基于HFSS的缝隙耦合贴片天线仿真

合集下载

基于HFSS天线去耦仿真的设计

基于HFSS天线去耦仿真的设计

基于HFSS天线去耦仿真的设计 1、天线去耦网络的意义 大多数无线系统天线单元的都尽可能的松散排布,其相互之间的间隔足够大,因此天线间的互耦效应较弱。

但是在手机等移动终端,由于空间狭窄,天线单元之间间距很小,从而会产生强烈的电磁耦合。

研究表明,当天线间的间距小于或等于信号波长的一半时,接收天线上所收到的信号已经明显受到互耦效应的影响了。

当天线单元之间的间距继续减小,这种现象就会变得更加明显,从而严重影响无线系统的接收性能。

因此,一个空间狭窄的无线系统,在其天线设计过程中就必须考虑尽可能好的处理天线间的互耦。

在工程中,一般用隔离度表征天线间的互耦效应,在wifi频段的天线设计中,通常要求天线隔离度大于15dB。

 解决天线互耦问题的方法有很多,例如改变天线的间距和极化方式、设计去耦网络、设计缺陷地结构、设计电流中和线等。

这些方法都可以利用HFSS来进行仿真分析,其中利用去耦网络技术来降低天线间的耦合度,天线单元的设计和去耦网络的设计可以分开进行,避免了联合仿真优化设计的复杂性,因此这里先介绍如何使用HFSS仿真设计天线去耦网络。

 2、HFSS仿真设计天线去耦网络的步骤 从网络分析的角度来看,去耦的实质就是使多端口网络的阻抗矩阵的互阻抗趋向于零,或者使散射矩阵的反向传输系数趋向于零。

常见的去耦网络结构如下图所示,其去耦原理正是基于对网络参数的分步分析来实现的。

简单来说,可以分为以下三个步骤: 第一步,由于初始天线阻抗匹配良好,而天线之间却存在强烈的耦合。

因此网络D的功能是将两个端口之间的传输导纳从复数变为纯虚数。

 第二步,引入并联电抗来抵消上述的纯虚数传输导纳,使得传输导纳的取值为零,这样便达到了去耦的目的。

 第三步,由于去耦网络的引入,从端口看去天线的阻抗失配,因此,再外加匹配网络使得天线达到阻抗匹配。

 HFSS不仅可以准确仿真天线的远场辐射特性,在去耦网络、匹配网络的EM仿真运用上也便利。

下面举一个简单的实例。

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计基于HFSS的不同形状微带贴片天线的仿真设计摘要:本文利用HFSS软件对不同形状的微带贴片天线进行了仿真设计。

通过对各种形状的微带贴片天线进行性能仿真分析,在不同频段下评估其天线参数,如增益、带宽等。

通过对比分析,找出性能较优的微带贴片天线形状。

本研究对微带贴片天线的设计和优化提供了一定的参考和指导。

关键词:HFSS;微带贴片天线;仿真设计1. 引言微带贴片天线广泛应用于移动通信、雷达系统、卫星通信等领域。

其具有结构简单、制造工艺方便、重量轻、频带宽广、使用灵活等优点。

而微带贴片天线的性能受到其形状、尺寸和材料等因素的影响。

本文将利用HFSS(High Frequency Structure Simulator)软件对不同形状的微带贴片天线进行仿真设计,旨在寻找性能较好的天线形状,并为微带贴片天线的实际设计提供一定的参考和指导。

2. 微带贴片天线的基本原理微带贴片天线是通过在基底板上制备一片金属片来实现辐射,基底板的材料可以是电介质材料。

微带贴片天线由贴片(patch)、馈电线(feed line)和反射层(ground plane)组成。

基本原理是在贴片上注入射频信号,通过馈电线将信号传输到贴片上,然后贴片将电磁波辐射至空间中。

贴片的尺寸和形状以及馈电线的位置和长度将直接影响到天线的工作性能。

3. HFSS软件介绍HFSS是一款高性能的电磁场仿真工具,广泛应用于天线设计、微波器件的仿真分析等方面。

它可以对各种类型的天线和微波器件进行三维模拟,通过输入几何参数和电磁性能参数,可以得到仿真结果和相应性能参数。

4. 不同形状微带贴片天线的仿真设计在本研究中,我们设计了三种不同形状的微带贴片天线,分别为矩形、圆形和椭圆形。

设计参数如下:矩形贴片天线:边长2cm,贴片材料为铜。

圆形贴片天线:直径2cm,贴片材料为铜。

椭圆形贴片天线:长轴4cm,短轴2cm,贴片材料为铜。

hfss耦合器仿真设计范例-概述说明以及解释

hfss耦合器仿真设计范例-概述说明以及解释

hfss耦合器仿真设计范例-概述说明以及解释1.引言1.1 概述在HFSS耦合器仿真设计范例这篇文章中,我们将介绍HFSS耦合器的原理和仿真设计步骤。

HFSS(High Frequency Structure Simulator)是一种电磁场仿真软件,广泛应用于高频电磁场仿真领域。

耦合器作为一种重要的电路元件,在无线通信和微波领域具有广泛的应用。

通过仿真设计,我们可以模拟和优化耦合器的性能,以满足实际工程需求。

本篇文章的主要目的是通过以HFSS为工具,详细介绍耦合器的仿真设计过程。

首先,我们将在理论背景部分介绍一些基本的电磁场理论知识,包括电磁波的传输和耦合原理。

随后,在HFSS耦合器的原理部分,我们将重点讲解HFSS软件在耦合器仿真中的应用。

接下来,我们将详细介绍HFSS耦合器的仿真设计步骤。

这包括建立仿真模型、设置边界条件和材料属性、定义仿真参数等。

我们还将介绍如何通过改变耦合器的几何参数来优化性能,如改变耦合间隙、调整导体尺寸等。

通过仿真结果的分析和对比,我们可以评估不同设计参数对耦合器性能的影响,并提出设计优化建议。

最后,在结论部分,我们将对实验结果进行分析和总结。

通过对仿真数据的分析,我们可以得出一些结论,如耦合器的带宽、传输损耗等。

同时,我们也会给出一些建议,如如何改善耦合器性能或进一步优化仿真设计。

通过本文的学习,读者将了解到HFSS耦合器的原理和仿真设计步骤,并能够利用HFSS软件进行仿真设计。

这不仅对于从事无线通信和微波领域研究的工程师和学者有重要意义,同时也对于对电磁场仿真感兴趣的读者有一定的参考价值。

在实际工程应用中,通过仿真设计可以节省成本和时间,同时提高产品性能和可靠性。

因此,熟练掌握HFSS耦合器的仿真设计方法对于工程实践具有重要的指导意义。

1.2 文章结构文章结构部分的内容可以包括以下信息:文章结构部分的主要目的是介绍整篇文章的组织方式,以及各个章节的内容概述。

通过对文章结构的明确介绍,读者可以更好地理解整篇文章的逻辑架构,有助于他们更好地理解和接受文章的内容。

HFSS贴片天线仿真

HFSS贴片天线仿真

目录引言 (I)1 绪论 (3)1.1 HFSS简介 (3)1.1.1 HFSS发展历程 (3)1.1.2HFSS仿真原理 (3)1.1.3HFSS的仿真过程 (4)1.1.4HFSS的功能 (5)1.2应用领域 (5)1.3HFSS的基本操作 (5)1.3.1HFSS的一般仿真操作 (5)1.3.2HFSS的一般操作界面 (6)2 微带天线理论 (8)2.1微带天线 (8)2.1.1传输线即微带天线 (8)2.1.2微带贴片天线 (9)2.2圆形微带贴片天线理论 (10)2.3极化理论 (12)2.3.1圆极化理论简述 (12)2.3.2左旋圆极化与右旋圆极化 (13)3 贴片天线的仿真过程 (14)3.1实验内容 (14)3.2HFSS贴片天线仿真 (14)3.2.1创建工程 (14)3.2.2创建模型 (15)3.3设置参量 (22)3.3.1设置变量 (22)3.3.2设置模型材料参数 (23)3.3.3设置边界条件和激励源 (24)3.3.4设置求解条件 (25)3.4创建参数分析并求解 (26)3.4.1添加参数设置 (26)3.4.2定义输出变量 (28)3.4.3求解 (28)3.5优化求解 (29)3.5.1选择优化变量 (29)3.5.2设置远区辐射场 (29)3.5.3添加优化设置 (29)3.5.4求解优化分析 (30)4 结果演示与分析 (30)4.1贴片天线的仿真结果 (30)4.1.1贴片天线的仿真结果 (30)4.1.2贴片天线的仿真结果分析 (30)引言发生多撒飞洒发多少我都发范德萨范德萨分到达发到付啊放大但是的但是上的放大放大飞机返回来烦你的经费户附近的看是否就安分点积分激发你觉得离开谁惹你北京网络法律能发奶粉就发觉你废物了南方vfjdklafnlfefjdalfn费劲儿了奶粉就为了你附近的少年富放你家里是南方金额女王1 绪论1.1 HFSS简介电磁场学科是围绕麦克斯韦方程组为中心展开的研究。

基于HFSS多频段贴片天线仿真

基于HFSS多频段贴片天线仿真

基于HFSS多频段贴片天线仿真作者:薛豆豆陈卓来源:《科学导报·学术》2017年第10期摘要:针对无线设备的发展需求,设计了一种可用于第4代和第5代移动通信系统的多频段天线。

该天线采用同轴馈电矩形微带天线结构,在天线两边缘各开一个L型槽实现多频段,使它在2.35GHz,3.4GHz和4.9GHz的频段能够有效工作。

利用电磁仿真软件,研究了槽的形状,位置和尺寸对天线性能的影响。

关键词:多频段天线;同轴馈电矩形微带天线;边缘开槽【中图分类号】 TN82【文献标识码】 B【文章编号】 2236-1879(2017)10-0221-010 研究前景随着通信技术的发展,第五代通信系统正在快速发展中,随着移动通信系统的发展对手持终端设备的天线也有了较高要求,手机天线必须能工作在所有通信系统工作的频段,但是几代通信系统工作频段之间有较大差距,要实现全覆盖所有频段有一定难度,对天线要求较高。

本实验先只对能同时工作在4G和5G的天线进行研究,并且主要研究频段为4G频段的2320GHz~2370GHz,5G频段的3.3GHz~3.6GHz和4.8GHz~5.0GHz两个工作频段。

通过调整微带天线尺寸大小,L型槽的形状,尺寸和位置来设计出工作效率较好满足要求的多频段天线。

1 天线结构设计对于工作在频率为f的矩形微带天线,可用下式近似计算辐射贴片的大小为式中: w和 l分别为矩形贴片的宽和长;c为光速;εr为介质基板的介电常数;εe为有效介电常数;△l为等效辐射缝隙长度.通过开槽改变了原本的电流分布和路径,由于该天线要实现三频工作,所以至少需要开两个L形槽,为了观察哪里为L形槽的最佳位置先在贴片上方从左至右开个L形槽观察其电流分布。

用HFSS仿真可知边缘处电流密度较大,中间区域电流密度较小,所以第二个L形槽同样开在辐射片边缘效果较为明显。

当再开一个槽时形成了几个不同的电流回路,就可以形成不同的工作频段。

2 天线参数分析对该天线参数进行设计,影响该天线工作频率最大的因素时贴片尺寸大小,根据公式可以大致计算天线贴片尺寸,并进行仿真实验结果在贴片尺寸L0=18mm,W0=28mm时可以得到大致所要求的频段。

hfss中文教程 220-237 缝隙耦合贴片天线

hfss中文教程 220-237 缝隙耦合贴片天线
F 5.4.4
四)设置解决方案类型(Set Solution Type) 1.选择菜单中的 HFSS>解决方案类型(Solution Type) 2.解决方案类型窗口: 1)选择终端驱动(Driven Terminal) 2)点击 OK 按钮。
二. 创建三维模型
F 5.4.5
一) 设置模型单位 1. 选择菜单选项 3D Modeler>Units 2. 设置模型单位: 1).选中单位:cm 2). 点击“OK”按钮

微波仿真论坛()—专业微波工程师社区
RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第五章 天线实例
第四节 缝隙耦合贴片天线
这个例子教你如何在 HFSS 设计环境下创建、仿真、分析一个缝隙耦合贴片天线
F 5.4.1
F 5.4.2
F 5.4.3
微波仿真论坛 组织翻译
第 147 页
原创: 微波仿真论坛() 协助团队 HFSS 小组 --- 拥有版权
原创: 微波仿真论坛() 协助团队 HFSS 小组 --- 拥有版权

微波仿真论坛()—专业微波工程师社区
1).dX: 7.0, dY: 0.495, dZ: 0.0, 敲“回车”键 设置名称
1.在“Properties”窗口,选择“Attribute”选项卡 2. 在“Name”项输入:Feed 3.点击“OK”按钮 调整视图 1. 选择菜单下拉选项 View>Fit All>Active View, 或者按“ctrl + D”键
1).dX: 12.0, dY: 9.0, dZ: 0.32, 敲“回车”键 设置名称

基于缝隙耦合的微带天线设计

基于缝隙耦合的微带天线设计

基于缝隙耦合的微带天线设计摘要:能够同时适用于射频识别、全球微波无线互联网和无线局域网这几大主流物联网通信技术标准的宽频天线的设计要求越来越高,比如体积小、成本低等,而微带天线体积小、剖面低且可集成化程度高,适合大批量生产,但其频带较窄,使用范围受到限制。

为此,提出了一种紧凑型宽频带微带贴片天线。

该天线引入了L型缝隙和三角形缝隙,仿真结果表明,天线-10dB阻抗带宽可达到100%,其工作频带为1.5GHz~4.3GHz;轴比带宽为3.4GHz~3.8GHz,圆极化带宽为11%;在该范围内的增益都在3dB以上;整个工作频带范围内都实现了宽频带、高增益等特性,适用于射频识别、蓝牙、WLAN等频段。

关键词:宽频带;微带贴片天线;增益;圆极化引言近年来,随着无线电技术的迅猛发展,对天线的要求越来越高,既需要天线高增益、宽频带,还要求具备剖面低、重量轻、易制作等特点。

当前无芯片射频标签正逐渐兴起。

频率编码容量大的无芯片标签工作的频率范围很宽,对标签阅读器的天线提出了更宽频带的要求。

微带天线因为其固有的窄带宽的特点,导致其应用大大地受到限制。

为了拓展微带天线的带宽,1984年,Pozar首次提出了缝隙耦合馈电微带天线,该天线隔离了馈电网络与辐射贴片,降低了馈电网络杂散波对辐射贴片的影响,克服了传统馈电方式带来的电感效应。

用缝隙耦合馈电的方式来拓展带宽,工程师们做了大量的卓有成效的工作。

1结构分析1.1天线结构设计按照结构特征分类可以把微带天线分为微带贴片天线和微带缝隙天线。

从以往的研究来看,不同的贴片形状也会影响天线的阻抗带宽。

常用的贴片形状为矩形、正方形、圆形、三角形或者其他,通常会在这些图形的基础上做一些更加复杂的变化,以此改变天线的工作带宽、波束宽度、增益、轴比特性、圆极化等,来满足实际应用的需求。

本次设计的宽频带天线最终整体结构如图1所示。

该天线对贴片的缝隙大小以及位置进行设计修改,整体包含三个部分,分别为顶层辐射金属贴片层、中间介质基板、底层接地板金属贴片层。

用HFSS仿真波导缝隙天线

用HFSS仿真波导缝隙天线

项目七 用HFSS仿真波导缝隙天线
图7-3
项目七 用HFSS仿真波导缝隙天线
实验证明,沿波导缝隙的电场分布与理想缝隙的几乎一 样,近似为正弦分布,但由于波导缝隙是开在有限大的波导 壁上的,辐射受没有开缝的其他三面波导壁的影响,因此是 单向辐射。
单缝隙天线的方向性是比较弱的,为了提高天线的方向 性,可在波导的一个壁上开多个缝隙组成天线阵。这种天线 阵的馈电比较方便,其天线和馈线集于一体。适当改变缝隙 的位置和取向就可以改变缝隙的激励强度,以获得所需要的 方向性。其缺点是频带比较窄。
(2)二者的主平面互换了位置,包含缝隙轴线的平面 是H面,而垂直于缝隙轴线的平面是E面。因此,垂直缝隙 (缝隙轴线在垂直方向)是水平极化的,水平缝隙是垂直极 化的。
项目七 用HFSS仿真波导缝隙天线
项目七 用HFSS仿真波导缝隙天线
项目七 用HFSS仿真波导缝隙天线
7.1.2 波导缝隙天线 在波导壁的适当位置和方向上开的缝隙也可以有效地辐
根据对偶原理,理想缝隙天线的方向性函数与同长度的对称 振子的方向性函数在E面和H面是相互交换的,如图7-2所 示。
图7-2
项目七 用HFSS仿真波导缝隙天线
由于利用了对偶关系,此式假设了缝上电压(或切向电
场)沿缝隙轴线也是按正弦分布的。对比理想缝隙与对称振
子的场可以看出:
(1)二者的方向相同,方向性函数都是
的电场变为磁场,原来的磁场变为电场,当然还有些符号的
变动。具体可参阅参考书目。
根据前面的介绍,长度为2l的对称振子的辐射场为
E
j60Im
cos(l cos ) cos(l) e jr r sin
其方向性函数为
(7-3)
F( ) cos(l cos ) cos(l) s in

期末:HFSS仿真研究孔缝耦合

期末:HFSS仿真研究孔缝耦合

、仿真题目:使用HFSS仿真研究孔缝耦合二、仿真目的:通过仿真过程,了解HFSS软件的用法,用HFSS仿真研究孔耦合,以达到对HFSS软件的熟悉,进而曾将微波与天线这门课程的实践应用三、仿真过程:结构耦合后场分布E F1oldfV/Bli冷MS?诲莊I1.怨按j.4. S-l^h-KIL B.^B15«-K>LT.i&iSBe-eeL 6.k的他-MUZ. E3QM4C-D0Ei. TSG5«-I»LB.Etl 轧•的2.、八、-刖言电子设备要在复杂的电磁环境中正常工作,要满足日益严格的电磁兼容标准,电磁屏蔽是十分必要的。

然而,因为通风、散热通信、供电等要求,屏蔽机箱上的孔缝和线缆穿透就不可避免。

高能电磁波易通过孔缝及线缆耦合进入屏蔽机箱内,对机箱内的器件进行干扰或造成破坏。

因此,研究孔缝耦合和线缆耦合的屏蔽效能十分重要。

线缆耦合主要有2种情况,一种是线间的耦合,一种是穿透屏蔽箱的线缆耦合。

仿真模型:模型结构很简单,如下图所示,主要包括2个圆柱体和一个孔缝,其中外面的大圆柱体为空间辐射边界,里面的圆柱体为金属屏蔽箱,屏蔽箱上开有一个孔缝,放大后如右图所示。

打开工程:1、打开An soft HFSS0,并在缺省工程中点击鼠标右键,加入一个HFSS设计项目,见图2。

屏幕主要部分自左向右依次为工程管理区(Project Manager)、对象列表和3D绘图区(与对象列表一起通称为3D Modeler window )。

2、解的类型。

在菜单中选择HFSS/Solution Type (图3),并在弹出窗口中选择Driven Modal(图4)。

共有三种类型选择,Driven Modal、Driven Terminal 和EigenMode, Diven Modal与Driven Terminal 的区别在于S矩阵的表示形式不同,前者采用入射和反射能量的形式,而后者采用电压和电流的形式。

基于_HFSS_缝隙耦合贴片天线的仿真设计_报告

基于_HFSS_缝隙耦合贴片天线的仿真设计_报告

基于 HFSS 缝隙耦合贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率6.45GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub_UP -80,-50,-3 140,100,3 Box Dupont Type 100(tm) Sub_Down -80,-50,0 140,100,5 Box Duroid(th) Patch -50,-15,5 40,30,0 RectangleMSLine -80,-2.5,-3 70,5,0 RectanglePort -80,-2.5,-3 5,3,0 RectangleAir -100,-80,-20 200,160,60 Box VacumnSlot -31,-7,0 2,14,0 RectangleGND -80,-50,0 140,100,0 Rectangle一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入2011210841,点击保存。

插入模型设计重命名 ------ 输入2011210841(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)创建Sub_Down,点击 ,起始点:x:-80,y:-50,z:-3,dx:140,dy:100,dz:3修改名称为Sub_Down, 修改材料属性为 "Dupont Type 100 HN Film (tm)"(2) 基片Sub_UP:点击,:x:-80,y:-50,z:0。

项目七用HFSS仿真波导缝隙天线

项目七用HFSS仿真波导缝隙天线
cos( l cos ) cos( l ) j r E j 60 I m e r sin 其方向性函数为
(7-3)
cos( l cos ) cos( l ) F ( ) sin
(7-4)
项目七 用HFSS仿真波导缝隙天线
由于理想缝隙天线与板状对称振子具有对偶性。因此,
cos( l cos ) cos( l ) F ( , ) sin
(7-5)
与对称振子一样,常用的缝隙天线是半波缝隙,即l=λ/4, 将其代入式(7-5)得
cos cos 2 F ( , ) sin
(7-6)
在包含缝隙轴线的平面内,方向图是“8”字形;在垂直 于缝隙轴线的平面内,方向图是圆形。
项目七 用HFSS仿真波导缝隙天线
7.1.3 用HFSS仿真计算波导缝隙天线
任务要求:仿真波导缝隙天线的特性参数。 测试设备:计算机、HFSS软件。 设计步骤 1.初始步骤 (1)打开软件AnsoftHFSS。 点击Start按钮,选择Program,然后选择Ansoft/HFSS11, 点击HFSS11。
理想缝隙天线的横向尺寸远小于波长,纵向尺寸通常为λ/2。
项目七 用HFSS仿真波导缝隙天线
设yOz为无限大和无限薄的理想导电平板,在此面上沿z
轴开一个长为2l、宽为W(W<<λ)的缝隙。根据电磁场在金 属表面的分布特点,只可能存在平行于金属表面的磁场和垂 直于金属表面的电场。所以缝隙中的场可近似地认为是由金 属表面的磁场感应出来的,是垂直于缝隙的长边的电场,如 果不忽略短边处的边界条件限制,其分布可挖为如图7-1(a) 所示。这个电场可以向外辐射电磁波,具有天线的功能,所 以叫缝隙天线。

基于HFSS的缝隙耦合贴片天线仿真

基于HFSS的缝隙耦合贴片天线仿真

基于HFSS的缝隙耦合贴片天线仿真
石卫卫;周志平;吴智恒;李民英;曹梦乐
【期刊名称】《机电工程技术》
【年(卷),期】2011(40)8
【摘要】以缝隙耦合贴片天线为研究对象,利用HFSS软件建立了天线的物理模型,求解得到了回波损耗、驻波比等结果.优化缝隙的几何尺寸后,天线的性能得到较大提高.具体表现在:增加了中心工作频率处的回波损耗和驻波比;增加了频带宽度;提高了增益水平.
【总页数】3页(P38-39,190)
【作者】石卫卫;周志平;吴智恒;李民英;曹梦乐
【作者单位】广东省机械研究所,广东广州 510635;广东省机械研究所,广东广州510635;广东省机械研究所,广东广州 510635;广东省志成冠军集团有限公司,广东东莞 523718;广东省志成冠军集团有限公司,广东东莞 523718
【正文语种】中文
【中图分类】TP39
【相关文献】
1.基于HFSS矩形微带贴片天线的仿真设计
2.一种缝隙耦合二元贴片天线的设计
3.CPW馈电缝隙耦合蝶形毫米波贴片天线
4.基于HFSS的不同形状微带贴片天线的仿真设计
5.基于HFSS的短路针加载微带贴片天线的仿真设计
因版权原因,仅展示原文概要,查看原文内容请购买。

基于HFSS缝隙耦合贴片天线的仿真设计报告

基于HFSS缝隙耦合贴片天线的仿真设计报告

基于HFSS缝隙耦合贴片天线的仿真设计报告HFSS(High Frequency Structure Simulator)是一种电磁仿真软件,广泛应用于无线通信、微波电路、天线设计等领域。

其中,扇形缝隙耦合贴片天线是一种常见的天线结构,具有较好的性能和应用潜力。

本报告将基于HFSS对缝隙耦合贴片天线进行仿真设计。

在设计前,我们首先要设置仿真的参数。

通过选择“Analysis”菜单下的“Design Settings”打开仿真参数设置对话框。

在对话框中,我们可以设置模型的频率范围、单位、边界条件等。

根据实际需求,选择合适的参数设置后,可以开始进行仿真设计。

在HFSS软件中,我们可以进行多种类型的仿真分析,如S参数、辐射模式、电场分布等。

在缝隙耦合贴片天线的仿真设计中,我们可以使用S参数分析来研究天线的频率响应。

通过选择“Analysis”菜单下的“S-parameters”选项,进行设置并运行仿真。

仿真完成后,可以得到天线的S参数结果,包括频率响应和射频性能指标。

除了S参数仿真,我们还可以进行辐射模式仿真。

通过选择“Analysis”菜单下的“Radiation”选项,进行设置并运行仿真。

仿真完成后,可以得到天线的辐射模式图,可以直观地观察到天线的辐射特性。

此外,HFSS还提供了电场分布仿真功能,可以用于研究天线的电场分布状况。

通过选择“Analysis”菜单下的“Fields”选项,进行设置并运行仿真。

仿真完成后,可以得到天线的电场分布图,可以观察到天线不同部分的电场强度和分布情况。

通过上述的仿真设计,我们可以对缝隙耦合贴片天线的性能进行评估和优化。

根据仿真结果,可以对天线的尺寸、结构或材料进行调整和优化,以达到更好的性能指标。

综上所述,基于HFSS的缝隙耦合贴片天线仿真设计可以为天线工程师提供一种快速、准确的设计手段。

通过HFSS软件的功能和仿真工具,可以对天线的性能进行全面分析和评估,为天线设计和优化提供有力的支持。

基于HFSS的微带天线线阵仿真

基于HFSS的微带天线线阵仿真

基于HFSS的微带天线线阵仿真本文将介绍基于HFSS(High Frequency Simulation Software)的微带天线线阵仿真。

我们将确定文章类型为议论文,围绕HFSS技术和微带天线线阵仿真展开论述。

在无线通信领域,微带天线作为一种常见的天线类型,具有体积小、易于集成、易于共形等特点,被广泛应用于各种无线设备中。

为了优化微带天线的性能,常常需要对天线进行仿真和设计。

其中,HFSS是一款广泛使用的三维电磁仿真软件,可以用于微带天线的设计和仿真。

我们来了解一下HFSS的基本原理。

HFSS是一款基于有限元方法的电磁仿真软件,通过建立三维模型,对电磁场进行数值计算和仿真。

使用HFSS进行微带天线线阵仿真时,我们需要建立天线的三维模型,设置材料属性、边界条件和激励源等参数,然后进行计算和后处理。

在微带天线线阵仿真中,选用HFSS技术的原因主要有以下几点。

HFSS 可以精确地模拟电磁场分布和天线性能。

HFSS具有强大的网格划分功能,可以对复杂的微带天线结构进行精确的建模和仿真。

HFSS还提供了丰富的数据处理和可视化工具,方便用户对仿真结果进行分析和优化。

在进行微带天线线阵仿真时,需要注意以下几点。

需要对微带天线线阵的结构进行仔细设计,确保天线的性能符合要求。

在设置材料属性和边界条件时,需要充分考虑天线的实际情况,保证仿真的准确性。

在仿真过程中,需要对计算时间和计算精度进行合理控制,以获得最佳的仿真效果。

通过使用HFSS进行微带天线线阵仿真,我们可以获得以下成果。

我们可以得到天线的辐射特性和阻抗特性等关键性能参数。

我们可以观察到电磁场的分布情况,以及天线在不同频率和不同方向上的性能表现。

我们可以根据仿真结果对天线进行优化设计,提高天线的性能指标,例如增益、波束宽度、交叉极化等。

基于HFSS的微带天线线阵仿真是一种有效的天线设计和优化方法。

通过使用HFSS进行仿真和分析,我们可以快速地获得天线的性能参数和电磁场分布情况,从而更好地理解微带天线的性能和设计要点。

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计

2008年11月吉林师范大学学报(自然科学版) .4第4期Journal of Jilin Normal University (Natural Science Edition)Nov.2008收稿日期:2008 07 27作者简介:张天瑜(1980 ),男,江苏无锡人,现为无锡市广播电视大学机电工程系讲师,江南大学硕士.研究方向:通信、电工电子、控制、小波领域的研究.基于HFSS 的不同形状微带贴片天线的仿真设计张天瑜(无锡市广播电视大学机电工程系,江苏无锡214011)摘 要:微带贴片天线的贴片形状是影响天线性能的重要因素.通过HFSS 软件对矩形微带贴片天线和圆形微带贴片天线进行设计与仿真,比较了两种不同形状贴片天线的尺寸以及各自的S 参数图、方向图和输入阻抗图.仿真结果表明两种微带贴片天线都存在带宽过窄的问题.综合考虑天线的各项性能指标,矩形微带贴片天线要优于圆形微带贴片天线.关键词:微带贴片天线;S 参数;方向图;输入阻抗;HFSS 仿真中图分类号:TN 823 文献标识码:A 文章编号:16743873 (2008)04 0121 051 引言微带贴片天线是一种使用微带贴片作为辐射源的天线,它具有剖面低、体积小、重量轻、可共形、易集成、馈电方式灵活、便于获得线极化和圆极化等优点.目前已在移动通信、卫星通讯、导弹遥测、多普勒雷达等许多领域获得了广泛的应用.其中贴片的形状是影响天线性能的重要因素之一,它直接影响着天线的带宽、频率、增益等指标.在微带贴片天线的设计过程中,由于多项技术指标是互相联系、互相影响的,所以需要对天线的性能指标进行综合考虑,从而来选择符合实际需要的贴片形状[1 5].本文通过Ansoft 公司的HFSS 软件分别对矩形和圆形两种常见的微带贴片天线进行设计和仿真,并对其天线性能进行了比较与分析.2 仿真设计2.1 HFSS 仿真软件的介绍高频结构仿真器(High Frequency Structure Simu lator,HFSS)是一款界面友好、功能完备、采用有限元法的三维全波电磁场仿真软件,可分析仿真任意三维无源结构的高频电磁场,能直接得到特征阻抗、传播常数、S 参数及电磁场、辐射场、天线方向图等结果.它广泛应用于航空、航天、电子、半导体、计算机、通信等多个领域,具有以下特色功能:(1)用户可以通过交互式界面输入高频元件或电路的几何结构、材料类型、端口位置、端口特性阻抗定义线等参数.(2)可以按用户指定的精度计算多端口结构端口处的S 参数.(3)能以电场强度E 和磁场强度H 作为基本物理量,从麦克斯韦(Maxwell)方程出发,求解微波元件中的电场和磁场的分布和各种曲线及图形.(4)可以同时分析多个微波元件,即进行并行处理.(5)能够与频域/时域的电路仿真器Nexxim 和Ansoft Designer 实现动态链接,拥有方便的原理图集成和仿真数据的管理,具备功能强大而高效的电磁场设计流程.2.2 HFSS 仿真设计的过程(1)设定HFSS 软件运行参数,如设定解算类型、是否复制几何图形的边界、是否打开各工具窗口等.(2)打开新的工程,并在工程中插入一个或多个HFSS 设计(insert HFSS design).(3)根据天线设计时的技术指标以及计算所得到的天线参数,如天线的尺寸、材料、激励、边界等,获得仿真天线模型[6].(4)设置仿真天线模型的分析参数,如插入远场设置、解算频率、起始频率、终止频率、扫频模式、扫描次数,并进行校验分析.(5)根据仿真天线模型来获得天线对应的特性图,如S 参数图、方向图、输入阻抗图.2.3 矩形微带贴片天线的设计与仿真设在接地板未开缝的情况下,中心频率f r =2.34G Hz,接地板的尺寸为50mm 50mm,介质板材料为FR4,相对介电常数 r =4.4,介质板的厚度h =1.6mm.矩形微带贴片天线的各参数通过下列公式计算[7]:!121!W<c2f r r+12-1/2c为光速W为贴片的宽度(1)l=0.412h( r+0.3)(W/h+0.264)( r-0.258)(W/h+0.8)l为等效延伸长度(2)L=g2-2 l L为贴片的长度(3)e= r+12+r-121+10hW-1/2e为等效介电常数(4)0=Cf r0为电磁波波长(5)g=0eg为等效电磁波波长(6)设辐射边界的长宽略大于接地板与介质板的长宽,其顶部高于贴片0/4.GND尺寸:L c∀L+0.2g L c为接地板的长度(7)W c∀W+0.2g W c为接地板的宽度(8)建立坐标系,其中X轴代表微带天线的贴片长度,Y轴代表微带天线的贴片宽度,Z轴代表微带天线的贴片高度,则同轴馈线的位置为(!p,0,0).其中!p=2L -L∀arccos5W60(9)矩形微带贴片天线模型的参数设置如下所示:GND(-25,-25,0)d x=50,d y=50,d z=0 rectangle pecSub(-25,-25,0)d x=50,d y=50,d z=1.6 box FR4#epoxyPatch(-12,-8,1.6)d x=24,d y=16,d z=0 rectangle pecCoax(-3.45,0,0)d x=1.15,d y=0,d z=-1.6 cylinder vacuumPort(-3.45,0,-1.6)d x=1.15,d y=0,d z=0 circleCoax#pin(-3.45,0,0)d x=0.5,d y=0,d z=-1.6cylinder pecProbe(-3.45,0,0)d x=0.5,d y=0,d z=1.6 cylinder pecAirbox(-35,-35,30)d x=70,d y=70,d z=-30box vacuum通过计算可得,贴片的宽度W=24mm,贴片的长度L=16mm,由此贴片的面积为S=348mm2.以上是采用背馈式的矩形微带贴片天线[8],利用HFSS软件进行仿真所得的天线模型,如图1(a)所示.2.4 圆形微带贴片天线的设计与仿真为了方便对照,设圆形微带贴片天线与上述的矩形微带贴片天线具有相同的中心频率、介质板材料、相对介电常数及介质板厚度[9].在频率较低时(小于2GHz),圆形微带贴片天线贴片半径的计算公式为:a=1.841c2∀f r r(10)在频率较高时(大于2GHz),圆形微带贴片天线的贴片半径还与介质板的厚度有关,其计算公式为:a e=a[1+2h∀a r(ln∀a2h+1.7726)]2(11)由于使用理论半径所设计出的天线无法满足天线的实际使用性能,所以圆形贴片的实际半径要比理论值大得多,并且需要通过不断调整仿真参数来满足天线的设计要求[10].通过多次调整与仿真,最后获得圆形微带贴片天线模型的参数设置如下: Sub(-23,-23,0)d x=46,d y=46,d z=1.6 box FR4#epoxyGND(-23,-23,0)d x=46,d y=46,d z=0 rectangle pecPatch(0,0,1.6)d x=17.7,d y=0,d z=1.6rect angle pecCoax(-6.9,0,0)d x=0.9246,d y=0,d z=-1.6cylinder vacuumCoax#pin(-6.9,0,0)d x=0.402,d y=0,d z= -1.6cylinder pecProbe(-6.9,0,0)d x=0.402,d y=0,d z=1.6 cylinder pecPort(-6.9,0,-1.6)d x=0.9246,d y=0,d z= -1.6circleCut(-6.9,0,0)d x=0.9246,d y=0,d z=0cir cle通过计算可得:贴片半径a=17.7mm,则贴片的面积为S=983mm2.以上是采用背馈式的圆形微带贴片天线,利用HFSS软件进行仿真所得的天线模型,如图1(b)所示.2.5 两种微带贴片天线的性能比较在矩形微带贴片天线与圆形微带贴片天线仿真模型的基础上,通过HFSS软件设置相关的分析参数,最终获得天线的特性图,包括S参数图,方向图以及输入阻抗图,它们分别如图2、图3和图4所示.S参数是在波端口处电磁波的反射功率与入射功率之比,它和阻抗匹配有关,并且决定着驻波比.S 参数图是描述天线的S参数随频率变化的图形.一般认为S参数小于-10dB时,天线才能正常工作,此时的驻波比大致为2.绝对频带宽度定义为S参! 122 !图1 微带贴片天线的仿真模型数小于-10dB 的频率范围.相对频带宽度定义为绝对带宽与中心频率之比.在图3(a)中,矩形微带贴片天线的中心频率为2.34GHz,上截止频率为2.38GHz,下截止频率为2.30GHz,绝对频带宽度为0.08GHz,相对频带宽度为3.42%,S 参数的最低点为-20.58dB.在图3(b)中,圆形微带贴片天线的中心频率为2.32GHz,这是由于为了获得效果更好的E 面与H 面的空间增益,导致天线的中心频率产生了微小的偏移.其上截止频率为2.36GHz,下截止频率为2.28GHz,绝对频带宽度为0.08GHz,相对频带宽度为3.45%,S 参数的最低点为-39.55dB.方向图是用来表示天线的辐射参量随空间方位变化的图形.E 面和H 面分别反映了天线在XOZ 面和YOZ 面上的增益大小.通过图3(a)和图3(b)的比较可以发现两种不同形状的微带贴片天线的对称性都较好,在Z 轴方向上,两者的辐射强度都达到最大值.其中矩形微带贴片天线的增益为2.069dB,圆形微带贴片天线的增益为1.013dB.由此可得,矩形微带贴片天线的E 面和H 面在Z 轴方向上辐射较强要强于圆形微带贴片天线,其方向性较圆形微带贴片天线更好.天线的输入阻抗是天线馈电端输入电压与输入图2 S参数图图3 方向图!123!图4 输入阻抗图电流的比值[11,12].输入阻抗图是描述天线的输入阻抗随频率变化的图形.当输入阻抗的虚部为零时,如果实部等于50#,则天线与馈线达到阻抗完全匹配,此时S参数可以达到很小.在图4(a)中,当矩形微带贴片天线输入阻抗的虚部为零时,实部为50 14#,并且在虚部接近零时,实部下降比较平滑,所以阻抗匹配很好.在图4(b)中,当圆形微带贴片天线输入阻抗的虚部为零时,实部为50.71#,并且在虚部接近零时,实部下降也比较平滑,所以阻抗匹配略逊色于矩形微带贴片天线.通过对矩形微带贴片天线与圆形微带贴片天线的比较,可以得到以下结论:(1)贴片形状的不同对微带天线的带宽影响不大,两种贴片天线的相对带宽都非常窄,在3.4%左右,这是微带贴片天线的一个重大缺陷.随着双模态滤波、多层缝隙耦合、双极化、半U型开缝等先进技术在扩频方面的不断发展,微带贴片天线的带宽将得到有效的扩展[13 15];(2)在中心频率相同、介质板材料相同、相对介电常数相同、介质板厚度相同的前提下,满足天线设计要求的圆形贴片面积是矩形贴片面积的2.56倍,这样矩形微带贴片天线在尺寸上就更占优势;(3)对比两种贴片天线的方向图可知,矩形微带贴片天线的增益是2.069dB;而圆形微带贴片天线的增益只有1.013dB,矩形微带贴片天线的方向性更具优势;(4)不论是矩形微带贴片天线还是圆形微带贴片天线,其输入阻抗的频率特性都较好,两种天线与馈线都可以很好的达到阻抗匹配[16].3 结语随着EDA技术的飞速发展,HFSS已经成为微带天线设计人员不可缺少的工具.通过HFSS软件的仿真分析,可以直观地看出矩形微带贴片天线与圆形微带贴片各自的优缺点,在一般情况下(具体要求贴片形状的微带天线除外)矩形微带贴片天线相对于圆形微带贴片天线的优势非常明显,无论从贴片的尺寸大小还是增益上,矩形微带贴片天线都应是首选.随着扩频技术的发展,微带贴片天线的应用领域将会变得越来越广.参 考 文 献[1]钟顺时.微带天线理论与应用[M].西安:西安电子科技大学出版社,1991.[2]王扬智,张麟兮,韦 高.基于HFSS新型宽频带微带天线仿真设计[J].系统仿真学报,2007,19(11):2603~2606.[3]Chair R,Ki shk A A,LEE K parative s tudy on the mutual c oupling between different siz ed cylindrical dielectric res onators antennas and circul ar microstrip patch antennas[J].IEEE Trans ac tions on Antennas and Propagation,2005,53(3):1011~1019.[4]Lee S,Woo J,Ryu M,et al.Corrugated ci rcular microstri p patch antennas for miniaturisation[J].Elec tronics Letters,2002,38(6):262~263.[5]M ak C L,Luk K M,Lee K F,et al.Experimental s tudy of a micros trip patch antenna w i th an L shaped probe[J].IEEE Transacti ons on Antennas and Propagation,2000,48(5):777~783.[6]Wang J J,Zhang Y P,Kai M C,et al,Circui t model of micros trip patch antenna on cera mic land grid array package for antenna-chip codesi gn of highl y integrated RF transcei vers[J].IEEE Transactions on Antennas and Propagation,2005,53(12):3877~3883.[7]王 斌,曲新波,张宏苏.短路针加载矩形微带贴片天线的研究[J].军事通信技术,2006,27(4):58~61.[8]栾秀珍,谭克俊,邰佑诚.小型矩形微带贴片天线的理论分析[J].大连海事大学学报(自然科学版),2002,28(2):66~68.[9]伍 刚,张小平.基于腔模理论对圆形微带天线的研究[J].微计算机信息,2007,23(9):162~163.[10]Verma A K,Nasi muddin.Analysis of ci rcular microstrip patch antenna as an equivalent rectangular micros trip patch antenna on is o/anis otropic thick substrate[J].IEE Proceedings Microwaves,Antennas and Propagati on,2003,150(4):223~229.[11]Jaiss on D.Simple model for computing the input impedance of a rectangular patch antenna with elec tromagnetic coupling[J].IEE Proceedings Microwaves,Antennas and Propagation,2005,152(6):476~480.!124![12]Burum N,Sipus Z.Input impedance and mutual coupling of spherical rec tangular micros trip patch antennas[C].ICECom2003.17th International Conference on Applied Electromagnetics and Communications,2003:209~212.[13]Abunjaileh A I,Hunter I C,Kemp,A H.Applicati on of dual mode fi lter techniques to the broadband matc hing of micros trip patch antennas[J].IET Microwaves,Antennas and Propagation,2007,1(2):273~276.[14]Mati n M A,Sharif B S,Tsi menidi s C C.Dual layer stacked rectangular microstrip patc h antenna for ultra wideband applications[J].IET M icrowaves,Antennas and Propagati on,2007,1(6):1192~1196.[15]Gao S,Li L W,Leong M S,et al.A broad band dual polariz ed microstrip patch antenna with aperture coupling[J].IEEE Transactions on Antennas andPropagati on,2003,51(4):898~900.[16]丁 毅,王光明,苏文然.一种新型单层单贴片宽带圆形微带天线[J].弹箭与制导学报,2007,27(5):274~276.The Simulation Design for Different Patch Shape ofMicrostrip Patch Antenna Based on HFSSZ HANG Tian yu(Department of Mechanical and Electrical Engineeri ng,Wuxi Radio&Televisi on University,Wuxi214011,China)Abstract:The patch shape of microstrip patch antenna is the important factor which affects the performance of antenna. The rectangular microstrip patch antenna and the circular one are designed and simulated with parison has been made between the two different patch antennas,such as the size,S parameters chart,pattern and input impendance chart.The simulation result sho ws that the bandwidth of two microstrip patch antenna is too narrow.By comprehensive consideration of each performance index,the rectangular microchip antenna is better than the circular one.Key words:microstrip patch antenna;S parameters;pattern;input impedance;HFSS simulation(上接第120页)[5]Silva J.B,et al.Preparation of Composites of Nickel Ferri tes Dispersed i n Sillica M atrix[J].J.Magn.Magn.M ater,2001,139:226 230.[6]Yan S.F,et al.Preparation of Ni0.65Zn0.35Cu0.1Fe0.9O4/SiO2Nanocomposites by sol gel Method[J]J.Cryst.Gro wth,2004,262:415 419.[7]孔令兵,等.氧化铁/二氧化硅多孔凝胶玻璃的制备[J].西安交通大学学报,1995,29:23 28.[8]Ennas G,et al.Iron and i ron oxide on silica nanocomposites prepared by the sol gel method[J].J.Mater.Res,2002,17:590 596.[9]Huang X.H,Chen Z.H.A s tudy of nanocrystalline Ni Fe2O4in a silica matri x[J].Materials Research Bulle tin,2005,40:105 113.Influence of Drying Temperature on CoFe2O4/SiO2NanocompositesC HE N Jing yan,QI Hai yan,HE Xiao guang(College of Phys ics,Changchun Normal Uni versity,Changchun130032,China)Abstract:CoFe2O4/SiO2nano composites were prepared by the sol gel method.The influence of drying temperature on the microstructure and crystalline size of CoFe2O4/SiO2nano c omposites were investigated by TG/DTA and XRD.Fur thermore,the influence of the initial drying te mperature on particle size of CoFe2O4suggests that a well established sili ca network provides more restric tion on the growth of CoFe2O4particles.Key words:sol gel method;CoFe2O4/SiO2;drying temperature;grain size!!125。

2024版HFSS天线仿真实例系列教程1

2024版HFSS天线仿真实例系列教程1

导出报告
将仿真结果和优化过程导出为报告,供后续分析 和参考。
27
07
总结与展望
2024/1/29
28
教程内容回顾
2024/1/29
HFSS天线仿真基本原理
介绍了高频结构仿真(HFSS)的基本原理及其在天线设计中的应用。
天线设计基础
详细阐述了天线设计的基本概念,如辐射、方向性、增益等,以及常 见的天线类型和性能指标。
03
优化设计
根据分析结果,对天线设计进行优 化,如调整振子长度、改变馈电结
构等,以提高天线性能。
2024/1/29
02
结果分析
对仿真结果进行分析,包括S参数 曲线、辐射方向图、增益等性能指
标的评估。
04
再次仿真验证
对优化后的设计进行再次仿真验证, 确保性能达到预期要求。
19
05 微带天线仿真实例
2024/1/29
• 天线参数:描述天线性能的主要参数有方向图、增益、输入阻抗、驻波比、极化等。这些参数可以通过仿真或 测量得到,用于评估天线的性能优劣。
• 仿真模型:在天线仿真中,需要建立天线的三维模型并设置相应的边界条件和激励源。模型的准确性直接影响 到仿真结果的可靠性。因此,在建立模型时需要充分考虑天线的实际结构和工作环境。
求解参数设置
包括频率范围、收敛精度、最大迭代次数 等参数的设置。
B
C
自适应网格划分
根据模型复杂度和求解精度要求,自动调整 网格大小和密度。
并行计算支持
利用多核处理器或集群计算资源,加速求解 过程。
D
2024/1/29
11
03 天线设计原理及性能指标
2024/1/29
12

HFSS天线仿真操作步骤

HFSS天线仿真操作步骤
TTTH
teCircla
rLines
e
_1
Le2
[=1 CreateRectangl
O CoverLines
I III
选“下一步”
I I t±j uy-LLitaeri _oi_iu
点"None",弹出下拉菜单,选"NewLine”
出现下面菜单
Draw the port line・When you are finished, the port edit dialog will reappea匚
Origin
Relative
PariTii tti vi ty
R^lati va
Parnaability


点“确定”
3
重新选择某个面:
2
□Zile
View Project Draw 3D Modeler HFSS Tools Window Help
凰够曇⑥口
01Redo
Ctrl+Y
■)创口OOo占0 e B A c
Faces
Edges兰erti ces
Faces
Edges
Verti
ces
Hext Behind
kll O"bject Faces
Faces On Plane
Select Connected ices
Select Connected Edges Select Corjiected Faces
-邙]GAO 3 (D:/Program File$7.An$oft/) -:駆HFSSDesignl
船Cut
Ctrl+X
1 F ® [Object J

基于HFSS天线去耦仿真的设计

基于HFSS天线去耦仿真的设计

基于HFSS天线去耦仿真的设计HFSS(高频结构模拟软件)是一种广泛应用于微波与射频领域的天线设计和分析工具。

基于HFSS进行天线去耦仿真设计,是一种常见的方法,下文将探讨相关内容。

天线的去耦设计是确保天线的输入阻抗与馈源阻抗相匹配,以最大化功率传输的重要步骤。

在设计过程中,可以使用HFSS软件来模拟和优化天线的性能。

首先,进行去耦设计之前,需要先确定天线的工作频率和所需的增益和方向性。

然后,在HFSS中创建一个天线模型,选择适当的天线形状和材料参数,比如矩形或半径形状、金属导体等。

接下来,进行天线的初始仿真。

通过在HFSS中定义适当的边界条件、设置频率和网格密度等参数,模拟天线的输入阻抗和辐射特性。

然后,通过调整天线的尺寸和形状来优化天线的性能。

可以使用HFSS的参数化设计工具,自动化调整天线的参数,如长度、宽度、高度等。

在进行优化之前,可以在HFSS中设置一些目标函数,如最小化输入阻抗或最大化辐射效率等。

然后,使用HFSS的优化算法,如全局优化或局部优化方法,来自动寻找最佳的参数组合。

完成优化后,可以使用HFSS中的结果分析工具来评估天线的性能。

可以查看输入阻抗曲线、方向图、增益图等,以了解天线的频率响应和辐射特性。

另外,HFSS还可以用于天线辐射场的仿真。

可以将天线放置在所需的环境中,如车辆、建筑物等,通过HFSS进行辐射场分析和评估。

总之,基于HFSS进行天线去耦仿真设计是一种可行的方法。

它可以帮助工程师优化天线的性能,实现最佳的频率响应和辐射特性。

通过HFSS的模拟和优化工具,可以节省设计时间和成本,并提高天线的整体性能。

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计

基于HFSS的不同形状微带贴片天线的仿真设计一、本文概述随着无线通信技术的快速发展,天线作为无线通信系统的关键组成部分,其性能对整个系统的性能具有决定性的影响。

微带贴片天线作为一种常见的天线类型,因其体积小、重量轻、易于集成和制造成本低等优点,在无线通信、雷达、卫星通信等领域得到了广泛应用。

微带贴片天线的性能受到其形状、尺寸、介质基板等因素的影响,如何设计出具有优良性能的微带贴片天线成为了研究的热点。

本文旨在利用高频结构仿真器(HFSS)这一强大的电磁仿真工具,对不同形状微带贴片天线的性能进行仿真研究。

我们将对微带贴片天线的基本理论进行简要介绍,包括其工作原理、主要参数和性能评价指标等。

我们将设计并仿真几种不同形状(如圆形、方形、矩形、椭圆形等)的微带贴片天线,分析它们的性能特点,包括回波损耗、带宽、增益、方向性等。

我们将根据仿真结果,对不同形状微带贴片天线的性能进行比较和评价,以期为实际的天线设计提供有益的参考和指导。

通过本文的研究,我们期望能够为微带贴片天线的设计提供新的思路和方法,推动其在无线通信领域的应用和发展。

我们也期望通过本文的研究,能够加深对微带贴片天线性能影响因素的理解,为其他类型天线的设计提供借鉴和启示。

二、软件介绍及其在天线设计中的应用HFSS(High Frequency Structure Simulator)是由美国Ansoft 公司开发的一款三维电磁仿真软件,专门用于模拟分析高频结构中的电磁场问题。

该软件采用有限元法(FEM)进行求解,能够准确模拟包括微带天线在内的各种高频无源器件的三维电磁特性。

HFSS以其强大的仿真能力和广泛的适用性,在天线设计、微波电路、高速互连、电磁兼容等领域得到了广泛应用。

天线性能分析:通过HFSS,设计师可以分析天线的辐射性能,包括方向图、增益、效率等关键指标。

这对于优化天线设计,提高其性能至关重要。

天线结构优化:HFSS允许用户自由定义天线的几何形状和材料属性,通过参数化扫描和优化算法,找到最优的天线结构,从而提高其性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

好 ,但 仍 有 待 加 强 。
3尺 寸 优 化
3 . 1优 化约 束及 目标
缝 隙 耦 合 贴 片 天线 的 主 体 结 构 为 两层 介 质 ,天 线 的性
能 和结 构 的一 些关 键 尺 寸 是 密 切 相 关 的 。 例 如 ,上 层 介 质
板 的媒 介 参 数 影 响 天 线 的 阻 抗 带 宽 ,频 带 愈 宽 则 要 求 介 电 常数 愈低 而 厚 度 愈 厚 ,但 厚 度 的增 加 会 减 弱 贴 片 和 缝 隙 之 间 的耦 合 作 用 ,因 此 结 构 的 尺 寸需 综 合 考 虑 。 在 结 构 外 形 基 本 确 定 的 前 提 下 ,缝 隙 的 尺 寸 是 缝 隙耦
的变 化 。 由 图 可 见 , 对 驻 波 比影 响 很 小 , 这 是 由 于




的尺 寸 变 化 范 围 较 小 .驻 波 比 相对 小 范 围 内 的变 化 不 敏




/ , ,
f f
感 。随 着 £的 值 增 大 ,驻 波 比的 值 变 化 较 明显 。 当 L小 于 1 7 m m 时 , 随 着 增 大 驻 波 比迅 速 由 3减 小 到 1 - 3左 右 。 当 大于 1 7 mm 时 . 驻 波 比的 值 变 化 很 小 。 当 W= I . 9 m m 且L = 1 9 mm 时 驻 波 比达 到 最 小 值 1 . 2 6 5 。 表 明 在 相 应 的 尺 寸 修 改 范 围 内 ,这 一 组 尺 寸达 到最 优 解 。
落 的水 垢 , 以防 止堵 塞锅 炉 排 污 管 。
参考文献 :
螗v ∞
5结束 语
锅 炉 的停 炉保 养 。主 要 是 为 了 防 止腐 蚀 .延 长 锅 炉 的 使 用 寿 命 。而 锅 炉 水 侧 的 腐 蚀 ,一 般 是 发 生 电 化 腐 蚀 。产 生 电 化 腐 蚀 的 原 因 ,主 要 是 因为 锅 炉 内 存 在 有 水 蒸 汽 和氧
制造 业信
M I p\一 一 l _ o^ I d- = J 1 . 1 l O A — ; . 1 v ∞奄
6 . 4 5 G H z 的 波 谷 处 的 极值 约 为 1 . 7 。频 带 范 围与 S参 数 基 本

致 。该天线 最大增益 为 7 . 1 d B , 整 体 来 看 天 线 的 性 能 较
出版 社 .1 9 8 8
4结 语
利用 H F S S建 立 了 天 线 的 物 理 模 型 .求 解 得 到 了 回波 损 耗 曲线 、电压 驻 波 比 曲线 等 结 果 。将 缝 隙 的 长 和 宽 尺 寸
第一 作 者 简 介 :石 卫 卫 ,男 ,1 9 7 8年 生 ,山 西 曲 沃 人 ,硕 十 , 程 师 。研 究 领 域 :机 械 制 造及 A动化 。 已发 表 论 文 2篇 。
与信 息 学报 ,2 0 0 7,2 9( 4 ) :9 9 1 — 9 9 3 .
[ 3 ] 汪伟 ,钟 顺 时 ,梁 仙 灵. x形微带缝隙天线 [ J ]. 上海 大学学
报 ,2 0 0 5 ,1 1( 1 ) :1 — 3 .
[ 4 ] 张 均 ,刘 克 诚 微 带 天 线理 论 与 工 程 [ M] 北 京 : 国防 X - 业
方 向尺 寸 的 变 化 范 围 分 别 为 1 .பைடு நூலகம்7 m m ≤W ≤2 . 3 a r m 和
1 l mm  ̄ < L≤ 2 0 mm。
/ / /
3 . 2优 化 结 果
图 5给 出 了 工 作 频 率 为 6 . 4 5 G H z时驻 波 比随一 缝 隙尺 寸 1 . c o Q E J 一 ^ , , ∞ >
气 。 当锅 炉 内 的 水 蒸 汽 和 氧 气 的 含 量 较 少 ( 低于 0 . 0 3 m g /
[ 1 ]质 技 监 局 锅 发 [ 1 9 9 9 ]2 0 2号 锅 炉定 期 检 验 规 则 l S j
[ 2 ] 天 华 化 工 机 械 及 自动 化 研 究设 计 院. 腐蚀 与防护 手册 [ M]

/ r
F r e q/GHz
1 3 - 3 % ,较 优 化 前 亦 有 较 大 提 升 。 同 样 , 驻 波 比 的 带 宽 得
到 了 一 致 的 提 升 ,且 最 小 值 降 至 1 . 2 5 d B 。 同时 ,天 线 的 最
( 下转第 1 9 0页 )
图4 驻 波 比 随频 率 变 化 图
\ \ \
。 .

/ l
Fr e q/GHz
图3 回 波 损耗 随频 率 变 化 图 对频带 宽度 ( S参 数 小 于 一 l O d B )约 O . 5 2 G H z ,相 对 频 带
宽度为 8 . 0 6 %。
图 4为 驻 波 比 与频 率 的 相 对 变 化 关 系 图 。驻 波 比 是 衡 量 天 线 性 能 的 重 要 参 数 。从 图 中 可 以看 出驻 波 比在 频 率 为
北 京 :化 学X - 业 出版 社 ,2 0 0 9 .
[ 3 ]G B1 5 7 6 — 8 5 . 低 压 锅 炉 水 质标 准 [ s ] [ 4 ]马 昌华. 锅 炉事故 防范与安 全运 行 [ M]. 北 京 :地 震 出 版
社 .2 0 0 0.
L ) 时 ,电 化 腐 蚀 就 会 自然 停 止 。 笔 者 根 据 以 上 的 方 法 , 该 医 院两 台 锅 炉 换 管 后 进 行 保 养 .经 过 了 一 年 多 的 时 问 , 在 近 期对 锅 炉 进 行 内 外 部 检 验 时 .发 现 保 养 的 效 果 十 分 理 想 ,同 时 ,司 炉 工 操 作 也 十 分 方 便 、 简单 。 但 是 ,如 果 锅 炉 内 有水 垢 ( 如 老 水垢 或 者 硅 酸 盐 等 难 溶 解 水 垢 )的 情 况 下 ,在 第 一 次 采 用 这 种 保 养 方 法 时 ,在 锅 炉 经 保 养 后 开 炉
交 流
时 ,关 闭 锅 炉 的 排 污 阀 、排 空 阀 及 所 有 可 以关 闭 的 阀 ¨ , 让 锅 炉 自然冷 却 ,直 到 下 次 开 炉 为止 。
前 ,一 定 要 打开 锅 炉 的人 孔 和 手 孔 等 ,彻 底 清 除 锅 炉 内 脱
∞它、( t I . O 毫r I _ 1 . 芑O — 0
԰㗙ㅔҟ
ᴢᯢ⋟ˈᖂ⊶ᇘ乥䌘⏅Ꮉ⿟Ꮬˈᮽᑈ↩ϮѢ⬉⺕എϢᖂ⊶ᡔᴃϧϮ˗‫ৢܜ‬ህ㘠Ѣᶤ㟾໽ ⷨお᠔ǃⶹৡ䗮ֵ݀ৌˈҢџ䳋䖒໽㒓/໽作㋏㒳䆒䅵ǃ鼠ࡼ䗮ֵ㒜ッᇘ乥ⷨথ੠ֵোᅠ ᭈᗻߚᵤㄝᮍ䴶ⱘᎹ԰˗㨫᳝ljHFSS⬉⺕ӓⳳ䆒䅵ᑨ⫼䆺㾷NJ˄Ҏ⇥䚂⬉ߎ⠜力ߎ ⠜˅ǃljHFSS໽㒓䆒䅵NJ˄⬉ᄤᎹϮߎ⠜力ߎ⠜˅ㄝϧϮк㈡˗Ўњᐂࡽ໻ᆊ᳈ࡴ催ᬜ Ⳉ㾖ⱘᄺдHFSSˈϢᖂ⊶EDA㔥ϧϮಶ䯳ড়԰ᓔথߎકњljϸ਼ᄺӮHFSSNJǃljHFSS ໽㒓䆒䅵ܹ䮼NJǃljHFSSᖂ⊶఼ӊӓⳳ䆒䅵ᅲ՟NJㄝ໮༫Ё᭛㾚乥෍䆁䇒⿟DŽ


L/mm
} 一


f ’
图5 6 . 4 5 G H z 时 驻 波 比随 缝 隙 尺 寸 的 变化 图



l \ ,

、 \


— 一

J f

图 6和 图 7分 别 为 优 化 后 S 1 I和 驻 波 比随 频 率 的 变 化 关 系 。 可见 优 化 后 中 心频 率 为 6 . 4 G H z ,相 对 优 化 前 变 化 很 小 ,表 现 较 稳 定 。 回 波 损 耗 的 极 小 值 约 为 一 1 9 d B,较 优 化 前 有 较大 提升 。绝 对带 宽 和相对 带 宽分 别 为 0 . 8 5 G H z和

HFSSЁ᭛㾚乥䇒⿟᥼㤤
ϸ਼ᄺӮHFSSЁ᭛㾚乥䇒⿟ ᴢᯢ⋟Џ䆆 Ё᭛䇁䷇䆆㾷ˈ㾚乥᪡԰ⓨ 冫ˈⳈ㾖ǃ⫳ࡼǃᯧᄺ˗ϸ਼ 14໽ⱘ催⏙㾚乥䇒⿟ˈ䅽ᙼ೼ ᳔ⷁⱘᯊ䯈‫ݙ‬䖙䗳❳ᙝǃᄺӮ ᑊᥠᦵHFSSⱘᅲ䰙᪡԰੠Ꮉ ⿟ᑨ⫼... HFSS໽㒓䆒䅵ܹ䮼㾚乥䇒⿟ ᴢᯢ⋟Џ䆆 Ё᭛㾚乥䇒⿟ˈܼ䴶䆆㾷њ໽ 㒓ⱘ෎⸔ⶹ䆚ǃHFSS໽㒓䆒 䅵ⱘ⌕⿟੠HFSS໽㒓䆒䅵ⱘ 䆺㒚᪡԰䆒㕂ˈ䕙ҹHFSS໽ 㒓䆒䅵ᅲ՟ˈࡽᙼ䖙䗳ᥠᦵ HFSS໽㒓䆒䅵ⱘ㽕乚...
作 为 设计 变 量 ,利 用 H F S S软 件 的参 数 分 析 和 优 化 分 析 功
能 调 整 了缝 隙 的 尺 寸 ,使 得 天 线 的 性 能 有 所 提 高 。 H F S S
f 编辑 : 吴 智 恒)
ᖂ⊶EDA㔥

HFSS೒к੠Ё᭛㾚乥෍䆁䇒⿟᥼㤤

/eda/hfss.html
大增益上升 到 7 . 6 5 d B。如 表 1 所 示 。上 述 结 果 表 明 优 化 后 天 线 的性 能提 高较 大 ,且 缝 隙 的尺 寸 对 缝 隙 耦 合 天 线 的性 能影 响 明显 。
软 件 的优 化 功 能 可缩 短 工 程 师 设 计 天 线 的剧 期 ,对 灭 线 的 细 化 设 计 起 指 导 作 用 .该 方 法 的 运 用 具 有 一 定 的 I 程 实 际 价 值
作 者 简 介 :刘 明 锋 ,男 , 1 9 8 2年 生 ,广 东 江 门人 , 大学 本 科 ,助
理 工 程 师 。研 究 领 域 :锅 炉 和压 力容 器 等 承 压 类 特 种 设 备检 验 。
f 编辑 : 王 智 圣1
( 上接第 3 9页 )

l ‘ 芑o \
毫等1 ' 宝螗>
合 天 线 的 重 要 的 尺 寸 ,直 接 影 响 着 谐 振 频 率 和谐 振 电 阻 。
相关文档
最新文档