Marchaud-Hadamard型分数阶微积分[]23,前面三种定义用的最为广泛,同时这三种定义还存在着一定关系:Riemann-Liouville型分数阶微分定义和Caputo型分数阶微分定义都是在Grunwald-Letnikov型分数阶微分定义的基础上进行改进而得到的,但是它们同时又有各自的侧重点,其中对于Riemanna-Liouville 型定义是从数学角度出发,在计算时初始条件是必要的,但这个定义在应用方面缺乏物理背景,是得它在很大程度上不能适用于具体模型;而对于Caputo 型定义,它正好弥补了Riemanna-Liouville 型定义可以很好的应用到数学模型中去,因为此时的初始条件恰好是整数阶的导数,这样连带的初始条件就可以很好的描述一些物理现象的特征,并能准确的对它进行计算,它还比较适用于拉普拉斯变换,有利于分数阶微分方程的进一步讨论随着分数阶微积分定义的出现,分数阶微分方程的求解就成为数学家至今仍在研究的主要课题,在分数阶微分方程的解析解研究方面:Agarwal []26,29,30研究了分数常微分方程解的存在性、唯一性;Miller 和Ross []21给出了一种分数阶微分方程的求解方法;Wyss []36等人给出了分数阶Black-Scholes 方程的一个完整解;Zhanbin Bai []40,41, Chuanzhi Bai []11等研究了分数微分方程正解的存在性;然而,由于分数阶微分方程的解析解以及基本解大多带有特殊函数(如多变量的Mittag-Lemer 函数),这些特殊函数的计算是相当困难的,而且并非所有的分数阶微分方程都能得到其解析解.因此,建立分数阶微分方程的数值方法是非常必要的,在分数阶微分方程的数值解研究方面:Diethelm []1314,等人对于Adams类型的分数阶微分方程,提出用预测校正法来得到微分方程的数值解并且讨论了分数阶非线性微分方程的求解问题,在特定初值和Riemann-Liouville 型分数阶微积分定义的条件下求解分数阶微分方程的数值解;Diethelm 和Ford []15在分数阶微积分的Caputo 定一下给出了给出了一种求解分数阶微积分的数值算法;Sayed []33等人对于线性分数阶微分方程给出了一种计算其近似的数值解的算法,该算法需要很大的计算量来得到计算权数;Agrawal []4等人在Caputo 型分数阶微积分的基础上,求解了分数阶漫射波方程,数值解在实际问题中得到了广泛的应用,数学家们给出了自己的解法,每种解法都随着计算机技术的快速发展得到了验证.在最近的十多年里,有关分数阶微分方程的论文和著作相继出现,在这些论文和著作当中,也有很大一部分文章是关注不同边值条件和不同阶数取值范围下的分数阶微分方程正解存在性和唯一性问题,在不同的边值条件和阶数条件范围下,可以采用不同方法来求解分数阶微分方程的解以及证明其正解的存在性.已知的求解方法中较多是采用各种推广的特殊函数来直接求解,其中Green 函数是研究的重点内容,不同的边值条件和阶数的取值范围会产生不同的Green函数以及相应的Green函数值的有所不同,进而导致在后续估计分数阶微分方程正解的存在的条件以及在证明正解存在性的方法上出现显著差别.本文主要利用非线性泛函分析中的不动点理论,把解的存在性转化为某个非线性算子不动点的存在性.研究了一类分数阶微分方程在边值条件下正解的存在性.第二章 带有奇异的非线性SemipositoneSturm-Liouville 边值问题解的存在性2.1 引言近年来,带有奇异的或非奇异的positone 问题(其中非线性项()f y 为非负值)的研究已引起了很多的学者的关注,详见文献[17,25,26,28].最近,文章[19,20]开始讨论了Semipositone 非奇异问题. 这里Semipositone 问题指的是非线性项()f y 可能在0y =处奇异并且f 可以取负值.本章主要研究了带有奇异的非线性Semipositone Sturm-Liouville 边值问题(2.1.1)解的存在性.0μ>这里是常数,1[0,1],q L ∈:(0,)f R ∞→连续并且在0y =处奇异, ,,,0:0.αβγδργβαγαδ≥=++>及在文献[27]中作者研究了带有奇异的Semipositone Dirichlet 边值问题 ()()(())0,01(0)(1)0;y t q t f y t t y y μ''+=<<⎧⎨==⎩解的存在性.受以上文献启发,本文讨论了带有奇异的Semipositone Sturm-Liouville 边值问题(2.1.1)解的存在性.本章主要利用锥上的不动点理论来建立边值问题解的存在性,本章第二部分首先介绍了一些基本定义和引理,给出我们后面用到的基本定理,第三部分是我们的主要定理并给出了(2.1.1)式当==1αγ,==0βδ特殊情形时的一个例子,边值问题(1)0,01(0)(1)0,0,0p q y y y t y y p q μ-''⎧++-=<<⎨==>>⎩ 当μ充分小时,有一个解()2[0,1](0,1),()0,0,1y C C y t t ∈⋂>∈且有()()(())0,01(0)(0)0,(1)(1)0;y t q t f y t t y y y y μαβγδ''+=<<⎧⎪'-=⎨⎪'+=⎩2.2 预备知识定理 2.2.1[]27(,)E E K E =⋅∈设是一个Banach 空间,是一个锥,,r R 都是常数且有r R <<0.{}(=:)R R A K K x E x R Ω⋂→Ω∈<假设:这里,A 是一个连续的紧映射并且假设下列条件成立:(1) (),[0,1)E r x A x x K λλ≠∈∈∂Ω⋂且, (2) ,E R Ax x x K >∈∂Ω⋂, 那么算子{}:A K x E r x R ⋂∈≤≤在集合上有一个不动点.引理 2.2.1[]27设{}[0,1]()0,[0,1]()[0,1]K y C y t t y t ∈≥∈=:并且是上的凸函数,如果y ,K ∈那么 01()(1),[0,1];=max ()t y t t t y t y y t ≤≤≥-∈这里. 引理2.2.2 1[0,1],()0,(0,1),q L q t t ∈>∈假设那么边值问题()()=0,01(0)(0)0,(1)(1)0;y t q t t y y y y αβγδ''+<<⎧⎪'-=⎨⎪'+=⎩(2.2.1) 的解0()(),[0,1]w t w t G t t C t ≤∈满足(,);G t t 其中(,)为边值问题 =0,(0)(0)0,(1)(1)0;y y y y y αβγδ''⎧⎪'-=⎨⎪'+=⎩其中1()(),01,1()(),01,t s s t G t s s t t s γδγβαργδγβαρ⎧+-+≤≤≤⎪⎪⎨⎪+-+≤≤≤⎪⎩(,)= 100[0,1]11max ()()()()()()t t t C s q s ds s q s ds t t ψϕψϕ∈⎧⎫=+⎨⎬⎩⎭⎰⎰ 记 ():,():,01t t t t t ϕγδγψβα=+-=+≤≤.证明:因为(2.2.1)式的解Green G t s 的函数(,)当t=s 的情形,1011()()()()()()()t t w t t s q s ds s t q s ds γδγβαγδγβαρρ=+-+++-+⎰⎰10()()1()()()()t t t t s q s ds s q s ds ϕψβαγδγρρρ=+++-⎰⎰ 10()()()()()()t t t t t t q s ds q s ds ϕψϕψρρ≤+⎰⎰ 所以有00()()()(,)t t w t C G t t C ϕψρ≤=. 引理2.2.3 :(0,)f R M ∞→>设的连续函数并且存在一个常数0,使得 ()0,f u M +≥(0,)u ∀∈∞,若边值问题*()()(()())0,01(0)(0)0,(1)(1)0;y t q t f y t t t y y y y μφαβγδ''⎧+-=<<⎪'-=⎨⎪'+=⎩(2.2.2) 211[0,1](0,1)()(),(0,1),y C C y t t t φ∈⋂>∈有一解且 ()=(),t Mw t φμ这里 *()(),0f v f v M v =+>.1()()()u t y t t φ=-那么 为(1.1.1).式的一个非负解证明:因为1()()()u t y t t φ''''''=-=*1()(()())()q t f y t t Mq t μφμ--+ []1()(()())()q t f y t t M Mq t μφμ=--++1()(()())()(())q t f y t t q t f u t μφμ=--=-所以有()u t ''=()(())q t f u t μ-,即1()()()u t y t t φ=-是(2.1.1).式的一个非负解2.3 主要结果假设下列条件成立:(H1):(0,)f R M ∞→>的连续函数并且存在一个常数0,使得()0,f u M +≥ (0,)u ∀∈∞.(H2)()()()f u M g u h u +=+,(0,)u ∀∈∞,其中0g ∞为(,)上正的连续递减函数 并且存在000()()(),0,0K g ab K g a g b a b >≤∀>>使得. h ∞为[0,)上的连续非负函数并且有0hg∞为(,)上的递增函数. (H3) 存在常数,(,)(1),L G t t Lt t ≤-使得 存在0,r MLC μ>使得00001,()11()r du K b gu MLC h r g r g r μμ>⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 1021002max 2(1)(),2(1)(),b t t q t dt t t q t dt ⎧⎫=--⎨⎬⎩⎭⎰⎰其中,100[0,1]11max ()()()()()()t t t C s q s ds s q s ds t t ψϕψϕ∈⎧⎫=+⎨⎬⎩⎭⎰⎰. (H4)11((1))(0,),()(,)2()((1))((1))a a Rg a a R a R r q s G s ds g R g a a R h a a R εμσεε--∈>≤-+-⎰存在有这里 00MLC Rμεε>≥是任意常数且满足1-,11[0,1]01()(,)sup ()(,)a aaat q s G s ds q s G t s ds ξξ--∈≤≤=⎰⎰满足.定理2.3.1 假设条件(H1)、(H2)、(H3)和 (H4)成立,那么边值问题(2.1.1) 式有一个解2[0,1](0,1)(0,1)()0.y C C t y t ∈⋂∈>且有当时证明:记0*0001:(1)m N m N a a R m ηηε⎧⎫=∈<<-⎨⎬⎩⎭且. 我们首先证明边值问题0,()()(()())0,011(0)(0),1(1)(1),m y t q t f y t t t y y m y y m N m μφαβγδ⎧''⎪+-=<<⎪⎪'-=⎨⎪⎪'+=∈⎪⎩(2.3.1) 对0m N ∀∈有一个解m y ,()0,()(),[0,1],,m m m y t y t t t r y R φ≥≥∈≤≤这里1()()(),()11()(),0.m f v M g v h v v mf vgh v v mm ⎧+=+≥⎪⎪=⎨⎪+≤≤⎪⎩欲证(2.3.1)式,我们接下来看下式*0,()()(()())0,011(0)(0),1(1)(1),m y t q t f y t t t y y m y y m N m μφαβγδ⎧''⎪+-=<<⎪⎪'-=⎨⎪⎪'+=∈⎪⎩(2.3.2) *1()()(),11()()(),01()(0),0.m f v M g v h v v m f v g h v v mm g h v m ⎧+=+≥⎪⎪⎪=+≤≤⎨⎪⎪+≤⎪⎩这里所以我们有*()0,(,).m f v v ≥∀∈-∞∞0,([0,1],){[0,1]()0,[0,1]()[0,1]}.m N E C y C y t t y t ∈=∈≥∈固定并且K=:且是上的凸函数()():[0,1]y t y t A K C →是边值问题(2.3.2)式的解当且仅当是算子1*01()()(()())(()())m Ay t G t s q s f y s s ds t t mμφϕψρ=-++⎰(,) (2.3.3)的不动点.:[0,1]A K C →由文献[27]知算子是连续的并且是全连续算子.:A K K →接下来验证*()0,(,)()0.m u K f v v Au t ∀∈≥∀∈-∞∞≥对,因为,所以有同时也容易看出()0A u t ''≤,(0,1),.t ∈ {}{}12=[0,1]:,[0,1]:.u C u r u C u R Ω∈<Ω=∈<设1,[0,1).y Ay y K λλ≠∈∈⋂∂Ω我们首先证明且=0.(0,1)=y Ay y Ay λλλλ≠∈当时,显然成立当时,假设成立,我们有*()()(()())0,01m y t q t f y t t t λμφ''+-=<< (2.3.4)00[0,1](0,1),(0,)()0,y t t t y t '∈∈≥由是凸函数可知,在区间上存在点使得当时有000(,1)()0,().t t y t t y t y r '∈≤==时有并且在处有0(,)()(1)=()(1)()(,),0,1(1)G t t y t t t y y t t t r w t G t t C L t t t ≥-≥-≤≤∈-因为以及,()0()()()=()1()1()MLC Mw t y t t y t y t y t r μμφ⎡⎤⎡⎤--≥-⎢⎥⎢⎥⎣⎦⎣⎦所以 0,r MLC μ>由于所以有0()()()10,0,1MLC y t t y t t r μφ⎡⎤-≥->∈⎢⎥⎣⎦() (2.3.5) *11()=()()()0m v f v g v h v v v m m≥+∞≤≤当时,,因为g 在(0,)上递减,所以当时,*1()()()()()m f v g h v g v h v m=+≤+,*(()())(()())(()()),(0,1)m f y t t g y t t h y t t t φφφ-≤-+-∈故有(0,1)(2.3.4)x ∈因此当时,由式我们有()()(()())(()())y x q x g y x x h y x x μφφ''≤-+--(()())()(()())1(()())h y x x q x g y x x g y x x φμφφ⎧⎫-=-+⎨⎬-⎩⎭(2.3.5)由式,我们有0(()())()()()11(()())MLC h y x x y x q x g y x r g y x x μφμφ⎧⎫-⎡⎤''≤-+⎨⎬⎢⎥-⎣⎦⎩⎭-() 00()1)1()())(MLC h r K gq x g y x rg r μμ⎧⎫≤-+⎨⎬⎩⎭(() (2.3.6) 不等式00()t t t t ≤两边从到积分得,00()()(())1)1()(t t MLC h r y t K g y t g q x dx rg r μμ⎧⎫'≤-+⎨⎬⎩⎭⎰() (2.3.7) =y Ay λ由知,1*01()()(,)()(()())(()())m y t Ay t G t s q s f y s s ds t t mμφϕψρ≤=-++⎰ 1*1(,)()(()())(()())m G t t q s f y s s ds t t mμφϕψρ≤-++⎰1*1(1)()(()())(()())m Lt t q s f y s s ds t t mμφϕψρ≤--++⎰ 因此++(0)(1)y y m mγδβαδβρρ++≤≤有,. 取++=max ,m mm γδβαδβηρρ⎧⎫++⎨⎬⎩⎭0(2.3.7)t ,对式两边从0到积分,以及由分部积分得00+00()1)1()()(rt mMLC duh r K g xq x dx g u r g r γδβρμμ+⎧⎫≤-+⎨⎬⎩⎭⎰⎰() 有 0000()11)11)()()(1mrt MLC duh r K g x x q x dx g u r g r t ημμ⎧⎫≤-+-⎨⎬-⎩⎭⎰⎰(()000(2.3.6()1t t t t t ≥类似的,如果我们对)式两边先从到积分,然后再对不等式两边从到积分得m1000()11)11)()()(rt MLC duh r K g x x q x dx g u r g r t ημμ⎧⎫≤-+-⎨⎬⎩⎭⎰⎰(()有 000()1)1()(mrMLC duh r K b g g u r g r ημμ⎧⎫≤-+⎨⎬⎩⎭⎰() (2.3.8) 其中0b 为条件(H3)中所定义,又因为由条件(H3)有00001()11()r du K b gu MLC h r g r g r μμ>⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 所以当η充分小时有0001()11()r du K b gu MLC h r g r g r ημμ>⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 与(2.3.8)式产生矛盾.接下来我们证明,当 2y K Ay y ∈⋂∂Ω>时,有,2K ⋂∂Ω因为当时, 有()(1),[0,1]y t t t R t ≥-∈.0(0,1)()()()1()(1)MLC t y y t t y t y t t t R r μφεε⎡⎤∈∈-≥-≥≥-⎢⎥⎣⎦当时, [],1t a a ∈-因此,当时,我们有 ()()(1),y t t a a R φε-≥-1()()(1)y t t a a R m φε-≥->由 有 []*(()())=(()())(()()),,1mf y t tg y t th y t t t a a φφφ--+-∈- 1*01()()(()())(()())m Ay G s q s f y s s ds mξμξφϕξψξρ=-++⎰(,) 1*()(()())a m a G s q s f y s s dsμξφ-≥-⎰(,)1(()())()(()())1(()())a ah y s s G s q s g y s s ds g y s s φμξφφ-⎧⎫-=-+⎨⎬-⎩⎭⎰(,)1((1))()1()((1))aa h a a R g R G q s ds g a a R εμξε-⎧⎫-≥+⎨⎬-⎩⎭⎰(,s)(),(2.9).Ay R y ξ≥=由条件(H4)知因此式成立211.2.1(\),(1),[0,1]m m m A y r y R y t t r t ∈ΩΩ≤≤≥-∈由定理知有不动点并且有.0(1)(1)()()m y t t r MLC t t Mw t t μμφ≥->-≥=因为m y 所以是边值问题(2.3.1)式的解.{}0[0,1].m m N y ∈下证是定义在区间上的有界,等度连续的函数族因为 *(()())(()())(()()),(0,1).m m m m f y t t g y t t h y t t t φφφ-≤-+-∈(()())()()(()())1(()())m m m m h y t t y x q x g y t t g y t t φμφφ⎧⎫-''≤-+⎨⎬-⎩⎭所以我们有-00()()1)1()())()m m MLC h R y x K g q x gy x rg R μμ⎧⎫''≤-+⎨⎬⎩⎭-(( (2.3.9) 0(),()()()1()1,(0,1)()m m m m m MLC Mw s r y R y s s y s y s s y s r μμφ⎡⎤⎡⎤≤≤-=-≥-∈⎢⎥⎢⎥⎣⎦⎣⎦又因为,(0,1),(0,)()0,(,1)()0,m m m m m t t y t t y t ''∈≥≤同时存在使得在区间上在区间上 (2.3.9)()m m t t t t ≤对式两边从到积分得00()()1)1()())(mt m t m y t MLC h R K g q x dx g y t r g R μμ'⎧⎫≤-+⎨⎬⎩⎭⎰(() (2.3.10)(2.1.9)()m m t t t t ≥另一方面式两边从到积分得00()()1)1()())(m tm t m y t MLC h R K g q x dx g y t r g R μμ'⎧⎫-≤-+⎨⎬⎩⎭⎰(()(2.3.11) 由(2.3.10)、(2.3.11)式可知'00()()1)1(),(0,1)())(m m y t MLC h R K g v t t g y t rg R μμ⎧⎫≤-+∈⎨⎬⎩⎭(()(2.3.12) 其中{}{}10max ,min ,()()t a t a v t q x dx =⎰,{}{}00010inf :sup :1m m a t m N t m N a <<∈≤∈<<.注:这里0,1()0m m m t y t '=是区间()上唯一的一点,满足,有{}0inf :0m t m N ∈>. 倘若不成立,那么存在0N 的子列,使得0m m t →∞→当时,有. 对(2.3.10)式两边从0m t 到积分可得()00000()1)1()()(()m m m m y t t MLC duh R du K g xq x dx g u r g R g u ημμ⎧⎫≤-++⎨⎬⎩⎭⎰⎰⎰() (2.3.13) 因为0,0m m m t η→∞→→当时,有,由(2.3.13)式可知m →∞当时有()0m m y t →,然而因为()m m y t 在区间[0,1]的最大值在m t 处取得,所以当0m m y →∞→当时,有这与()(1),[0,1]m y t t t r t ≥-∈矛盾 故有{}0:m 0m inf t N ∈>.类似的可以证明{}0sup :1m t m N ∈<. 定义映射0:[0,)[0,),()()y duI I y g u ∞→∞=⎰,显然{}0)m m N I y ∈(是有界的.(())(())m m I y t I y s -()()()()(())m m y t t my s sm y x dudx g u g y x '==⎰⎰00()1)1()(ts MLC h R K g v x dx rg R μμ⎧⎫≤-+⎨⎬⎩⎭⎰() 可知{}0)m m N I y ∈(是等度连续的. 由,[]1()I I R -在区间0,上的一致连续性以及11())(()=((()))((()))m m m m y t I y s I I y t I I y s ----知{}0[0,1]m m N y ∈是定义在区间上的有界,等度连续的函数族.由Arzela Ascoli -定理知,存在0[0,1],N N y C ∈的子列以及函数 m →∞当时m y y 有在区间[0,1]上一致收敛到同时有(0)(0)0y y αβ'-=(1)(1)0y y γδ'+=,r y R ≤≤,()(1),[0,1]y t t t r t ≥-∈,且有0()(1)(1)()()y t t t r MLC t t Mw t t μμφ≥->-≥=. 固定(0,1)t ∈,不失一般性,我们假设12t >,固定(0,1),x x t ∈>满足,对1[,]2s x ∀∈ 0()()()()1()1()MLC Mw s y s s y s y s y s r μμφ⎡⎤⎡⎤-=-≥-⎢⎥⎢⎥⎣⎦⎣⎦00(1)(1)112MLC MLC x s s r r r r μμ-⎡⎤⎡⎤≥--≥-⎢⎥⎢⎥⎣⎦⎣⎦选择0001(1)12MLC x n N r n r μ-⎡⎤∈<-⎢⎥⎣⎦使得,,设{}10:.N m N m n =∈≥ 当1,m y m N ∈时,由泰勒公式有12111()()()222x m m m y x y y x f s x s ds⎛⎫⎛⎫⎛⎫'''=+-+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎰=[]12111()(()())(()()()222x m m m m y y x q s g y s s h y s s s x ds μφφ⎛⎫⎛⎫⎛⎫'+-+-+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎰因为(1)()m rs s y s R -≤≤,所以11,2my m N ⎧⎫⎛⎫'∈⎨⎬ ⎪⎝⎭⎩⎭为有界序列,[]0,1s ∈. 故112m m N y ∈⎧⎫⎛⎫'⎨⎬ ⎪⎝⎭⎩⎭有一个收敛的子列,不妨设子列的极限收敛到0r R ∈, 在1N 中当m →∞时,我们有,[]10211()()(()())(()()()22x y x y r x q s g y s s h y s s s x ds μφφ⎛⎫⎛⎫=+-+-+-- ⎪ ⎪⎝⎭⎝⎭⎰(2.3.14)对(2.3.14)式两边求二阶导有[]()()(()())(()())0y x q x g y x x h y x x μφφ''+-+-=所以有 [][]()()(()())(()())0,0,1y t q t g y t t h y t t t μφφ''+-+-=∈*()()(()())0,01y t q t f y t t t μφ''+-=<<.因此y 为(2.2.2)式的解并且有()()y t t φ>,(0,1)t ∈. 下面我们通过一个实例来给出了定理2.3.1的一个应用. 例:考虑边值问题(1)0,01(0)(1)0,p q y y y t y y μ-''⎧++-=<<⎨==⎩ (2.3.15) 这里0(0,)μμ∈且满足()100(1)12pp μμ++≤. (2.3.16)那么边值问题(1.3.15)式有一个解()0,(0,1)y y t t ≥∈且.我们将应用定理 2.3.1来证明,边值问题(2.3.15)式是(2.1.1)式当==1αγ,==0βδ的特殊情形. 设01,(),(),1p q M g y y h y y K -====,1L =,14a =,其中 100[0,1]11max ()()()()()()t t t C s q s ds s q s ds t t ψϕψϕ∈⎧⎫=+⎨⎬⎩⎭⎰⎰10[0,1]111max 112t t t sds sds t t ∈⎧⎫=+-=⎨⎬-⎩⎭⎰⎰. 11210021max 2(1),2(1)6b t t dt t t dt ⎧⎫=--=⎨⎬⎩⎭⎰⎰.01122r MLC r μμμ==<≤=取时有,,()1001112121121()11()ppp r p q du r gu r rp p MLC h r g r g r μμμ++⎛⎫- ⎪⎛⎫⎝⎭=-= ⎪+++⎛⎫⎛⎫⎝⎭-+ ⎪⎪⎝⎭⎝⎭⎰ (2.3.16)由式有()()00000011122222121()11()p pr du K b p p gu MLC h r g r g r μμμμμμ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭≤<≤≤=++⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭⎰ 取01111222MLC R R R μμε=>=-≥,当时有,1- . 最后当,1R q →∞>时有,13((1))320()((1))((1))333232pq p qp qR Rg a a R g R g a a R h a a R Rεεε-+-+⎛⎫⎪-⎝⎭=→-+-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 因此定理2.3.1的条件(H1)、(H2)、(H3)、(H4)均满足,故边值问题(2.3.15)式有一个解()0,(0,1)y y t t ≥∈且.第三章 带有奇异的非线性分数阶微分方程D i r i c h 边值问题正解的存在性3.1 引言近年来,人们开始并越来越多的关注、研究分数阶微分方程,主要是因为分数阶微积分自身理论的发展以及在多种学科中的应用,例如物理学,化学,工程学等等,详见文献[8,23,30,31].分数阶微分方程的Dirichlet 边值问题是很多学者研究是的焦点,在文献[40]中作者研究了边值问题()(),()0(0)(1)0D y t f t y t y y α+===正解的存在性和多解性,这里[][]()12,0,1,0,f C α<≤∈∞为非负函数,Bai Zhanbin 通过Krasnosel’skii 不动点定理和Leggett-Williams 不动点定理得到了相关结论.在文献[32]中,Zhang 研究了边值问题()(2)()(),,0,01,1n D u t q t f u u u t n n αα-'+=<<-<≤, (3.1.1)(2)(2)(0)(0)(0)(1)0,n n u u u u --'===== (3.1.2)这里0D α+是标准的Riemann-Liouville 分数阶导数,q 可能在t=0处奇异,f 可能在(2)0,0,0n u u u -'===处奇异.在此基础上Goodrich 在文献[42]中研究了边值问题()0(),(),01,1,vD y t f t y t t n v n +-=<<-<≤ (3.1.3) ()0,02,i y i n =≤≤-(0) (3.1.4)00()0,12,t D y t n αα+=⎡⎤=≤≤-⎣⎦ (2.1.5)这里的3n >,可以看出边值条件(3.1.2)式是边值条件(3.1.4)和(3.1.5)式的特殊情形,文献[42]在Zhang 研究的基础上进一步阐述了Green 函数的有关性质Harnack-like 不等式,这是在锥上寻找正解存在性的一个重要性质.文献[28]中Agarwal 等研究了边值问题()(),(),()0,D u t f t u t D u t αμ+= (3.1.6) (0)(1)0,u u == (3.1.7)正解的存在性,这里12,0,1αμαμ<<>-≥,0D α+是标准的Riemann-Liouville 分数阶导数.f 是正的Caratheodory 函数并且(,,)0f t x y x =在处奇异,通过锥上的不动点定理以及函数列的相关性质证明了边值问题(3.1.6)、(3.1.7)式正解的存在性.本章主要在文献[28,42]的基础上研究下面的带有奇异的非线性分数阶微分方程Dirichlet 边值问题00()(,(),())0,01D x t f t x t D x t t αβ+++=<< (3.1.8) ()(0)0,02i x i n =≤≤- (3.1.9)01()0,02t D x t n μμ+=⎡⎤=≤≤-⎣⎦ (3.1.10)正解的存在性.这里1n n α-<≤,01βα<≤-,f 是正的Caratheodory 函数并且在[0,1],(0,)B B ⨯=∞⨯上满足Caratheodory 条件(([0,1]f C a r B ∈⨯,(,,)0f t x y x =在处奇异,0D α+是标准的Riemann-Liouville 分数阶导数.我们说函数f 在集合[0,1],(0,)B B R ⨯=∞⨯上满足Caratheodory 条件,如果函数f 满足下面三个条件:[]()(,,):0,1(,)a f x y x y B →∀∈是可测函数,成立, [](b)(,,):0,1f t B t →∈是连续的,a.e.成立, []1()0,1,c B L κκϕ∈对中的任一紧集,存在函数使得[](,,),0,1(,)f t x y t x y B κϕ≤∈∀∈a.e.,成立,函数[]0,1u C ∈称为边值问题(2.1.8)-(2.1.10)的一个正解,如果x 在区间(0,1)上有0x >,[]00,1D x C β+∈,[]100,1D x L μ+∈且满足边值条件(3.1.9)、(3.1.10)式和等式(3.1.8),对几乎所有的[]0,1t ∈成立.本文中假设函数f 满足下列条件:[]()1():0,1,(0,),H f Car C B B ∈⨯=∞⨯[]0lim (,,),..0,1,x f t x y a e t y +→=∞∈∀∈(3.1.11)并存在正整数m 满足(,,)(1)f t x y m t μ≥-,[]..0,1,(,)a e t x y ∈∈∀∈(3.1.12)()[]2():(,,)()()()(),..0,1,(,)H f t x y t q x p x y a e t x y B γω≤++∈∈∀∈这里[]()[)1()0,1,0,1,,0,1t L q C p C γω∈∈∈都是正的函数,其中q 单调递减,,p ω单调递增,且有[]10()((1))s q K s s ds αγ-<∞⎰,()1mK α=Γ+ (3.1.13)()()lim0x p x x xω→∞+= (3.1.14)因为(3.1.8)式是一个奇异方程,故我们定义1(,,)11(,,)0n f t x y x n f f t y x n n⎧≥⎪⎪=⎨⎪≤<⎪⎩有[]()[)**0,1,0,n f Car C B B ∈⨯=∞⨯,n ∈,由条件1()H 和2()H 可得[]*1(,,)()()()(),..0,1,(,)n f t x y t q p x y a e t x y B n γω⎛⎫≤++∈∈∀∈ ⎪⎝⎭ (3.1.15)[]1(,,)()()()(),..0,1,(,)n f t x y t q p x y a e t x y B n γω⎛⎫≤++∈∈∀∈ ⎪⎝⎭(3.1.16)接下来我们首先讨论一般的分数阶微分方程00()(,(),())0,01n D x t f t x t D x t t αβ+++=<< (3.1.17) 3.2预备知识定义2.1[]40空间[]0,1C 上的范数[]{}max ():0,1x x t t =∈,空间[]10,1L 上的 的范数1()Lxx t dt =⎰.定义 3.2[]40函数:(0,)(0)y R Riemann Liouville α∞→>-,阶数为的分数阶积分由以下公式给出:1001I ()()()()ty t t s y s ds ααα-+=-Γ⎰ (3.2.1) 上式右端在(0,)∞上有定义,其中10()s e s ds αα∞--Γ=⎰.定义3.3[]40函数:(0,)(0)y R Riemann Liouville α∞→>-,阶数为的分数阶微分由以下公式给出:0101()()()()n tn d y s D y t ds n dt t s ααα+-+⎛⎫= ⎪Γ--⎝⎭⎰ (3.2.2)上式右端在(0,)∞上有定义,其中[]1n α=+,[]α表示实数α的整数部分.引理3.1[]28关于分数阶微积分有如下性质:(1)00I ()()D y t y t αα++=,..(0,1]a e t ∈, 1(0,1)y L ∈, 0α>(2)如果0α>,0λ>,那么110()()D ttαλλαλλα---+Γ=Γ- (3) []10()(,1),0,1tt s s ds t B t βααβαβ----=-∈⎰,其中B 为Beta 函数1110(,)(1),0,0p q B p q x x dx p q --=->>⎰,()()(,)()p q B p q p q ΓΓ=Γ+(4) [][]1()(),0,1,()0,1.I I f t I f t t f t L αβαβ+=∈∈ 由性质(4)可知()111()()()(,)()()t s tt s s f d ds B t s f s ds αβαβττταβ+-----=-⎰⎰⎰引理3.2[]40设0α>,如果(0,1)(0,1)y C L ∈⋂,那么分数高阶微分方程0()0D y t α+=有唯一解1212()N N y t C t C t C t ααα---=+++,,1,2,,i C R i N ∈=,其中N 是大于或等于α的最小整数.引理 3.3[]40设0α>,如果(0,1)(0,1)y C L ∈⋂且关于α的分数阶导数0()(0,1)(0,1)D yt C L α+∈⋂,那么120012I ()()N N D u t u t C tC t C t ααααα---++=++++ (3.2.3)其中,,1,2,,i C R i N ∈=,N 是大于或等于α的最小整数.引理3.4[]42设[]0,1f L ∈,那么边值问题0()()0,01,1D u t f t t n n αα++=<<-<≤, ()(0)0,02i u i n =≤≤-01()0,02t D u t n ββ+=⎡⎤=≤≤-⎣⎦有唯一的解1()(,)()y t G t s y s ds =⎰,其中11111(1)(),01()(,)=(1),01()t s t s s t G t s t s t s ααμαααμαα-------⎧---≤≤≤⎪Γ⎪⎨-⎪≤≤≤⎪Γ⎩证明:由引理2.3知,边值问题的解为12120()I ()n n u t C t C t C t f t αααα---+=+++- (3.2.4)由边值条件(1.4)式知230n C C C ====,对上式两边求μ阶导数,由引理2.1以及边值条件(2.1.5)式知11010()1()()()()()tD u t C t t s y s ds μαμαμααμαμ----+Γ=--Γ-Γ-⎰ 当1t =时有,1110()10(1)()()()C s y s ds αμααμαμ--Γ=--Γ-Γ-⎰,故有 11101(1)()()C s y s ds αμα--=-Γ⎰ 1111001()(1)()()()()()t t y t s y s ds t s y s ds ααμααα----=---ΓΓ⎰⎰111111011((1)())()(1)()()()t tt s t s y s ds t s y s ds ααμαααμαα-------=---+-ΓΓ⎰⎰ 设[][]{}0,1:0,1X x C D x C β=∈∈,给空间X 赋以范数{}*max ,x x D x β=,由文献[14]知X 是Banach 空间.定义空间X 中的锥P ,[]{}:()0,0,1.P x X x t t =∈≥∈为了证明边值问题(3.1.9)、(3.1.10)、(3.1.17)有一个正解,我们首先通过公式定义锥上的算子n T ,10()(,)(,(),())n n T x G t s f s x s D x s ds β=⎰ (3.2.5)引理3.5如果条件1()H 和2H ()成立,那么:n T P P →是一个全连续算子. 证明:设x P ∈,因为[]*(0,1)n f Car B ∈⨯,所以[]10,1n f L ∈,故有10()(,)(,(),())n n T x G t s f s x s D x s ds β=⎰1110(1)(,(),())()n t s f s x s D x s ds ααμβα---=-Γ⎰ 101()(,(),())()t n t s f s x s D x s ds αβα---Γ⎰ []10()(,(),())0,1(,)0tn t s f s x s D x s ds C G t s αβ--∈≥⎰由以及,可知()()[]()()0,1,0n n T x t C T x t ∈≥ (3.2.6)接下来由引理3.1的性质(3)、(4)可知()()()()()()101nn tn n d D T x t t s T x s ds n dt βββ--⎛⎫=- ⎪Γ-⎝⎭⎰()()()111(,)(,(),())nn t nd t s G s f x D x d ds n dt ββτττττβ--⎛⎫=- ⎪Γ-⎝⎭⎰⎰=()()1111001s (1)(,(),())()nn tn d t s f x D x d ds n dt αβαμβτττττβα-----⎛⎫-- ⎪Γ-Γ⎝⎭⎰⎰()()110011()(,(),())()nn t s n d t s s f x D x d ds n dt βαβτττττβα---⎛⎫--- ⎪Γ-Γ⎝⎭⎰⎰()()111101s (1)(,(),())()nn t n d t s ds f x D x d n dt βααμβττττταβ-----⎛⎫=-- ⎪ΓΓ-⎝⎭⎰⎰ ()()()+101,(,(),())()nn t n d B n t f x D x d n dt αββαβττττταβ--⎛⎫--- ⎪ΓΓ-⎝⎭⎰()()1+1101,(1)(,(),())()nn n d t B n f x D x d n dt αβαμβαβττττταβ----⎛⎫=-- ⎪ΓΓ-⎝⎭⎰ ()()()+101,(,(),())()n n t n d B n t f x D x d n dt αββαβττττταβ--⎛⎫--- ⎪ΓΓ-⎝⎭⎰ ()()(11101,(1)(,(),())()i n n B n it f x D x d n αβαμβαβαβττττταβ----≤≤--∏-+=-ΓΓ-⎰()10(,(),())tn t f x D x d αββτττττ--⎫--⎪⎭⎰所以有()()()(11101(1)(,(),())i n nn iD T x t ts f s x s D x s ds n βαβαμβαβαβ----≤≤-∏-+=-Γ+-⎰()1(,(),())tn t s f s x s D x s ds αββ--⎫--⎪⎭⎰ (3.2.7)因此有[]0,1,:n n D T x C T P P β∈→.为了证明n T 是一个连续算子,设{}m x P ⊂是一个收敛序列而且有*lim 0m m x x →∞-=,可知*,m x M m ≤∀∈对,M 是一个正的常数,因为[]*(0,1)n f Car B ∈⨯,我们有[]lim (,(),())(,(),()),..0,1n m m n m f t x t D x t f t x t D x t a e t ββ→∞=∈由(2.1.15)、(2.1.16)式可知,10(,(),())()()()()n m m f t x t D x t t q p M M n βγω⎛⎫<≤++ ⎪⎝⎭(3.2.8)由Lebesgue 控制收敛定理有1lim (,(),())(,(),())0n m m n m f t x t D x t f t x t D x t dt ββ→∞-=⎰ (3.2.9)()10()()()()(,)(,(),())(,(),())n m n n m m n T x t T x t G t s f s x s D x s f s x s D x s ds ββ-=-⎰ ()1(1,)(,(),())(,(),())n m m n G s f s x s D x s f s x s D x s ds ββ≤-⎰10(,(),())(,(),())n m m n f s x s D x s f s x s D x s ds ββ≤-⎰()()()11101()()()()(1)(,(),())(,(),())i n n m n n m m n iD T x t D T x t ts f s x s D x s f s x s D x s dsn ββαβαμββαβαβ----≤≤-∏-+-≤--Γ+-⎰()()()101(,(),())(,(),())ti n nmm n it s f s xs D x s f s x s D x s dsn αβββαβαβ--≤≤-∏-++--Γ+-⎰()1012(,(),())(,(),())i n n m m n if s x s D x s f s x s D x s ds n ββαβαβ≤≤-∏-+≤-Γ+-⎰故有lim 0n m n m T x T x →∞-=,所以n T 是连续算子.最后,设P X Ω⊂是中的有界集,*,x x L ∀∈Ω≤有,L 是一个正的常数,由于[]*(0,1)n f Car B ∈⨯,所以存在[]10,1L ϕ∈使得()[]0(,(),())..0,1,n f t x t D x t t a e t x βϕ<≤∈∀∈Ω对[],0,1x t ∀∈Ω∈有,11()()(,)(,(),())(,(),())n n n L T x t G t s f s x s D x s ds f s x s D x s ds ββϕ=≤≤⎰⎰()11101()()(1)(,(),())i n n n iD T x t t s f s x s D x s ds n βαβαμβαβαβ----≤≤-∏-+=-Γ+-⎰()1(,(),())tn t s f s x s D x s ds αββ----⎰()012i n L i n αβϕαβ≤≤-∏-+≤Γ+-故()n T Ω是X 中的有界集,下证n T 是等度连续的,设1201t t ≤<≤,1111212101()()()()()(1)(,(),())()n n n T x t T x t t t s f s x s D x s ds αααμβα-----=--Γ⎰111120(()())(,(),())t n t s t s f s x s D x s dsααβ--+---⎰2112()(,(),())t n t t s f s x s D x s dsαβ---⎰1111111211201()(1)()(()())()()t t t s s ds t s t s s ds αααμααϕϕα------≤--+---Γ⎰⎰。

带积分边界条件的二阶非线性边值问题的正解

带积分边界条件的二阶非线性边值问题的正解
sin β (1 − η ) 因此对 µ ≥ µ1 := ,我们有 H ( t , s ) s ≥t ≥ 0 。 (1 − η )( sin β − δ sin βη )
sin β (1 − t ) + δ sin β ( t − η ) sin β s (1 + δ ) sin β (1 − s ) sin β s H ( t , s ) s ≤= µ s (1 − s ) − ≥ µ s (1 − s ) − t β ( sin β − δ sin βη ) β ( sin β − δ sin βη ) (1 + δ ) sin β (1 − s ) sin β s (1 + δ ) sin β (1 − η ) ≥ µ − s (1 − s ) ≥ µ − s (1 − s ) β s ( sin β − δ sin βη )(1 − s ) ( sin β − δ sin βη )(1 − η )
A : K ( Ω 2 \ Ω1 ) → K 是一个全连续算子使得
2. 预备知识和引理
首先,介绍有关概念和引理。 引理 2.1:对于以下边值问题
2 x ( t ) p ( t ) , 0 < t < 1, − x′′ ( t ) − β = = ,x (1) δ x (η ) , x ( 0 ) 0=
引理 2.2:存在一个连续函数 Φ : [ 0,1] → [ 0, +∞ ) 和一个常数 γ ∈ ( 0,1] 使得:
2) 若(H1) (H2)成立,对于任意 ( t , s ) ∈ [α ,1 − α ] × [ 0,1] ,有 G ( t , s ) ≥ γΦ ( s ) 。
s ) s (1 − s ) , H= 接下来给出连续函数 Φ ( s ) 和常数 γ 。令 g (= (t, s ) µ g ( s ) − G (t, s ) 。

非线性分数阶微分方程耦合系统三点边值问题解的存在性

非线性分数阶微分方程耦合系统三点边值问题解的存在性

非线性分数阶微分方程耦合系统三点边值问题解的存在性姜小霞;欧阳自根;彭湘凌【摘要】讨论了非线性分数阶微分方程耦合系统的三点边值问题,利用Green函数的性质,将其转化为等价的积分方程耦合系统,应用Schauder不动点定理得到解的存在的充分条件。

%In this paper,we study the three-point boundary value problem to a coupled system of nonlinear fractional differential equations. By the means of the Green’s function,the system can be reduced to the equivalent integral equation. Then we obtain some sufficient conditions for the existence of the solutions for the system by using the Schauder fixed-point theorem.【期刊名称】《南华大学学报(自然科学版)》【年(卷),期】2015(000)001【总页数】6页(P94-99)【关键词】耦合系统;边值问题;Riemann-Liouville分数阶导数;Schauder不动点定理【作者】姜小霞;欧阳自根;彭湘凌【作者单位】南华大学数理学院,湖南衡阳421001;南华大学数理学院,湖南衡阳421001;南华大学数理学院,湖南衡阳421001【正文语种】中文【中图分类】O175key words:coupled system;boundary value problem;Riemann-Liouville fractional derivative;Schauder fixed-point theorem近几十年来,分数阶微分方程在物理、机械、化学、工程等学科的应用越来越广泛,许多学者对分数阶微分方程进行了研究[1-6],还有些学者对分数阶微分方程耦合系统进行了研究[7-11].例如Su[9]研究了以下分数阶微分方程耦合系统两点边值问题其中是Caputo型分数阶导数,f,g:[0,1]×R→R是连续函数,作者应用Schauder不动点定理证明了其解的存在性.在本文中,将对下面一类非线性分数阶微分方程耦合系统三点边值问题解的存在性进行研究其中1<αi<2,i=1,2,p,q,γ>0,0<η<1,α1-q≥1,α2-p≥1,γηαi-1<1,D是标准的Riemann-Liouville分数阶导数,且f,g:[0,1]×R×R→R是连续函数.利用Green函数的性质和Schauder不动点定理,得到分数阶微分方程耦合系统(1)~(2)解存在的充分条件.令I=[0,1],C(I)表示为定义在I上的所有连续函数所构成的集合,并令,则X为Banach空间,其中范数定义为为Banach空间,其范数为,这里0<p,q<1,那么(X×Y,‖·‖X×Y)也是Banach空间,且范数为‖(x,y)‖X×Y=max{‖x‖X,‖y‖Y}.由此容易得到对于任意αi>1,若x(t)∈X,则tα1-1x(t)∈X,若y(t)∈Y,则tα2-1y(t)∈Y.定义1[1,10] 函数f:(0,)→R的α>0阶Riemann-Liouville分数阶积分为其中Γ(α)为Gamma函数,右端在R+上逐点有定义.定义2[1,10] 连续函数f:(0,)→R的α阶Riemann-Liouville分数阶导数为其中α>0,n=[α]+1,Γ(α)为Gamma函数,右端在R+上逐点有定义.由定义2,有引理3[1,5] 令α>0,如果u∈C(0,1)∩L(0,1),那么分数阶微分方程有一个解为u(t)=c1tα-1+c2tα-2+…+cNtα-N,ci∈R,i=1,2,…,N,N为大于或等于α的最小整数引理4[1,5] 假设u∈C(0,1)∩L(0,1),且分数阶导数α>0,那么IαDαu(t)=u(t)+c1tα-1+c2tα-2+…+cNtα-N,ci∈R,i=1,2,…,N,N为大于或等于α的最小整数定理5(Schauder不动点定理)[12] 设P是E中有界凸闭集,T:P→P全连续,则T在P中必具有不动点.在本文中,假设f(t,x,y),g(t,x,y)满足下列条件:(H1)f(t,x,y),g(t,x,y)∈C(I×R×R,R),f(t,x,y),g(t,x,y)都是关于x和y的连续函数,且f(t,x,y),g(t,x,y)对t∈I是可测的.(H2)f(t,x,y),g(t,x,y)都是关于x和y的单调不减函数,存在非负函数a(t),b(t),c(t),d(t)∈L(0,1),使得其中p1,p2,q1,q2≥0,p1+p2<1,q1+q2<1.为方便起见,引入以下记号:,,,,,s.此外给出一些本文需要用到的引理.引理6[10] 问题(1)~(2)等价于以下列积分方程其中令那么问题(1)~(2)等价于下列积分方程记那么因此,只需研究积分方程(12)解的存在性.引理7 对任意是连续函数,且.证明下面只证明(t,s)>0,其他证明是相类似的,这里就不重复证明.很容易得到当max{t,η}<s≤1时,;当t<s≤η时,;当;当0≤s≤min{t,η}<1时,有于是.由式(8)~式(9),容易得到引理对变量t∈(0,1)是单调不增的函数,当s≤t≤1时,;当0≤t≤s时,.即对任意的t∈(0,1),有.由引理8,有下面令其中那么‖u(t)‖X≤r,‖v(t)‖Y≤r,也就意味着定义K上的算子T:Tw(t)=(T1v(t),T2u(t)),其中下面给出本文的主要结论和证明.定理9 若条件(H1),(H2)成立,则问题(1)~(2)有一个解.证明证明算子T:K→K是一个完全连续算子. 第一步,证明算子T:K→K.ds于是同理,容易得到‖T2u(t)‖Y≤ν+Λ2rq1+q2≤r,因此‖Tw(t)‖X×Y≤r.第二步,证明算子T是连续算子.令wn(t)=(un(t),vn(t))是K中的序列,且满足,对t∈[0,1],有tα1-1un(t),tα1-1u(t)∈X,tα2-1vn(t),tα2-1v(t)∈Y,因为f(t,x,y),g(t,x,y)对于x和y都是连续函数,Gi(t,s)对于s∈[0,1]是一致连续的且满足因此,对任意的ε>0,t∈I,存在正整数N1,当n>N1时,有由式(16)~式(17),有又因为T1vn(t),T1v(t)∈X,于是对于上述ε,存在N2>0,当n>N2时,有由式(20)~式(22)有取N=max{N1,N2},结合式(19)和式(23),对于上述ε,当n>N,有即用同样的方式可得到结合上述两式,有所以T是K上的连续算子.最后,证明T是等度连续的.只需证明对于任意w(t)∈K,和任意的0<t1<t2<1,当t1→t2时,有Tw(t1)→Tw(t2)即可.接下来分以下三种情况来考虑:1)0<t1<t2<η;2)0<t1<η<t2;3)0<η<t1<t2.下面只对1)进行证明,2)和3)证明与1)完全类似,不再重复. 令,则相类似的可以得到于是算子T是完全连续算子.由Schaudar不动点定理可知,方程(1)~(2)存在一个解.[1] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fraction al differential equations[M].Amsterdam:Elsevier Science B V,2006.[2] Lakshmikantham V.Theory of fractional functional differential equations [J].Nonlinear Anal,2008,69(10):3337-3343.[3] Agarwal R P,Lakshmikantham V,Nieto Juan J.On the concept of solution for fractional differential equations with uncertainty[J].Nonlinear Anal,201 0,72(6):2859-2862.[4] Podlubny I.Fractional differential equations[M].San Diego:Academic Pre ss,1999.[5] Miller K S,Ross B.An introduction the fractional Calculus and fractional e quations[M].New York:Wiley,1993.[6] Agrawal R P,Zhou Y,He Y.Existence of fractional neutral differential equa tions[J].Compul.And Math.with appl,2010,59(3):1095-1110.[7] Bai C Z,Fang J X.The existence of a positive solution for a singular coupl ed system of nonlinear fractional differential equations[J]p ut,2004,150(3):611-621.[8] Chen Y,An H L.Numerical solutions of coupled Burgers equations with ti me-and space-fractional derivatives[J]put,2008,200(1):215-225.[9] Su X W.Boundary value problem for a coupled system of nonlinear fract ional differential eququations[J].Appl.Math.Lett,2009,22(1):64-69.[10] Ahmad B,Nieto J J.Existence results for a coupled system of nonlinear f ractional differential equations with three-point boundary conditions[J].Comput.Math.Appl,2009,58(9):1838-1843. [11] Zhou Y.Existence and uniqueness of solutions for a system of fractiona l differential equations[J].J.Frac.Calc.Appl.Anal,2009,12(2):195-204. [12] 郭大钧.非线性泛函分析[M].2版.济南:山东科学技术出版社,2001.。

具积分边值条件四阶微分方程解的存在性

具积分边值条件四阶微分方程解的存在性

具积分边值条件四阶微分方程解的存在性宋文晶;高文杰【摘要】运用先验估计、上下解技巧和Leray-Schauder度理论给出了具有积分边值条件四阶微分方程解的存在性.%Making a series of prioriestimates,applying lower and upper solutions techniques and Leray-Schauder degree theory,the authors obtained the existence of the solution for a fourth order differential equation with intergal boundary conditions.【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2013(051)004【总页数】6页(P545-550)【关键词】积分边值条件;四阶微分方程;解的存在性【作者】宋文晶;高文杰【作者单位】吉林财经大学应用数学学院,长春130117;吉林大学数学研究所,长春130012【正文语种】中文【中图分类】O1750 引言与预备知识积分边值问题源于热传导问题[1]、半导体问题[2]及水动力学问题[3],目前已有许多研究结果[4-10].本文基于文献[4-5],研究下列具有积分边值条件的四阶常微分方程解的存在性:(1)其中: f: [0,1]×4→和hi: →(i=1,2)是连续函数;k1,k2≥0;φ(u)是严格增的连续函数,且φ(0)=0,φ()=,=(-∞,+∞).定义1 设函数α,β∈C3([0,1]),φ(α‴(t)),φ(β‴(t))∈C1([0,1]),满足α″(t)≤β″(t),∀t∈[0,1],若下列条件成立,则称β(t),α(t)为问题(1)的一对上下解:1) (φ(α‴(t)))′≥-f(t,α(t),α′(t),α″(t),α‴(t)),(φ(β‴(t)))′≤-f(t,β(t),β′(t),β″(t),β‴(t));2) α(0)≤0,α(1)≤0,α″(0)-k1α‴(0)≤h1(α(s))ds,α″(1)+k2α‴(1)≤h2(α(s))ds;β(0)≥0,β(1)≥0,β″(0)-k1β‴(0)≥h1(β(s))ds,β″(1)+k2β‴(1)≥h2(β(s))ds;3) α′(0)-β′(0)≤min{β(0)-β(1),α(1)-α(0),0}.定义2 令集合D∶={(t,x0,x1,x2,x3)∈[0,1]×4: γi(t)≤xi(t)≤Γi(t),i=0,1,2},其中Γi(t),γi(t): [0,1]→(i=0,1,2)连续,且γi(t)≤Γi(t),i=0,1,2,t∈[0,1].若存在一个正的连续函数Φ: [0,+∞)→[a,+∞),a>0及参数p>1,使得下式成立,则称连续函数f:[0,1]×4→在D上满足Nagumo条件:其中φ-1是φ的逆函数.记ν∶=max{|Γ2(1)-γ2(0)|,|Γ2(0)-γ2(1)|}.引理1 设f: [0,1]×4→是连续函数,在D上满足Nagumo条件,则存在N>0(仅依赖Γ2,γ2和Φ),使得满足γi(t)≤u(i)(t)≤Γi(t)(i=0,1,2)的问题(1)的每个解u(t),都有‖u‴‖∞≤N.证明: 考虑修正问题:(φ(u‴(t)))′+f*(t,u(t),u′(t),u″(t),u‴(t))=0, 0<t<1,其中选择N充分大, 且(4)其中由中值定理知,存在一点t0∈(0,1),使得u‴(t0)=u″(1)-u″(0),从而有-N<-ν≤γ2(1)-Γ2(0)≤u‴(t0)≤Γ2(1)-γ2(0)≤ν<N.记v0=|u‴(t0)|.假设在区间[0,1]上存在一点,使得u‴>N或u‴<-N,则由u‴的连续性知,存在区间[t1,t2]⊂[0,1],且满足下列情形之一:1) u‴(t1)=v0,u‴(t2)=N,v0≤u‴(t)≤N,∀t∈(t1,t2);2) u‴(t1)=N,u‴(t2)=v0,v0≤u‴(t)≤N,∀t∈(t1,t2);3) u‴(t1)=-v0,u‴(t2)=-N,-N≤u‴(t)≤-v0,∀t∈(t1,t2);4) u‴(t1)=-N,u‴(t2)=-v0,-N≤u‴(t)≤-v0,∀t∈(t1,t2).假设1)成立.因为t∈(t1,t2),-N≤v0≤u‴(t)≤N,所以有(φ(u‴(t)))′=-f*(t,u(t),u′(t),u″(t),u‴(t))=-f(t,u(t),u′(t),u″(t),u‴(t)), t∈(t1,t2).由Nagumo条件得,|(φ(u‴(t)))′|=|f(t,u(t),u′(t),u″(t),u‴(t))|≤Φ(|u‴(t)|), t∈(t1,t2),于是有与式(4)矛盾.类似可证明其余3种情况.证毕.引理2 边值问题:(5)仅有平凡解.证明略.1 主要结果假设条件如下:(H1) β(t),α(t)是问题(1)的一对上下解;(H2) f∈C([0,1]×4,),且在D∶=[0,1]×[α(t),β(t)]×[α′(t),β′(t)]×[α″(t),β″(t)]×上满足Nagumo条件,当(t,x2,x3)∈[0,1]×2,(α(t),α′(t))≤(x0,x1)≤(β(t),β′(t))时,f满足f(t,α(t),α′(t),x2,x3)≤f(t,x0,x1,x2,x3)≤f(t,β(t),β′(t),x2,x3),其中(x0,x1)≤(y0,y1),即x0≤y0,x1≤y1;hi: →(i=1,2)是连续的,且(u)≥0(i=1,2); (H3) φ是连续的且严格递增,φ(0)=0,φ()=.定理1 假设条件(H1)~(H3)成立,则问题(1)至少存在一个解u(t),且对任意的t∈[0,1],有α(t)≤u(t)≤β(t),α′(t)≤u′(t)≤β′(t),α″(t)≤u″(t)≤β″(t),|u‴(t)|≤N,这里N 是仅依赖于α,β和Φ的常数.证明: 令δ1,δ2,δ3∈,且δ1≤δ3,定义对于λ∈[0,1],考虑辅助问题:(6)其中Φ(|u‴(t)|)是Nagumo条件定义的,其边值为(7)选取M1>0,使得对任意的t∈[0,1],下列不等式成立:1) 证明对λ∈[0,1],问题(6)-(7)的每个解u(t),都满足|u(t)|<M1,|u′(t)|<M1,|u″(t)|<M1,t∈[0,1].如果λ=0,则由引理2知,结论显然成立.下面考虑λ∈(0,1].假设|u″(t)|<M1不成立,则存在t∈[0,1],使得u″(t)≥M1或u″(t)≤-M1.若u″(t)≥M1成立,则定义(13)① 若t0∈(0,1),则u‴(t0)=0.由f和Φ的连续性及式(10)可知,存在η>0,使得当|y|<η时,有-f(t,β(t),β′(t),β″(t),y)+[M1-η-β″(t)]Φ(|y|)>0.由式(13),存在θ∈(0,min{t0,1-t0}),使得|u‴(t)|<η, u″(t)>M1-η>max{0,β″(t)}, t∈(t0-θ,t0+θ),且存在使得u‴‴对于有这蕴含着φ(u‴‴即u‴‴矛盾.② 若t0=0,则‴(0+)=u‴(0)≤0.由式(7),(11)可得矛盾.③ t0=1的情形同②.因此u″(t)<M1,t∈[0,1].同理可证u″(t)>-M1,t∈[0,1]的情形,故|u″(t)|<M1.由边值条件(7)知,存在一点ξ∈(0,1),使得u′(ξ)=0.经积分运算得2) 证明存在M2>0,使得对于问题(6)-(7)的每个解u(t),都有|u‴(t)|<M2,t∈[0,1],其中M2不依赖于λ.如果u(t)是问题(6)-(7)的一个解,则考虑集合DM1={(t,x0,x1,x2,x3)∈[0,1]×4: -M1≤x0≤M1,-M1≤x1≤M1,-M1≤x2≤M1}.定义函数Fλ: DM1→为由于f在D上满足Nagumo条件,所以有此外,有同理因此,Fλ在DM1上满足Nagumo条件,且不依赖于λ∈[0,1].令Γi(t)=M1,γi(t)=-M1,i=0,1,2,由引理1知,存在M2>0,使得|u‴(t)|<M2,t∈[0,1],且M2不依赖于λ.3) 证明λ=1 时,问题(6)-(7)至少存在一个解u1(t).定义算子M: C3([0,1])∩dom M→C([0,1])×4为Mu=(Φ(u‴(t))′,u(0),u(1),u″(0),u″(1)),Nλ: C3([0,1])→C([0,1])×4为其中:由于M-1是紧的,因此考虑全连续算子Tλ: (C3[0,1],)→(C3[0,1],),Tλ(u)=M-1Nλ(u),集合‴‖∞<M2}.由引理2知,u=T0(u)仅有平凡解,再由同伦不变性得,d(I-T0,Ω,0)=d(I-T1,Ω,0)=±1.因此,方程u=T1(u)在Ω上至少有一个解u1(t).4) 证明函数u1(t)是问题(1)的一个解.只需证明函数u1(t)满足假设存在一点t∈[0,1],使得(t)>β″(t),定义(14)① 若s0∈(0,1),则(s0)=β‴(s0).由f的连续性知,存在γ>0,使得当时,有由式(14)知,存在使得且存在s1,s2,使得(s1)≥β‴(s2)≤β‴于是,对于t∈[s1,s2],有但对于t∈[s1,s2],有矛盾.② 若s0=0,则(0+)-β‴(0)-β‴(0)≤0.由于(0)≤h1(β(s))ds+k1β‴(0)≤β″(0),故s0≠0.③ s0=1 的情形同②,有s0≠1.所以(t)≤β″(t),t∈[0,1].同理可证(t),t∈[0,1].由整理得(s)dsdt.类似可得由定义1,有(0),(0),即(0)≤β′(0).又由(t)是单调不减的,有(0)≥0,即对于(t).同理由β(t)-u1(t)的单调性知,β(t)-u1(t)≥β(0)-u1(0)=β(0)≥0,即对于t∈[0,1],β(t)≥u1(t).同理可证(t)≥α′(t)和u1(t)≥α(t).故u1(t)是问题(1)的一个解.证毕.参考文献【相关文献】[1] Cannon J R.The Solution of the Heat Equation Subject to the Specification of Energy [J].Quart Appl Math,1963,21(2): 155-160.[2] Ionkin N I.Solution of a Boundary Value Problem in Heat Conduction Theory with Nonlocal Boundary Conditions [J].Differential Equations,1977,13: 294-304.[3] Chegis R Y.Numerical Solution of a Heat Conduction Problem with an Integral Boundary Condition [J].Litovsk Mat Sb,1984,24: 209-215.[4] WANG You-yu,GE Wei-gao.Existence of Solutions for a Third Order Differential Equation with Integral Boundary Conditions [J].Comput Math Appl,2007,53(1): 144-154.[5] WANG You-yu,LIU Guo-feng,HU Yin-ping.Existence and Uniqueness of Solutions for a Second Order Differential Equation with Integral Boundary Conditions [J].Appl Math Comput,2010,216(9): 2718-2727.[6] Boucherif A.Second-Order Boundary Value Problems with Integral Boundary Conditions [J].Nonlinear Anal: Theory,Methods &Applications,2009,70(1): 364-371.[7] Ahmad B,Alsaedi A,Alghamdi B S.Analytic Approximation of Solutions of the Forced Duffing Equation with Integral Boundary Conditions [J].Nonlinear Anal Real World Applications,2008,9(4): 1727-1740.[8] SONG Wen-jing,GAO Wen-jie.Existence of Positive Solutions for a System of Second Order Equations with Integral Boundary Conditions [J].Journal of Jilin University: Science Edition,2011,49(3): 363-368.(宋文晶,高文杰.具积分边值条件二阶微分方程组正解的存在性 [J].吉林大学学报: 理学版,2011,49(3): 363-368.)[9] YANG Zhi-lin.Positive Solutions to a System of Second-Order Nonlocal Boundary Value Problems [J].Nonlinear Anal: Theory,Methods &Applications,2005,62(7): 1251-1265. [10] ZHANG Xing-qiu.Existence and Uniqueness of Positive Solution for Fourth-Order Singular Integral Boundary-Value Problems [J].Acta Mathematicae ApplicataeSinica,2010,33(1): 38-50.(张兴秋.奇异四阶积分边值问题正解的存在唯一性 [J].应用数学学报,2010,33(1): 38-50.)。

含导函数Stieltjes积分边界条件下二阶问题的正解

含导函数Stieltjes积分边界条件下二阶问题的正解

应用泛函分析学报Vol.22, No.4Dec., 2020第22卷第4期2020年12月ACTA ANALYSIS FUNCTIONALIS APPLICATA DOI : 10.12012/1009-1327(2020)04-0193-14文献标识码:A含导函数Stieltjes 积分边界条件下二阶问题的正解计倩,张国伟(东北大学理学院数学系,沈阳110819)摘 要 本文研究了一类含导函数Stieltjes 积分边值条件下二阶边值问题的正解.由 于边值条件中带有导数,导致讨论过程与已有文献不同,并且给出相应的格林函数.应 用不动点指数理论证明非线性项/(x,y,z)关于x , y 有超(次)线性增长情形下方程正 解的存在性.通过两个具体例子进行说明理论结果的有效性,例子中边值条件包含积分 型与多点型的形式.关键词 正解;不动点指数;锥中图分类号O175.14; O177.91Positive Solutions for Second Order Problems under Stieltjes Integral Boundary Conditions with DerivativeJI Qian, ZHANG Guowei(Department of Mathematics, College of Science, Northeastern University, Shenyang 110819, China)Abstract In this paper, we study positive solutions for a class of second order prob ­lems under Stieltjes integral boundary conditions with derivative. Due to the derivative in the boundary conditions, the procedure of discussing is different from one in previ ­ous literature, and Green's function corresponding to the problem is given. The fixed point index theory is applied to prove the existence of positive solutions when the non ­linear term /(x, y, z) has superlinear or sublinear growth on x and y. The validity of the theoretical results is illustrated by two concrete examples, in which the boundary conditions include the forms of integral and multi-point types.Keywords positive solution; fixed point index; cone收稿日期:2020-09-13作者简介:计倩(1994-),女辽宁本溪人硕士研究生,研究方向:非线性泛函分析,E-mail: ******************.194应用泛函分析学报第22卷Chinese Library Classification O175.14;O177.911引言近些年来,非线性微分方程边值问题在科学研究和工程技术等领域中都具有重要的应用,并受到诸多学者的广泛关注,取得了许多研究成果二阶非线性常微分方程边值问题的正解存在性及多解性成为一个重要研究领域,文献[3]利用锥上不动点指数方法讨论了边值条件中带有Stieltjes积分的方程—u〃(t)=/(t,u(t),G[0,1],au(0)—bu z(0)=a[u],cu(1)+du'(1)=0[u]正解的存在性,但是在Stieltjes积分中不含未知函数的导数Stieltjes积分中含有未知函数导数的边值问题也有一些研究结果文献[5]研究方程—u''(t)=g(t)f(t,u(t)),t G[0,1],u(0)=a[u],u'(1)=0[u]+入[u']正解的存在性,其中a[u]=/u(t)d A(t),0[u]=/u(t)d B(t),入[u']=/u'(t)dA(t),丿0Jo JoA,B和A为界变差函数但是非线性项函数不含有未知函数的导数受此启发,本文用锥上不动点指数方法讨论如下含导函数Stieltjes积分边界条件下二阶边值问题正解的存在性:—u''(t)=f(t,u(t),u'(t)),t G[0,1],(1)u'(0)=a[u],u(1)=0[u]—A[u'].关于非线性项和Stieltjes积分形式边值条件含未知函数导数的工作可见文献[9,10].本文讨论方程(1)的内容和所使用的方法与[9,10]不相同.2预备知识定义c”0,1]空间的范数为||u||ci=max{||训c,||u'||c}.首先我们假设,(C1)f:[0,1]x R+x R t R+是连续函数其中R+=[0,Q.(C2)A(1)-A(s)、0,V s G[0,1].由于方程⑴边值条件中含有入[u'],类似于[5]中Webb所使用的方法,我们需要给出相应的Green函数.弓|理1在(C i)的条件下,考虑当a[u]=0[u]=0,即—u''(t)=f(t,u(t),u'(t)),t G[0,1],(2)u'(0)=0,u(1)+入[u']=0第4期计倩等:含导函数Stieltjes 积分边界条件下二阶问题的正解195时,⑵在C 1[0,1]中的解由如下定义(Hu )(t ) = / (A(1) — A(s ))f (s,u (s ),u '(s ))d s + [ (t, s )f (s,u (s ),u '(s )) d s丿0丿0:=/ kH (t, s )f (s,u (s ),u '(s ))d s J0的算子H 不动点给出,其中⑶{1 — s, 0 < t < s < 1,1 — t, 0 < s < t < 1,⑷I A (1) — A(s ) + 1 — s, 0 < t < s < 1, k H (t, s )= <(A (1) — A(s ) + 1— t, 0 < s < t < 1.⑸证明 首先,对—u ''(t ) = f (t,u (t ),u '(t ))在[0,t 和[t, 1]求两次积分,并利用 ⑵中的边值条件就可得到(3)式•其次,(Hu )(t ) = / (A(1) — A (s ))f (s,u (s ),u '(s ))d s + [ k o(t, s )f (s,u (s ),u '(s )) d s丿o丿o =[(A(1) — A(s ))f (s,u (s ),u '(s ))d s + [ (1 — t )f (s,u (s ),u '(s ))d s +丿0丿0/ (1 — s)f(s,u(s),u '(s))ds,[f (s, u (s ), u '(s )) d s + (1 — t )f (t, u (t ), u '(t )) — (1 — t )f (t, u (t ), u '(t ))0(Hu)''(t) = —f (t,u(t),u '(t)),显然(Hu )(1) = J 0X (A(1) — A(s ))f (s,u (s ),u '(s ))d s ,而tf (s, u (s ), u '(s )) ds)dA(t )f (s, u (s ), u '(s )) dA(t )d s = f (A (1) — A(s ))f (s, u (s ), u '(s )) d s = (Hu )(1),丿0所以(Hu )''(t ) = —f (t, u (t ), u '(t )), (Hu )'(0) = 0, (Hu )(1) + 入[(Hu )'] = 0•由此可见,u 是 H 不 动点.弓I 理2如果(C 2)满足,则存在非负函数①h (s ) = A(1) — A(s ) + 1 — s,使得V t, s e [0,1]有(1 一 t )① H (s ) < k H (t, s ) < ① H (s ).容易证明在C 1 [0,1]中,BVP(1)有解当且仅当如下的积分方程u (t ) =(t 一 dA(t ) — 1)a [u ] + 0[u ] + (Hu )(t )I f(s,u(s),u '(s))ds,丿0dA(t ) — t) a [u ]-入[(Hu )']f (s, u (s ), u '(s )) d s dA(t )dA(t)) 0[u ] + (Hu )(t ) := (Tu)(t)⑹196应用泛函分析学报第22卷存在解,其中a [u ] = 0[u ] — a [u ]•记2是a [u ]对应的有界变差函数,并且假设(C 3) K a (s ) := / k n (t, s )d A (t ) > 0,K b (s ) := / k n (t, s )d B (t ) > 0, V s G [0,1].丿0 丿0令 y (t ) = 1 — t + fl dA(t ), d (t ) = t — fl dA(t ).再假设(C 4)0 < S [7] < 1,0[y ] > 0, 0 < 0[d ] < 1, a [d ] > 0, D := (1 — d [7])(1 — 0[d ]) — d [J ]0[7] > 0. 定义算子S 如下(Su)(t):=丄 d - dA (t)—t + 人"A") (1 一 00]) / K A (s)f (s,u (s ),u z (s ))d s + 丘0] / K b (s )f (s,u (s ),u z (s ))d s_ 丿0 丿0 .0[Y ] / K A (s )f (s,u (s ),u '(s ))ds + (1 — a[Y ]) / k b (s)f (s,u(s ),u '(s ))ds 一 丿0 丿0 _t + - D+ k n (t, s )f (s,u (s ),u z (s ))d s丿0/ ks (t, s )f (s, u (s ), u z (s )) d s,丿0即(Su )(t ) = / k s (t, s )f (t,u (t ),u '(t ))d s.丿0⑺显然k s (t,s ) =1 — t +D 0 dA(t ) [(1 — 0[d ])K A (s ) + a [d ]K B (s )] +-~『叮人")[0[Y ]K A (s) + (1 — a[Y ])K B (s)] + k n (t, s).由上述条件可以很容易的看出(Su )(t ) > 0.并且dk s (t, s )~dt -=D [(1 — 00])K A (s ) + a[J]K B (s)] + D [0[Y ]K A (s) + (1 — a[Y ])k b (s)]—以仔 s )—1 1< D [(1 — 0[d ])K A(s ) + a [d ]K B(s )] + 万[0[y ]K a (s ) + (1 — S [y ])K b (s )] + 1 :=巫(s ).(8)⑼引理3假设满足(C 2)〜(C 4),则存在非负函数Q(s )和v(t) = min {t, 1—讣使得V t, s G [0,1],v (t )Q(s ) < k s (t, s ) < $(s ),其中 Q(s ) = D [(1 — 0Q ])K a (s ) + &[d ]K B (s )] + D [0[y ]K a (s ) + (1 —殆])恥(s )] + $n (s ).我们定义如下两个锥和三个线性算子:P = {u G C 1[0,1] : u(t) > 0, V t G [0,1]},(10)(L i u )(t )K = {u G P : u (t ) > v(t) ||u||C , V t G [0, 1]},[K s (t, s)(a 2u(s) + C 2)d s, @2,C 2为正常数),(11)(12)第4期计倩等:含导函数Stieltjes 积分边界条件下二阶问题的正解197(13)(14)(02u )(s ) = / K s (t, s )u (t )d t, u G C [0,1],Jo (L g u )(t ) = f K s (t, s )u (s )d s, u G C [0,1].JoV x,y G X ,若x — y G P ,记为x A y 或者y Y x ,称为由锥P 导出的半序.弓I 理4假设(C i )〜(4)都成立,那么S : P t K 和L i : C [0,1] t C [0,1]均是全连续算 子并且 L i (P ) U K, (i =1, 2, 3).证明 当(7), (8)和(C i )〜(C 4)都成立,则当u G P 时,有(Su )(t ) > 0.由(C i )条件可 以得到S : P T C i [0,1]是连续的算子取锥P 上的有界集合F ,则存在一个数M > 0,使得 ||训。

脉冲型积分微分方程的边值问题

脉冲型积分微分方程的边值问题

脉冲型积分微分方程的边值问题
吴兆荣;朱丽芹
【期刊名称】《辽宁师范大学学报:自然科学版》
【年(卷),期】1998(021)004
【摘要】研究了脉冲型非线性积分微分方程的边值问题,证明了解的存在性,并对脉冲型经典Sturm边值问题给出了求解方法。

【总页数】5页(P268-272)
【作者】吴兆荣;朱丽芹
【作者单位】济南大学数学系;济南大学数学系
【正文语种】中文
【中图分类】O175.6
【相关文献】
1.一阶脉冲时滞积分微分方程边值问题 [J], 张林丽;刘安平;马晴霞;樊瑞利
2.Banach空间中一类二阶脉冲积分微分方程多点边值问题 [J], 饶显波;韦煜明
3.n阶无穷区间上脉冲积分微分方程边值问题正解的存在性 [J], 尹奇峰
4.二阶脉冲时滞积分微分方程反周期边值问题 [J], 张林丽;刘安平;肖莉
5.二阶脉冲积分微分方程边值问题解的存在性 [J], 刘伟;王岩岩
因版权原因,仅展示原文概要,查看原文内容请购买。

非线性微分方程积分边值问题的研究

非线性微分方程积分边值问题的研究

非线性微分方程积分边值问题的研究随着现代社会和经济的发展,科学技术也在快速发展。

特别是在数学方面,研究者们不断探索和应用新的数学模型和方法,以更好地解决实际问题。

其中,非线性微分方程积分边值问题的研究在科学研究领域中占有重要地位,也是推动科学发展的重要力量。

非线性微分方程积分边值问题是一类具有重要意义的问题,它指的是在某种条件下,用积分方法解决非线性微分方程的问题。

非线性微分方程积分边值问题的解决方案包括定性分析和定量分析两个层面。

定性分析是指给出非线性微分方程积分边值问题的解的存在性,可行性,有界性,稳定性,连续性等的定性性质;而定量分析是指给出非线性微分方程积分边值问题的数值解。

非线性微分方程积分边值问题是一个复杂而又具有挑战性的科学研究课题,其在实际应用中有着重要意义,它主要用于求解物理学、化学、生物学和数学模型等方面的问题。

例如,非线性微分方程积分边值问题可以用于二维涡流问题、非线性振动系统问题、轮船航迹规划问题、流体动力学问题等的解决。

近年来,随着科学技术的进步,非线性微分方程积分边值问题的研究也取得了突破性的进展。

运用不同的数学方法,如分解的算法,差分的算法,广义的梯度算法,和积分与最优化算法,已经有效地解决了一些非线性微分方程积分边值问题。

有关研究表明,给定参数条件下,非线性微分方程积分边值问题的解决方案具有鲁棒性,且能够有效地降低计算时间。

然而,非线性微分方程积分边值问题的研究还存在许多技术上的挑战。

首先,非线性微分方程通常具有复杂的几何结构,而目前的解法无法有效解决这类复杂几何结构问题。

同时,由于非线性微分方程具有非常复杂的数学表示,因此仅仅利用现有数学理论和方法是不够的,还需要开发新的理论和方法来突破技术上的障碍。

此外,非线性微分方程积分边值问题还面临着另外一个重要挑战,即如何有效地将既定的非线性微分方程积分边值问题与现实问题进行联系,并有效地将理论模型转化为实际问题,使其能够得到实际应用。

一类高分数阶微分方程的积分边值问题的正解

一类高分数阶微分方程的积分边值问题的正解

一类高分数阶微分方程的积分边值问题的正解张海燕;李耀红【摘要】本文利用锥拉伸和压缩不动点定理研究了一类高分数阶微分方程的积分边值问题,获得了相应的格林函数及其性质,同时将该问题转化为等价的积分算子方程,结合全连续算子的性质,在超线性和次线性条件下给出了方程至少有一个和至少有两个正解的充分条件.【期刊名称】《四川大学学报(自然科学版)》【年(卷),期】2016(053)003【总页数】6页(P512-517)【关键词】正解;积分边值问题;分数阶微分方程;不动点定理【作者】张海燕;李耀红【作者单位】宿州学院数学与统计学院,宿州 234000;宿州学院数学与统计学院,宿州 234000【正文语种】中文【中图分类】O177.91近年来,分数阶微积分理论和建模方法在复杂黏弹性材料力学、生物医学、系统控制、反常扩散、流变学等诸多领域显示出独特优势,其理论和应用研究在国内外已成为一个热点[1-3].本文考虑如下非线性高分数阶微分方程积分边值问题(FBVP):其中为Caputo型分数阶导数,为Riemann-Liouville分数阶积分,f∈C([0,1]×R+×Rn-2,R+),0<ρ<Γ(n+β).高分数阶微分方程由于更具一般性,也广受关注(见文献[4-9]及其参考文献).特别地,在两点边值条件为u(0)=u′(0)=u‴(0)=…=u(n-2)(0)=u″(1)=0情形下,文献[4]利用不动点指数理论获得了FBVP(1)正解的存在性和不存在性条件,文献[5]则利用锥拉伸和压缩不动点定理改进了上述结果.文献[6]在两点边值条件为u(0)=u′(0)=…=u(n-2)(0)=u(n-2)(1)=0的情形下利用混合单调算子理论获得了FBVP(1)唯一正解的存在性.文献[7]将上述条件中u(n-2)(1)改进为Duα(1),在非线性满足一定增长性条件下利用锥理论技巧获得了FBVP(1)解的存在性;而文献[8,9]则在一定积分条件下利用不动点定理获得了一类分数阶微分方程组正解的存在性.受上述文献启发,本文研究FBVP问题(1)正解的存在性. 通过分析该问题相应Green函数性质构造一个新的锥,利用锥拉伸和压缩不动点定理,获得了问题正解的存在性条件. 值得注意的是,本文研究的两点边值问题不同于文献[4~9]: 首先,问题中非线性项含有未知函数的各阶导数项(这在应用上是很方便的),而文献[4,5,7~9]中非线性项为f(t,u)不含未知函数的导数项;其次,问题中的Riemann-Liouville 分数阶积分边值条件更具有一般性,涵盖了一般的多点边值条件和文献[8,9]中积分边值条件.定义2.1 函数g:(0,+∞)→R的α>0阶Riemann-Liouville分数阶积分定义为s.定义2.2 连续函数g:(0,+∞)→R的α>0阶Caputo分数阶导数定义为,引理2.3[1] 若函数g∈Cn(0,1)∩L1[0,1]且α>0,则分数阶微分方程有解g(t)=c1+c2t+…+cntn-1,c i∈R,i=1,2,…,n,引理2.4[1] 若函数g∈L1([0,1],R)且p>q>0,则对任意t∈[0,1],有引理2.5[10] 假设E是Banach空间,P为E中的锥,Ω1,Ω2为E中的两个开集,且满足⊂Ω2. 又设算子Ω1)→P是全连续的.若下面条件之一满足:,;,,为方便,记Yα={u|u∈C([0,1],R)且}.引理3.1 令n-1<α≤n,0<ρ<Γ(n+β)且y(t)∈C[0,1],则分数阶微分方程G(t,s)=证明根据(2)式中第一个等式,利用引理2.3可知.则由(2)式中边值条件u(i)(0)=0,0≤i≤n-2,可知ck=0,1≤k≤n-1.于是有注意到tγ+α,由条件,利用引理2.4计算知).则由(5)式可得u(t)=s.注1 当0≤k≤n-2时,引理3.2 由(4)′式定义的函数满足:且;;⊂(0,1).证明由(4)′式定义易知1)成立. 2)和3)证明类似,下面仅证3):当0<ξ1≤s≤t≤ξ2<1时,有当0<ξ1≤t≤s≤ξ2<1时,有记X={u|u∈Cn([0,1],R)},则X在范数下是一个Banach空间. 定义算子T:X→X如下:,u(n-2)(s))ds这里G(t,s)由(4)式定义. 由引理3.1及证明过程及(6)式,易证如下引理.引理3.3 若f∈C([0,1]×R+×Rn-2,R+),则u为FBVP(1)在Yα中的解,当且仅当u 为Tu=u在X中的不动点.注2 若u满足FBVP(1)且u(t)>0,∀t∈[0,1],则称u为FBVP(1)的正解.引理3.4 若u∈Yα是FBVP(1)的一个正解,则它满足,证明若u∈Yα是FBVP(1)的一个正解,由引理3.3可知,u(n-2)(s))ds.,,u(n-2)(s))ds,,u(n-2)(s))ds,,引理3.5 算子T:K→K是全连续的.证明先证算子T:K→K.由于G(t,s)≥0,f≥0,∀t,s∈[0,1],易知Tu(t)≥0,∀t∈[0,1].∀u∈K,类似于引理3.4中(7)~(9)式证明可知.下面接着证明算子T是全连续的. 由于函数G,f都是连续的,故算子T也是连续的.令是K中的有界集.记M=max{f(t,u(t),u′(t),…,u(n-2)(t)):0≤t≤1,u∈Br}. 首先,对任意的u∈Br,由(6)式和引理5知,M.|(Tu)(k)(t2)-(Tu)(k)(t1)|≤)..为了方便,引入如下记号:,定理3.6 若f∞∈[0,r)且f0∈(R,+∞],则FBVP(1)在K中至少有一个正解.证明:由引理3.3知,只需证明算子T在K中至少有一个不动.依假设f∞∈[0,r),则存在足够大的μ1>0以及一个充分小的ε1>0,使得f(t,u0,u1,…,un-2)≤,∀t∈[0,1],.,∀u∈∂Ω1∩K,∀,,∀u∈∂Ω2∩K.定理3.7 若f0∈[0,r)且f∞∈(R,+∞],则FBVP(1)在MYMKMYM中至少有一个正解.证明证明方法与定理3.6类似,此处省略.推论3.8 若f∞=0,f0=+∞或 ,则FBVP(1)在K中至少有一个正解.定理3.9 若f0,f∞∈(R,+∞]且存在ρ>0,使得f(t,u0,u1,…,un-2)≤r-1ρ,∀t∈[0,1],u∈∂Ωρ,其中则FBVP(1)在K中至少有两个正解.证明由引理3.3知,仅需证明算子T在K中至少有两个不动点. 依假设f0∈(R,+∞],则存在充分小的ρ1∈(0,ρ),以及一个充分小的ε3>0,使得,∀,∀u∈∂Ω3∩K,∀,∀u∈∂Ω4∩K,,∀u∈∂Ωρ∩K由(14)~(16)式,结合引理3.5和引理2.5可知, 算子T分别在上至少有一个不动点,即FBVP(1)在K中至少有两个个正解.推论3.8 若f0=f∞=+∞且存在存在ρ>0,使得f(t,u0,u1,…,un-2)≤r-1ρ,∀t∈[0,1],u∈∂Ωρ,其中,则FBVP(1)在K中至少有两个正解.注推论3.8和推论3.10在应用上是方便的和广泛的,下面给出两个例子说明. 例3.11 考虑下列非线性FBVP(17)例3.12 考虑下列非线性FBVP(18)。

非线性分数阶微分方程奇异边值问题的唯一解

非线性分数阶微分方程奇异边值问题的唯一解

非线性分数阶微分方程奇异边值问题的唯一解于瑶【摘要】Green's function and its properties for the nonlinear fractional differential equation boundary value problem Dα0+u(t) +f(t,u(t) ) = 0,0 <t <1;u(0) =u(l) =u'(0) =0, is considered where 2 <α≤3 is a real number, and Dα0+ is the standard Riemann-Liouville differentiation. As an application of Green's function and its properties, uniqueness of solution is given for the singular boundary value problem by means of a fixed-point theorem on cones and a mixed monotone method. One concrete example is respectively given to explain the above theorem finally.%研究了非线性分数阶微分方程边值问题Dα0+u(t) +f(t,u(t))=0,0<t<1;u(0)=u(1)=u'(0)=0,的Green函数及其性质,其中2 <α≤3是实数,Dα0+是标准Riemann-Liouville型微分,并利用锥不动点定理和混合单调方法证明了奇异边值问题解的唯一性.最后举例加以说明.【期刊名称】《科学技术与工程》【年(卷),期】2011(000)026【总页数】5页(P6253-6257)【关键词】分数阶微分方程;奇异边值问题;唯一解;分数阶格林函数;不动点定理【作者】于瑶【作者单位】大连教育学院,大连116021【正文语种】中文【中图分类】O175.8近些年来,分数阶微分方程已经成为国内外研究的一个热点,受到人们越来越多的关注和研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档