假设检验ppt课件

合集下载

《单总体假设检验》课件

《单总体假设检验》课件
挑战
尽管假设检验在许多领域已经得到了广泛应用,但仍存在一些挑战和问题需要解 决。例如,如何处理小样本数据、如何处理异常值和离群点、如何处理多总体和 复杂数据结构等。这些问题需要进一步的理论和实践研究。
感谢您的观看
THANKS
03
在选择检验方法时需要 考虑数据的性质和特点 ,选择合适的非参数检 验方法
04
在应用非参数检验时需 要注意其适用范围和限 制条件,避免误用和滥 用
04 假设检验的误用与防止
假设检验误用的类型
01
类型Ⅰ错误(也称为“弃真”错 误):当原假设为假时,错误地 接受原假设。
02
类型Ⅱ错误(也称为“取伪”错 误):当原假设为真时,错误地 拒绝原假设。
应用领域
假设检验被广泛应用于各种科学实验和实际应用中,例如医学研究、质量控制 、市场调研等。通过合理的假设检验,可以更准确地认识总体,为决策提供科 学依据。
未来研究方向和挑战
研究方向
随着科学技术的发展,假设检验的理论和方法也在不断进步。未来的研究可以进 一步探讨如何提高假设检验的准确性和可靠性,以及如何处理更复杂的数据和问 题。
假设检验误用的原因
样本量不足
样本量太小,无法准确反映总体特性。
数据解读错误
对统计数据的误解或误用,导致错误的结论 。
抽样误差
由于随机抽样导致的误差,可能影响假设检 验的准确性。
假设检验方法选择不当
使用了不合适的假设检验方法,导致错误的 结论。
防止假设检验误用的方法
明确研究目的
在开始假设检验之前,明确研 究目的和假设,确保研究问题
清晰。
合理选择样本量
根据研究目的和资源,选择足 够的样本量。
正确解读数据

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

假设检验PPT课件

假设检验PPT课件
每隔一定时间,抽查若干罐 . 如每隔1小时, 抽查5罐,得5个容量的值X1,…,X5,根 据这些值来判断生产是否正常.
方法: 事先对生产状况提出一个假设,然后利用 样本统计量的值检验提出的假设是否正确。
.
6
二、两类假设
(一)原假设(null hypothesis ),又称零假设,指检验前对总体 参数值所做的假设。一般为研究者想收集证据予以反对的假设。
假设检验
统计推断
假设检验 参数估计
常见的假设检验有:
一样个本平均数的检验 两个样本平均数的检验
频率检验 方差检验
.
在总体理论分布和小概率原理的 基础上,通过提出假设、确定显 著水平、计算统计数、做出推断 等步骤来完成在一定概率意义上 的推断。会出现两类错误。
参数估计又分为区间估计和点估 计,与假设检验比较,二者主要 是表示结果的形式不同,其本质 是一样的。
如果H0不成立,但统计量的 实测值未落入否定域,从而没有
作出否定H0的结论,即接受了错 误的H0,那就犯了“以假为真” 的错误 .
请看下表
.
19
假设检验中的两类错误
(决策结果)
H : 无罪 假设检验就好像一场审判过程 0
统计检验过程
.
20
两类错误的关系
a/2
a/2 H0 真
60 62.5 65 67.5 70 72.5 75
.
3
本章讨论参数假设检验 . 一个质量检验例子:
.
4
罐装可乐的容量按标准应在 350毫升和360毫升之间.
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢?
把每一罐都打开倒入量杯, 看看容量是否合于标准.

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

假设检验PPT课件

假设检验PPT课件
假设检验
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?

假设检验《统计学原理》课件

假设检验《统计学原理》课件
图b
X=X1>X0
H0为伪
从上图可以看出,如果临界值沿水平方向右移,α将变小而β变大,即若减小 α错误,就会增大犯β错误的机会;如果临界值沿水平方向左移,α将变大而 β变小,即若减小β错误,也会增大犯α错误的机会,
a 错误和 错误的关系
在样本容量n一定的情况下,假设检验不能同时做到犯α和 β两类错误的概率都很小,若减小α错误,就会增大犯β错误 的机会;若减小β错误,也会增大犯α错误的机会,要使α和 β同时变小只有增大样本容量,但样本容量增加要受人力、 经费、时间等很多因素的限制,无限制增加样本容量就会 使抽样调查失去意义,因此假设检验需要慎重考虑对两类 错误进行控制的问题,
参数假设检验举例
例2:某公司进口一批钢筋,根据要求,钢筋的 平均拉力强度不能低于2000克,而供货商强 调其产品的平均拉力强度已达到了这一要 求,这时需要进口商对供货商的说法是否真 实作出判断,进口商可以先假设该批钢筋的 平均拉力强度不低于2000克,然后用样本的 平均拉力强度来检验假设是否正确,这也是 一个关于总体均值的假设检验问题,
假设检验的两类错误
正确决策和犯错误的概率可以归纳为下表:
假设检验中各种可能结果的概率
H0 为真
接受H0
1-α 正确决策
拒绝H0,接受H1
α 弃真错误
H0 为伪
β 取伪错误
1-β 正确决策
•假设检验两类错误关系的图示
以单侧上限检验为例,设H0 :X≤X0 , H1:X>X0
图a X≤X0 H0为真
a
H0值
样本统计量 临界值
观察到 的样本 统计量
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误, 假设检验是依据样本提供的信息进行判断,有犯错误的可 能,所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真而 拒绝了,犯这种错误的概率用α表示,也称作α错误 αerror 或弃真错误, 第二类错误是原假设H0不为真时,检验结果把它当成真而 接受了,犯这种错误的概率用β表示,也称作β错误 βerror 或取伪错误,

04_05假设检验-医学课件

04_05假设检验-医学课件

例4.4:
μ0 =4.6(mmol/L)
?=
μ
n=25 X 5.1(mmol / L) S 0.88(mmol / L)
已知总体
未知总体
手头样本
例4.4:
X05.14.60.5
手头样本对应的未知总体均数μ等于已知总体均 数μ0,差别仅仅是由于抽样误差所致
除抽样误差外,样本所来自的未知总体与已知 总体不同,存在本质差异
碰巧猜对吗?
一个统计学故事
假设:她没有这个本事,是碰巧猜对的! 连续猜对8个杯子的可能性 P 是多少? P=0.58=0.00390625 你认为原假设 H0 成立吗?
推断结论她真的有这个本事! (不是碰巧猜对的。)
依据:小概率原理。 P ≤ 0.05为小概率。
做个实验
总体A是100例正常成年男子血红蛋白(g/L,以
t X 0
sn
n1
统计量t表示,在标准误的尺度下,样本均数与总体均
数0的偏离。这种偏离称为标准t离差。
根据抽样误差理论,在H0假设前提下,统计 量t服从自由度为n-1的t分布,即t值在0的附近 的可能性大,远离0的可能性小,离0越远可能 性越小。
t值越小,越利于H0假设 t值越大,越不利于H0假设
假设检验(Hypothesis Test)
------ 统计推断内容之一
Outline
基本思想 基本步骤 均数的假设检验 假设检验中几个基本概念 假设检验中几个值得注意的问题
一个统计学实验
一位常饮牛奶加茶的女士声称,她能辨别先倒 进杯子里的是茶还是牛奶ຫໍສະໝຸດ 对此做了8次试验, 她都正确地说出了。
4.317 4.029 3.833 3.690 3.581

第六章--假设检验基础课件

第六章--假设检验基础课件
两样本所属总体方差相等且两总体均为正态分布
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效

假设检验完整版PPT课件

假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0

0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0

1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0

1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、假设检验的相关概念
1. 两类错误
(1) 当原假设 H0 真,, 而作出了不接受 H0 的判 断, 称做第一类错误, 又叫弃真错误, (2) 当原假设 H0 不真,, 而作出了接受 H0 的判 断, 称做第二类错误, 又叫取伪错误,
2. 显著性水平
, 由 P{ H0 为真拒绝 H0 }
3. 检验统计量
F
S12 S22
t D0 SD / n
备择假设 H1
拒绝域
2
2 0
2
2 0
2
2 0
2 1
2 2
2 1
2 2
2 1
2 2
2
2 1-
(n
1)
2 2 (n 1)
2
2 1-
/
ቤተ መጻሕፍቲ ባይዱ
2
(n
1)或
2 2 / 2 (n 1)
F F1- (n1 1, n2 1) F F (n1 1, n2 1) F F1- / 2 (n1 1, n2 1)或 F F/ 2 (n1 1, n2 1)
10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度服从正态分布, 且标准差没有变 化, 试问该机工作是否正常? ( 0.1)
解 因为 X ~ N(, 2 ), 0.15, 要检验假设
H0 : 10.5, H1 : 10.5,
n 15, x 10.48, /2 0.05,
解 依题意需检验假设
H0 : 0 225, H1 : 225, 取 0.05, n 16, x 241.5, s 98.7259,
称为右边检验.
形如 H0 : 0 , H1 : 0 的假设检验
称为左边检验.
右边检验与左边检验统称为单边检验.
5. 拒绝域与临界点
当检验统计量取某个区域C中的值时, 我们 拒绝原假设H0, 则称区域C为拒绝域, 拒绝域的边 界点称为临界点.
三、假设检验的一般步骤
已知显著性水平 以及样本容量 n ;
1. 根据实际问题的要求, 提出原假设 H0 及备择 假设 H1 ; 2. 确定检验统计量以及拒绝域形式;
按 P{ H0 为真拒绝 H0 } 求出拒绝域;
3. 计算样本观察值对应的统计量值,若落在拒绝域则拒绝H0, 否则接受H0.
正态总体均值、方差的检验法见下表
原假设 H 0
0
1
0 0
假设检验
一、假设检验的基本原理 二、假设检验的相关概念 三、假设检验的一般步骤 四、典型例题 五、小结
一、假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
又如, 对于正态总体提出数学期望等于 0 的
t分布表
查表得
t1-/2 (n 1) t0.975(14) 2.1448 t 0.327,
故接受 H0, 认为金属棒的平均长度无显著变化.
例3 某种电子元件的寿命X(以小时计)服从正态
分布, , 2 均为未知. 现测得16只元件的寿命如
下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)?
假设等. 假设检验就是根据样本对所提出的假设作
出判断: 是接受, 还是拒绝.
假设检验问题是统计推断的另一类重要问题.
如何利用样本值对一个具体的假设进行检验? 通常借助于直观分析和理
论分析相结合的做法,其基本原 理就是人们在实际问题中经常 采用的所谓实际推断原理:“一 个小概率事件在一次试验中几 乎是不可能发生的”.
化? ( 0.05) 解 依题意 X ~ N (, 2 ), , 2均为未知,
要检验假设 H0 : 10.5, H1 : 10.5, n 15, x 10.48, 0.05, s 0.237,
t x 0 10.48 10.5 0.327,
s / n 0.237 / 15
(n1
1)S12 (n2 n1 n2 2
2)S
2 2
备择假设 H1
0 0 0
0 0 0
0 0 0
拒绝域
z z1- z z1- z z1- / 2
t t1- (n 1) t t1- (n 1) t t1-/ 2 (n 1)
z z1- z z1- z z1- / 2
则 x 0 10.48 10.5 0.516, / n 0.15/ 15
查表得 z1-0.05 1.645,
于是
x 0 / n
0.516 z0.95 1.645,
故接受 H0, 认为该机工作正常.
例2 如果在例1中只假定切割的长度服从正态分 布, 问该机切割的金属棒的平均长度有无显著变
( 2已知)
0
2
0 0
( 2未知)
1 2
3
1 2 1 2
(
2 1
,
22已知)
检验统计量
Z X 0 / n
t X 0 S/ n
Z X Y
2 1
2 2
n1 n2
1 2
t X Y
4
1 2
1 2
(
2 1
2 2
2未知)
Sw
11 n1 n2
S
2 w
0 0 0
t t1- (n1 n2 2) t t1- (n1 n2 2) t t1-/ 2 (n1 n2 1)
原假设H0 检验统计量
2
2 0
5
2
2 0
2
2 0
(未知)
2
(n
1)S
2 0
2
6 7
2 1
2 2
2 1
2 2
2 1
2 2
(1
,

2
知)
D 0 D 0 D 0 (成对数据)
D 0 D 0 D 0
t t1- (n 1) t t1- (n 1) t t1-/ 2 (n 1)
例1 某切割机在正常工作时, 切割每段金属棒的 平均长度为10.5cm, 标准差是0.15cm, 今从一批产 品中随机的抽取15段进行测量, 其结果如下: 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2
统计量 Z X 0 称为检验统计量. / n
4. 原假设与备择假设
假设检验问题通常叙述为: 在显著性水平下, 检验假设 H0 : 0, H1 : 0.
或称为“在显著性水平下,针对 H1检验 H0”.
H0称为原假设或零假设, H1 称为备择假设.
右边检验与左边检验
形如 H0 : 0 , H1 : 0 的假设检验
相关文档
最新文档