我国工业余热利用现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国工业余热利用现状
摘要:工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。
关键词:工业余热;低温余热利用技术;节能减排
0引言
工业部门余热资源总量极为丰富,“十二五”期间可以开发利用的潜力超过1亿吨标准煤。“十二五”是我国节能减排承前启后的关键时期,国务院和有关部委已就节能减排工作作出全面的决策部署,明确提出单位GDP能耗降低16%左右、单位GDP二氧化碳排放降低17%左右、规模以上工业增加值能耗降低21%左右等多项节能减排目标。工业部门能源消费约占全国能源消费的70%。
目前余热利用最多的国家是美国,它的利用率达到60%,欧洲的达到50%,我国30%。就余热利用来看,我国还有很大的利用空间。中、高温余热发电已经形成了比较完备的产业,而低温余热发电则刚刚开始。
1.工业余热资源特点
工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。
对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。“十二五”时期,综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达3.4亿吨标准煤。
2010年末,余热资源开发利用总量折合为8791万吨标准煤。其中,余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。
从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为1.71亿吨标准煤、9300万吨标准煤、3454万吨标准煤,占这7个工业行业余热资源总量的比重分别为50.3%、27.3%、10.2%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。
从工业余热资源的地区分布来看,“十二五”时期,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河南,分别为1507万吨标准煤、680万吨标准煤、664万吨标准煤、530万吨标准煤、419万吨标准煤、361万吨标准煤。
从余热资源的来源来看,可分为高温烟气和冷却介质等六类,其中高温烟气余热和冷却介质余热占比最高,分别占50%和20%,而其他来源分别是废水、废气余热占11%,化学反应余热8%,可燃废气、废液和废料余热7%,高温产品和炉渣的余热4%。
从余热资源品位来看,约46%为400℃及以上的高品质余热资源,其余约54%则为400℃以下的中低品质余热资源。
从余热量占各行业燃耗量的比例来看,建材行业的余热占燃耗量的比例最大,约占40%,其他各行业的余热资源也丰富。各行业余热资源在该行业的燃耗量的比例如下表1-1:
表1-1 各行业余热占该行业燃耗量的比例
2.工业余热利用技术
工业余热资源来源于工业生产中各种炉窖、余热利用装置和化工过程中的反应等。这些余热能源经过一定的技术手段加以利用,可进一步转换成其他机械能、电能、热能或冷能等。利用不同的余热回收技术回收不同温度品位的余热资源对降低企业能耗,实现我国节能减排、环保发展战略目标具有重要的现实意义。
余热温度范围广、能量载体的形式多样,又由于所处环境和工艺流程不同及场地的固有
条件的限制,生产生活的需求,设备型式多样,如有空气预热器,窑炉蓄热室,余热锅炉,低温汽轮机等。根据佘热的温度范围,可以将目前的工业余热技术分为中高温余热回收技术和低温回收技术。中高温回收技术主要有三种技术:余热锅炉、燃气轮机、高温空气燃烧技术。低温回收技术主要有有机工质空肯循环发电、热泵技术、热管技术、温差发电技术、热声技术。
从目前工业余热现状来看,高温余热回收技术已经在我国的钢铁、水泥、冶金等行业广泛应用。但除了高温余热外,还有大量的低温工业余热未得到利用,我国我国对于低温余热的利用还处于尝试和发展阶段,低温余热回收技术不成熟,导致这部分余热多直接排向环境,造成了巨大的能源浪费。因此,本文着重概述低温余热回收技术。
3.有机工质朗肯循环发电系统
3.1有机工质朗肯循环发电系统的原理
有机朗肯循环是将热能转换为机械能的系统,与常规的蒸汽发电装置的热力循环原理相似,但有机工质低温热发电不是用水作工质,而是用有机物为工质的朗肯循环发电系统, 其工作原理如图4-1所示。系统由蒸发器、透平、冷凝器和工质泵四大部分组成, 有机工质在蒸发器中从低温热流中吸收热量, 生成具一定压力和温度的蒸汽, 蒸汽推动透平机械做功, 从而带动发电机或拖动其它动力机械。从透平机排出的有机蒸汽在冷凝器中向冷却水放热, 凝结成液态, 最后借助工质泵重新回到蒸发器, 如此不断地循环下去。
图3-1 有机工质朗肯循环发电原理图
3.1.2有机工质朗肯循环发电系统的特点
有机工质朗肯循环采用有机工质(如R123、R245fa、R152a、氯乙烷、丙烷、正丁烷、异丁烷等)作为循环工质的发电系统,由于有机工质在较低的温度下就能气化产生较高的压力,推动涡轮机(透平机)做功,故有机工质循环发电系统可以在烟气温度200℃左右,水温在80℃左右实现有利用价值的发电。
目前,对低温热能发电技术的研究主要集中在以下几个方面:工质的热力学特性和环保性能;混合工质的应用;热力循环的优化等。国外有机朗肯循环低温热发电技术主要应用于地热发电,但未来可能应用于太阳能热电、工业余热、生物质能和海洋温差能等。
目前美国、法国等国的余热发电技术的最低温度是80℃,我国自主研发的低温发电机组,通过提升热电转换介质的性能,已经实现了最低发电温度为60℃能实现稳定发电。
3.2有机工质朗肯循环发电系统国内外研究案例
国内外对于低温热能利用的研究主要开始于20世纪70年代的石油危机时期。其中,有机物朗肯循环的研究和应用最为广泛。早在1924年,就有人开始研究采用二苯醚作为工质