生理学PPT 细胞生物电现象[可修改版ppt]

合集下载

生理学 细胞的生物电现象与兴奋性 ppt课件

生理学 细胞的生物电现象与兴奋性  ppt课件

+35 0
锋电位
mV
-55
负后电位
刺激伪迹
-70
后电位
时间( ms) ppt课件
正后电位
动 作 电 位 的 波 形 及 组 成
12
ppt课件 神经纤维动作电位示意图
13
动作电位的特点
• “全”或“无”;不减衰;不重叠。
“全”
Ap的幅度不随有效刺激强度的 增强而增大
膜各部分的极化状态一致,则Ap 在传导过程中不衰减
第三节 细胞的生物电现象与 兴奋性
一、 细胞的生物电现象及其产生机制 二 、细胞的兴奋和兴奋性
ppt课件
1
一、细胞的生物电现象及其产生机制
(一)两个重要的细胞生物电现象
• 生物电现象及历史(Galvani)。 • 细胞在安静或活动时,都有生物电现象。 • 采用微电极技术对细胞内电位变化进行研 究。 • 方法:细胞水平研究。 • 材料:微电极、电位仪、枪乌贼大神经。
2. 动作电位在不同细胞之间的传递
(1)动作电位通过缝隙连接的传递
心肌和平滑肌的细胞间存在缝隙连接。 由6个称为连接子的单体蛋白形成同源六聚体。
(2)动作电位通过神经突触或神经-肌接头 的传递(化学性传递) 42 ppt课件
二、细胞的兴奋和兴奋性
(一)细胞的兴奋和可兴奋细胞
传统生理学将细胞或组织对刺激发生的反应 称为兴奋(excitation)。 在现代生理学中,兴奋被看作是动作电位的 同义语或动作电位产生的过程。 凡是受刺激后能产生动作电位的细胞,称为 可兴奋细胞。神经细胞、肌细胞和腺细胞都 属于可兴奋细胞。
Ca2+进入末梢
2
Na+内流*、K+外流 后膜去极化(终板电位,局部兴奋)

第三讲 细胞的生物电现象[可修改版ppt]

第三讲 细胞的生物电现象[可修改版ppt]
问题2: 由于Ap可多方向、不衰减传导,这样是否会引
起信号“永无休止”的自激与振荡?
有髓神经纤维的跳跃式传导也是局部电流 的原理,所不同的是局部电流只能在发生兴 奋的朗飞结与邻旁安静的朗飞结之间形成, 动作电位只能在朗飞结处产生。
第三节 细胞的生物电现象
(二)电紧张电位与局部反应
1、电紧张电位:随着距原点距离的增加而逐渐衰 减。
膜本身的电学特性相当于并联的阻容耦合电路,跨膜 电流流过时必然产生膜电位变化,随着跨膜电流的逐 渐衰减,膜电位也逐渐衰减,并形成一个规律的膜电 位分布,注入电流处的膜电位最大,其周围一定距离 外的膜电位将作为距离的指数函数而衰减,这种由膜 的被动电学特性决定其空间分布的膜电位称为电紧张 电位。
河豚毒
钠通道的失活和膜电位的复极
Na通道的开放主要出现在去极化开 始后的几毫秒之内,之后通道开放的 概率几乎降至零,即失活。只有当去 极化消除,通道才能解除失活而进入 功能恢复的备用状态。
中山大学生命科学学院-项辉-2013
第三节 细胞的生物电现象
三、动作电位的引起和传导
(一)阈电位 (二)电紧张电位与局部反应 (三)动作电位的传导 (四)缝隙连接 (五)神经干的复合动作电位
(三)动作电位的传导
传导是指兴奋在同一细胞上传播 的过程。亦称动作电位的扩布。
Hale Waihona Puke 兴奋在同一细胞上的传导机制
(Action potential conduction)
兴奋在同一细胞上的传导机制是兴奋部位和安静部 位之间的局部电流构成对安静部位的有效刺激。这 一机制是可兴奋细胞(包括骨骼肌、心肌和神经细胞 的无髓神经纤维等)兴奋传导的共同原理。
第三节 细胞的生物电现象
一、静息电位及其产生机制

细胞生物电现象ppt课件

细胞生物电现象ppt课件

2、刺激时间
基强度:在刺 激作用时间足够条 件下,引起兴奋的
最小刺激强度,
利用时:基强 度条件下引起细 胞兴奋所需要的 最短作用时间。
时 值:二 倍基强度条件下 的利用时。
可兴奋组织的强度-时间曲线
3、刺激时间—强度变化率
变化率快:以最短时间达到阈值。 (AP容易发生)
变化率慢:以缓慢速度达到阈值。 (AP不容易发生)
二、兴奋的引起和兴奋在同一细胞上的传导
(一)刺激引起兴奋的条件
◎刺激强度。 ◎刺激持续时间。 ◎刺激的时间-强度变化率。
1、刺激强度
阈 值:引起组织与细胞兴奋的最小刺激强度。 阈刺激:=阈值的刺激强度
阈上刺激:>阈刺激(阈值) 阈下刺激:<阈刺激(阈值)
意义:是衡量某一 组织与细胞兴奋性高低的 客观指标。
形成局部电流
膜内:兴奋部位相邻的静息部位的电位上升 膜外:兴奋部位相邻的静息部位的电位下降
去极化达到阈电位,触发邻近静息部位膜爆发AP
无髓鞘神经纤维
近距离局部电流,动作电位沿膜依次产生。
2、有髓鞘神经纤维 跳跃式局部电流(跳跃传导),动作电位只在朗
飞氏结处产生。
第三节 骨骼肌的收缩功能
骨骼肌的收缩是神经冲 动传到末梢时,兴奋经神 经-骨骼肌接头传递给肌 肉,引起肌肉的兴奋和收 缩。
后电位:AP复极到RP水平前呈 现时间较长、波动较小
的 电位变化过程。
包 括:负后电位和正后电位。
锋电位:特指神经纤维AP波形。
(二)生物电现象的产生机制(掌握)
1、静息电位 1)产生条件:
静息状态下膜内外离子分布不同 ——构成离子扩散动力
静息状态下膜对离子通透性不同 ——决定何种离子扩散

生理学——细胞的生物电现象 ppt课件

生理学——细胞的生物电现象 ppt课件

一、生物电现象的记录
Recording biological activity (一)细胞外记录
(二)细胞内记录
二、神经和骨骼肌细胞的生物电现象
(一)单一细胞的跨膜静息电位和动作电位
1.静息电位(resting potential)
细胞未受刺激时存在于细胞膜两侧的电位 差。一般为内负外正。
mV
0
-70
transmembrane resting potential resting potential membrane potential mV
0
-70
+
极化: 把静息电位时膜两侧所保持的内负 外正状态,称膜的极化。
超极化: 静息电位的数值向膜内负值加大 的方向变化的过程。
去(除)极化: 静息电位的数值向膜内负值减少 的方向变化的过程。
★ 负后电位(去极化后电位):锋电位后 的下降支到达静息电位之前所经历的微小 而缓慢的电位波动。
★ 正后电位(超极化后电位):锋电位后 的下降支到达静息电位之后所经历的微小 而缓慢的电位波动。
动作电位的“全或无”现象
同一细胞上动作电位大小不随刺激强度和传 导距离而改变的现象,称“全或无”现象。
而这两种离子通过膜结构中的电压门控性K+通道和 Na+通道的易化扩散,是形成神经和骨骼肌细胞静息 电位和动作电位的直接原因。
1.静息电位的产生机制(Bernstein学说)
(1)细胞内外K+的不均匀分布,胞内K+高,并 且安静状态下细胞膜主要对K+有通透性。 (2) 促进K+外流的驱动力和阻止K+外流的阻 力达到平衡—K+平衡电位(Nernst 公式)
only

第二章第三节 细胞的生物电现象PPT课件

第二章第三节  细胞的生物电现象PPT课件
22
23
24
25
3.离子通道的活动
The activity of ion channel:(H-H model)
resting state : m gate is close and h gate is open; active state: bother all open; inactive state: m gate is open and h gate is close. Recovery:the process of ion channel change
(负后电位)
后电位
➢ 超极化后电位
(正后电位)
16
(二) 动作电位形成机制
17
18
1.电化学驱动力
膜对Na+、K+的驱动力: Em-ENa= -70mV- (+60mV)=-130mV Em-EK= -70mV-(-90mV)=+20mV 膜对Na+的驱动力>K+ 负号表示驱动力的方向是向内,正号
Na+通道失活: 在去极化开始后的几个毫秒内 开放(激活), 随后就失活。
K+通道的开放: 膜去极化时被激活, 在Na+ 通道失活 时开放,K+外流,膜电位复极
Na+通道的失活和K+通道的激活构成锋电位的 下降支
29
后电位的形成机制: Na+-K+泵的主动转运
30
(三)动作电位的特点
1、不衰减性传导 2 、“全或无”现象 3 、存在不应期 (绝对不应期和相对不应期)
13
二、动作电位及其产生机制
(一)动作电位(action potential) 细胞受到一个适当的刺激, 在原

细胞的生物电活动PPT课件

细胞的生物电活动PPT课件

生理学(第9版)
如何证实Na+学说?
(1)测定超射值(与ENa接近) (2)Na+离子取代
(用葡萄糖或氯化胆碱替代胞外的NaCl) (3)放射性核素24Na+定量研究 (4)直接测定细胞膜对离子的通透性(膜电导)
生理学(第9版)
如何测定膜电导?
测定原理——欧姆定律
IX = GX · (Em-EX) GX = IX / (Em-EX)
此PPT下载后可自行编辑修改
细胞的生物电活动
医者人之司命,如大将提兵,必谋定而后战。
开始啦!请将手机调成静音,如有疑问可以随时打断我!
生理学(第9版)
一、静息电位(resting potential, RP)
(一)静息电位的概念
细胞在安静状态下存在于细胞膜内、外两侧的电位差 当细胞外液为 0 电位时: ➢ 骨骼肌细胞内:约-90 mV ➢ 神经纤维内:-70~-90 mV ➢ 平滑肌细胞内:-50~-60 mV ➢ 红细胞内:-10 mV
➢ 膜对离子的通透性(膜电导)
生理学(第9版)
1.电化学驱动力——决定离子流动的方向和速度
概念:是浓度差和电位差两个驱动力的代数和,大小等于膜电位(Em)与离子平衡电 位(Ex)的差值(Em - Ex)
静息状态时:
超射水平(去极化至+30mV)时:
K+的驱动力=+20mV (外向) Na+的驱动力=-130mV(内向)
Em
PK
PK PNa
EK

PNa PK PNa
E Na
随Na+通透性增加,RP减小 :如骨骼肌细胞 -90mV;视杆细胞-30mV)
3.Na+泵的生电作用——增大细胞内的负值

生理学细胞的生物电现象 [可修改版ppt]

生理学细胞的生物电现象 [可修改版ppt]
度高于细胞外,细胞外Na+ 浓度高于细胞 内)。 (2)细胞膜上钾通道开放,细胞膜对K+具通透 性。
(二)静息电位的产生机制 (离子学说)
2.静息电位产生的主要机制: (1) K+外流: K+顺浓度梯度经钾通道外流,细胞内有
机负离子不能外流而留在膜内侧,形成内负外正的 跨膜电位差; (2)外流的K+在细胞膜外侧建立起正电场,阻碍K+外 流; (3)当促使K+外流的化学驱动力与阻碍K+外流的电场 驱动力相等时, K+跨膜净通量为零,形成稳定的 K+-平衡电位(即静息电位)。
(2)下降支: K+快速外流, Na+内流停止。 钠通道具有时间依赖性,开放瞬间后即失活关闭; 因去极化而使膜电位变为内正外负,阻碍K+外流
的力量减小,K+外流增强。
2.动作电位的产生过程 当刺激强度等于或大于阈强度时,引起细胞膜
去极化达阈电位水平,此时细胞膜上较多钠通道开 放,较多Na+内流,大于同时发生的K+外流而膜 去极化,膜的去极化能进一步加大膜中Na+通道开 放的概率,结果使更多Na+通道开放,更多Na+内 流而造成膜进一步去极化,如此反复促进,出现一 个使膜上钠通道开放、Na+快速内流与膜去极化之 间的正反馈过程(Na+内流的再生性循环),直至 接近Na+平衡电位,形成动作电位的上升支。
(1)“全或无 ”特性:动作电位要就一点不发生, 一旦发生即最大幅值。
如:阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP产生,一产生即达最大幅值。
(2)不衰减传导性:AP一旦产生及迅速传播至整个细 胞,动作电位的幅度不会随传导距离增大而衰减。

细胞的生物电现象ppt课件

细胞的生物电现象ppt课件
3.复极化
膜去极后,向膜内负电位(RP)恢复的过程
4.超极化
膜内电位(Rp值)向负值加大的方向变化
6
+ + ++++ + + + + + 神经纤维
-50mV RP: -90mV
-100mV 7
二. 动作电位 (Action Potential , AP)
— 细胞兴奋的共有标志
0mV
AP
神经纤维
stimulatr
1)去极相
1NaCl

Na+ ++-
胞 内
+ ++-
+-
+-
Na+ 浓度差
12 NaCl
++-
Na+ 细

-+-

+-

+-
RP
-+
刺激 RP
13
2)复极相
1NaCl
12 NaCl
+ - K+
K+ ① ②
3)静息期
K+ 泵 Na+

细胞内 细胞外
14
*阈电位 (threshold potential )
③超常期
>正常 多数钠通道复活 -80 ~-90 mV
④低常期
<正常 超极化
>-90 mV
绝对不应期的意义:
使Ap不会重合(脉冲式)
18
7.局部电位及其特性
1.概 念
阈下刺激引起细胞膜局部较小的去极化
2.产生机制
少量Na+内流形成

细胞生物电现象精品PPT课件

细胞生物电现象精品PPT课件
10
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
演讲人:XXXXXX 时 间:XX年XX月XX日
1.2.动作电位:
定义:细胞在适当刺激作用下,细胞膜产生 的可扩布性兴奋。
现象:细胞膜内电位升高,并发生反极化, 再恢复到静息状态。
幅度:90—130mV,(有细胞种类差异。 组成:峰电位—去极化、反极化、复极化。
后电位—负后电位(极化状态低于 静息水平),正后电位(极化状态高于静息 水平)
动作电位产生机制:
突触前膜兴奋,透性改变→神经递质释放 →递质与突触后膜结合,突触后膜透性改变→ 突触后膜电位变化。
特点:单向性;时间延搁。
3.细胞的兴奋和兴奋性
3.1.兴奋和兴奋性概念 3.2.细胞兴奋的条件
刺激强度, 刺激作用时间, 刺激强度对时间的变化率。 3.3.兴奋后兴奋性的变化
绝对不应期 相对不应期 超常期 低常期
骨骼肌的收缩
神经----肌肉接点的兴奋传递; 肌细胞膜兴奋----兴奋沿T小管传导----终 池释放Ca+; Ca+去抑制---肌动蛋白分子上的肌球蛋白 分子结合点暴露; 肌丝滑行---肌细胞收缩。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
(1)静息电位是基础; (2)锋电位产生:细胞膜Na+电导增加, Na+
内流---去极化、反极化; K+外流---复极化。 实质: Na+平衡电位。 特点: Na+、K+电导增加具有电压依赖性-- Na+、K+不同步开放。 阈电位--- Na+通道大量开放时的膜电位。

《细胞的生物电现象》PPT课件

《细胞的生物电现象》PPT课件
《细胞的生物电现象》 PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
第二节 生物电现象和兴奋性
生物体活细胞在安静和活动时都存在电 活动,这种电活动称为生物电现象 〔bioelectricity〕。
超极化后电位:Na+ - K+ 泵激活 3 Na+外流>2 K+内流
(四)阈电位
阈刺激、阈上刺激、阈下刺激
三、动作电位时相与细胞的兴奋性
A 绝对不应期 B 相对为应期 C 超常期 D 低常期
A BC D
兴奋性表现为形成动作电位的主要离子通道再激 活的可能性
四、兴奋在神经纤维上的传导
〔一〕特点 1、绝缘性
通透膜 选择性通透膜
2、机制
〔1〕细胞膜内、外离子分布不匀
[K+]i>[K+]o≈30∶1
[Na+]i<[Na+]o≈1∶10
[A-]i>[A-]o≈ 4∶1
[Cl-]i<[Cl-]o≈1∶14
〔2〕细胞膜对离子选择性通透
K+>Cl->Na+>A-
3、K+平衡电位证据 ①Nernst公式的计算 EK=61 log[K+]o/[K+]I
突触间的兴奋传递 1.突触: ⑴概念: ⑵分类:
轴-胞突触、轴-树突触、 轴-轴突触、树-树突触。
⑶构造:
①突触前膜:
递质、受体
②突触间隙:
水解酶
③突触后膜:
2.突触传递过程
突触前轴突末梢的AP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对不应期(相当于锋电位)
兴奋性=0 相对不应期(负后电位)
正常>兴奋性>0 超常期(负后电位)
兴奋性>正常 低常期(正后电位)
兴奋性<正常
三、局部电位(兴奋)
概念:
阈下刺激 引起的低于 阈电位的去 极化(即局 部电位), 称局部兴奋。
特点: ①不具有“全或
无”现象。 ②电紧张性扩布。 ③可以总和。
安静状态下,膜主要对K+通透 ①扩散(化学)驱动力:浓度差 ②扩散平衡:电场力=浓度差,驱动力=0,
即为K+平衡电位。
静息状态下细胞膜内外主要离子分布 及膜对离子通透性
主要 离子
Na+ K+ ClA-
离子浓度
( mmol/L)
膜内 膜外
14 142
155 5
8
110
60 15
膜内与膜 外离子比 例
膜对离子通 透性
1:10 通透性很小
31:1 1:14 4:1
通透性大 通透性次之
无通透性
静息电位
Resting Potential:
膜主要对K+通透,K+顺浓度差向膜 外扩散,膜外的正电场阻止K+向膜外扩散

当扩散动力与阻力达到动态平衡时 ↓
形成膜外为正、膜内为负的极化状态 ↓
静息电位
结论:
+外流形成的(上升支和下降支形成的尖峰状电 位变化称为峰电位),后电位是Na+-K+泵活 动引起的。
②AP的产生是不消耗能量的,AP的恢复是消 耗能量的(Na+-K+泵的活动)。
③AP的去极相之末是Na+的电-化学平衡电 位。
动作电位的意义: 动作电位的产生是细胞兴奋的标志。
动作电位的特征:
①具有“全或无”的现象 ②是非衰减式传导的电位 ③脉冲式
(可以叠加)
时间性总和 空间性总和
生理学PPT 细胞生物电现象
(一)刺激和反应
1.刺激:细胞和组织所处的内外环境的变化。 ①刺激的种类:物理 化学 生物 社会心理。 ②刺激的三要素:强度;持续时间;
强度-时间变化率。 2.反应:细胞或机体感受刺激后发生的一切变 化。
一、兴奋性(excitability)
一切有生命活动的细胞、组织或机体能接 受刺激产生兴奋的能力或特性。
(丙)当A、B电极都位于 细胞膜内,无电位改变, 证明膜内无电位差。
(二)静息电位产生机制
1、 钠泵活动造成膜内、外离子不均衡分布: [Na+]o > [Na+]i, [K+]i > [K+]o [Cl-]i > [Cl-]o, [A-]i > [A-]o
2、不同状态下,细胞膜对各种离子的通透性 不同。
(三) 动作电位的传播 1 、传导原理(方式):局部电流
无髓鞘N纤维
无髓鞘N纤维为近距离局部电流
有髓鞘神经纤维AP传导: 跳跃式传导: 提速、节能
有髓鞘N纤维为远距离(跳跃式)局部电流
2 、兴奋传导的特点
1、双向性 2、绝缘性 3、不衰减性 4、相对不易疲劳 5、不融合性
细胞兴奋后兴奋性的变化
时,其膜电位所发生的一次可扩布、迅速 的、短暂的波动。
实质:是膜电位在RP基础上发生的一 次可扩布、快速的倒转和复原;是细胞 兴奋的本质表现。
(二)动作电位的产生机制
1.动作电位产生的基本条件:
①膜内外存在[Na+]差:[Na+]i<[Na+]O ≈ 1∶10;
②膜在受到阈刺激而兴奋时,对离子的通透性增 加:
刺激(stimulus)与反应(response) 反应有两种形式:兴奋 (excitation)
抑制 (inhibition) 可兴奋细胞(组织):神经细胞、肌细胞和腺 细胞兴奋的共同特征是产生动作电位。
阈强度(阈值) (value) 刺激的持续时间固定,引起细胞或组织发生反应(产 生AP)的最小刺激强度。
静息电位的产生主要是K+向膜外扩 散的结果。
静息电位是 K+的电-化学平衡电位。
Resting Potential
影响静息电位因素:
①细胞膜内、外的K+浓度差。 ②细胞膜对K+通透性: K+的通透性↑,则静息电位↑。 ③ Na+-K+泵的活动水平。
二、动作电位和及其产生机制
AP实验现象:
(一)细胞的动作电位 Action potential,AP 1.在RP基础上,细胞受到一个适当刺激
·衡量兴奋性高低的指标——阈值
兴奋性∝ —————— 1 —— 阈值
阈刺激:具有阈强度的刺激。 阈上刺激:刺激强度高于阈强度的刺激 阈下刺激:刺激强度低于阈强度的刺激
第三节 细胞的生物电现象
概述
恩格斯在100 多年前就指出:“地球上几 乎没有一种变化发生而不同时显示出电的变 化”。人体及生物体活细胞在安静和活动时 都存在电活动,这种电活动称为生物电现象 (bioelectricity)。
膜对K+通透性增大→K+迅速外流 膜内电位迅速下降,恢复到RP水平(AP下降支)
膜内Na+↑、膜外K+↑→激活Na+-K+泵 细胞内外离子分布恢复到兴奋前水平
3.动作电位(action potential)
刺激
Hale Waihona Puke 局部电位上阈电位


去极化



零电位
反极化(超射)
下 降
复极化

后电位
结论: ①AP的上升支由Na+内流形成,下降支是K
一、静息电位及其产生机制
(一)静息电位Resting potential,RP 细胞在未受刺激时(静息状态下),存在于细
胞膜内负、外正的电位差。
证明RP的实验:
(甲)当A、B电极都位于 细胞膜外,无电位改变, 证明膜外无电位差。
(乙)当A电极位于细胞 膜外, B电极插入膜内时, 有电位改变,证明膜内、 外间有电位差。
即电压门控性Na+通道激活而开放。 ③阈电位—能使细胞膜去极化达到产生动作电位 的临界膜电位的数值
2.AP的产生机制: 当细胞受到阈刺激
细胞膜上少量Na+通道激活而开放 Na+顺浓度差少量内流→膜去极化→局部电位
当膜内电位变化到阈电位时→Na+通道大量开放 Na+大量内流→Na+再生性循环
膜内负电位减小到零并变为正电位(AP上升支) Na+平衡电位
相关文档
最新文档