电力系统中性点接地方式有哪几种

合集下载

电力系统的中性点接地方式

电力系统的中性点接地方式

电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。

中性点接地方式有直接接地、不接地和经消弧线圈接地。

中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。

中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。

1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。

实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。

系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。

一般单相短路电流不大于同一地点三相短路电流。

此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。

当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。

接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。

单相接地电流较大,对邻近通信线路电磁干扰较强。

我国380/220V三相四线系统,中性点直接接地。

2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。

因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。

同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。

规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。

单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。

中性点接地

中性点接地

《电气工程基础》 电力系统中性点接地方式
第三节 中性点直接接地系统
定义:将电力系统中的部分或
全部变压器中性点直接接入大 地。
优点:过电压低,对绝缘要求
水平低,电力系统的电压越高 ,这一优点越突出。
缺点:当出现单相短路故障时
,单相短路电流很大,可靠性 差,在电气安全方面的问题比 较严重。
《电气工程基础》 电力系统中性点接地方式
缺点:


《电气工程基础》 电力系统中性点接地方式
第五节 中性点经电抗器接地
中性点经电抗器接地可以减少单向接地电流。 特别对于大接地电流的低阻值接地系统时效果更好 。因为低阻值的电阻器很笨重,降低接地电流的作 用小,电阻器上电压高;而电抗器可以减少有功功 率损耗,结构方面也比较简单,但接地设备的投资 大。 使用电抗器接地可以将接地电流限制到三相短 路电流的三分之一以上。
' UC
U C (U C ) 0
I C 3I C . A 3 3I C 0 3 I C 0
《电气工程基础》 电力系统中性点 接地方式
缺点:不接地系统发生单相短路接地并且接地电 流大于10A而小于30A时,有可能产生不稳定的 间歇性电弧,随着间歇性电弧的产生将引起幅 值较高的弧光接地过电压,其最大值不会超过 3.5倍相电压。对绝缘较差的设备、线路上的 绝缘弱点和绝缘强度很低的旋转电机有一定威 胁,在一定程度上对安全运行有影响。 优点:(1)简单,易于实现;(2)由于中性点 不接地配电网的单相接地电流很小,对邻近通 信线路、信号系统的干扰小。 应用:这种接地方式适用于接地电容电流不大的 场合,主要是低电压的系统中。
《电气工程基础》 电力系统中性点接地方式
第四节 中性点经电阻接地

发电机中性点接地方式及作用

发电机中性点接地方式及作用

发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。

发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。

本文将介绍几种常见的发电机中性点接地方式及其作用。

1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。

这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。

该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。

2.直接接地方式直接接地方式是指发电机中性点直接接地。

这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。

直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。

3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。

这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。

高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。

4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。

这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。

低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。

除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。

每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。

发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。

总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。

各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。

中性点接地方式

中性点接地方式

中性点接地方式电力系统中性点是指发电机或星形连接的变压器的中性点,其接地方式分为有效接地和非有效接地。

中性点非有效接地系统包括中性点不接地系统、中性点经消弧线圈接地系统和中性点经高阻抗接地系统等;中性点有效接地系统包括中性点直接接地系统和经小电阻接地系统。

下面对这些接地方式进行简单介绍一下。

中性点非有效接地系统1、中性点不接地系统:指与该系统直接连接的全部发电机和变压器中性点对大地绝缘的系统,也称为中性点绝缘系统。

中性点不接地系统结合目前我国的技术经济政策,采用中性点不接地方式运行的系统有:额定电压为3-10KV,接地电流不大于30A的电力网;额定电压为35-60KV,接地电流不大于10A的电力网。

2、中性点经消弧线圈接地系统:为了限制接地点电流,使电弧能自行熄灭,在电源中性点与大地之间接入消弧线圈的系统。

中性点经消弧线圈接地系统我国采用中性点经消弧线圈接地方式运行的系统有:额定电压为3-10KV,接地电流大于30A的系统;额定电压为35-60KV,接地电流大于10A的系统;额定电压为110KV的系统若处于雷电活动比较频繁的地区,若采用中性点直接接地方式不能满足安全供电要求,为减少因雷击等单相接地事故造成频繁跳闸的系统也可采用中性点经消弧线圈接地方式运行。

中性点有效接地系统1、中性点直接接地系统:为了防止发生单相接地故障时,电源中性点电位变化和相对地电压升高而将中性点直接和大地连接起来的系统。

中性点直接接地系统主要用于额定电压为110KV以上的电力系统中。

2、中性点经小电阻接地系统:随着用电负荷的不断增长,城市用电网和工业用电网中电缆线路占比较高,电网接地电容电流也较高(可达100A以上),若采用中性点经消弧线圈接地,则需要消弧线圈的容量很大,过电压倍数较高,需要提高电网绝缘水平,因此当接地电容电流较大时,建议采用中性点经小电阻接地方式。

中性点经小电阻接地系统其主要用于额定电压为6-10KV的配电网中电缆线路占比高的电网中。

电力系统中性点运行方式

电力系统中性点运行方式

电力系统中性点运行方式电力系统中性点接地方式有两大类:一类是中性点直接接地或经过低阻抗接地,称为大接地电流系统;另一类是中性点不接地,经过消弧线圈或高阻抗接地,称为小接地电流系统。

其中采用最广泛的是中性点接地、中性点经过消弧线圈接地和中性点直接接地等三种方式。

(一)中性点不接地系统当中性点不接地的系统中发生一相接地时,接在相间电压上的受电器的供电并未遭到破坏,它们可以继续运行,但是这种电网长期在一相接地的状态下运行,也是不能允许的,因为这时非故障相电压升高,绝缘薄弱点很可能被击穿,而引起两相接地短路,将严重地损坏电气设备。

所以,在中性点不接地电网中,必须设专门的监察装置,以便使运行人员及时地发现一相接地故障,从而切除电网中的故障部分。

在中性点不接地系统中,当接地的电容电流较大时,在接地处引起的电弧就很难自行熄灭。

在接地处还可能出现所谓间隙电弧,即周期地熄灭与重燃的电弧。

由于电网是一个具有电感和电容的振荡回路,间歇电弧将引起相对地的过电压,其数值可达(2.5〜3)Ux。

这种过电压会传输到与接地点有直接电连接的整个电网上,更容易引起另一相对地击穿,而形成两相接地短路。

在电压为3-10kV的电力网中,一相接地时的电容电流不允许大于30A,否则,电弧不能自行熄灭。

在20〜60kV 电压级的电力网中,间歇电弧所引起的过电压,数值更大,对于设备绝缘更为危险,而且由于电压较高,电弧更难自行熄灭。

因此,在这些电网中,规定一相接地电流不得大于10A。

(二)中性点经消弧线圈接地系统当一相接地电容电流超过了上述的允许值时,可以用中性点经消弧线圈接地的方法来解决,该系统即称为中性点经消弧线圈接地系统。

消弧线圈主要有带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。

绕组的电阻很小,电抗很大。

消弧线圈的电感,可用改变接入绕组的匝数加以调节。

显然,在正常的运行状态下,由于系统中性点的电压三相不对称电压,数值很小,所以通过消弧线圈的电流也很小。

中性点接地方式

中性点接地方式

三、接地方式的性能评价
• 正常运行的电力系统,无论何种接地方式都对 其没有影响。
• 但系统受到扰动或发生故障时,不同的接地方 式将出现不同的情况。
• 对供电可靠性的影响
• 电力系统单相对地故障约占80%,而其中绝大 多数故障都是瞬时性的。
• 架空线路中瞬时性故障约占单相接地故障的 90%;电缆线路约占30%。
个系统性、全局性问题。
二、接地方式的种类
• 中性点接地方式有:不接地(绝缘)、经电阻接 地、经电抗接地、经消弧线圈接地、直接接地。
• 电力系统中性点接地方式可划分为两大类:有 效接地方式和非有效接地方式。
• 有效接地方式又称大接地电流方式;非有效接 地方式又称小接地电流方式。
• 非有效接地电网依靠中性点的高阻抗将单相接 地故障电流控制在较小的数值。
• 丹东某变电站2001年8月至2002年2月间瞬时 性接地故障30余次,无一次永久接地,对供电 连续性没有任何影响。
• 小电流接地方式发生单相接地故障时不需要 继电保护和断路器动作,在系统和用户几乎无 感觉的情况下,接地电弧自动熄灭,系统保持 连续供电。
• 对于永久性单相接地故障,可以允许电网在 一段时间内(一般2小时)带故障运行。
• 大电流接地方式主要有:中性点直接接地方式、 中性点经小电阻或小电抗接地方式。 • 小电流接地方式主要有:中性点不接地方式、 中性点经消弧线圈接地方式和中性点经高电阻 接地方式等。
• 接地阻抗或接地电流的大小是相对的,因而需 要采用明确的指标来对两种接地方式进行界定。
• 多数国家规定:凡是系统的零序电抗(x0)与正 序电抗(x1)的比值≤3且零序电阻(r0)与正序电抗 (x1)的比值≤1的系统,属于有效接地系统;零序 电抗(x0)和正序电抗(x1)的比值>3且零序电阻 (r0)与正序电抗(x1)的比值>1的系统,属于非有 效接地系统。

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式有效接地系统(又称大电流接地系统)小电流接地系统(包含不接地和经消弧线圈接地)经电阻接地系统(含小电阻、中电阻和高电阻)大电流接地系统用于110kV及以上系统及。

该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。

大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。

这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。

主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。

作为220kV枢纽变电站的主变必须并列运行。

其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。

好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。

主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。

作为220kV负荷变电站的主变必须分列运行。

此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。

所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。

虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。

110kV侧中性点必须全部直接接地。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。

电力系统中性点接地方式

电力系统中性点接地方式

电力系统中性点接地方式概述在电力系统中,中性点接地方式是指将电力系统中的中性点直接接地或通过特定的接地装置接地。

中性点接地方式的选择对电力系统的平安运行和人身平安至关重要。

本文将介绍电力系统中性点接地方式的常见类型和其特点。

直接接地方式直接接地方式是最常见的中性点接地方式之一。

它通过将电力系统中的中性点直接接地,使中性点与地之间形成低阻抗的电气连接。

直接接地方式有以下特点:1.简单:直接接地方式的接地装置相对简单,仅需将中性点与地之间连接即可。

2.易于检测故障:由于中性点直接接地,当系统中发生接地故障时,电流会通过接地装置流入地,形成接地电流,容易被检测到。

3.易产生大地电流:直接接地方式容易导致大地电流的产生,对于电力系统的线路和设备会产生一定的烧毁和损坏风险。

4.容易产生人身伤害:直接接地方式下,接地电阻较低,因此会产生较大的接触电压,存在人身触电的风险。

直接接地方式适用于施工本钱低、电力系统规模较小、对电网故障检测要求较高的场景。

绝缘中性点接地方式绝缘中性点接地方式是在电力系统中采用绝缘装置将中性点与地之间隔离,以实现中性点接地的方式。

绝缘中性点接地方式有以下特点:1.较低的接触电阻:绝缘中性点接地方式中,中性点与地之间存在绝缘装置,可以降低接地电阻,减小接触电压。

2.减少地电流:由于绝缘装置的隔离作用,绝缘中性点接地方式可以降低地电流的产生,减小对电力系统的烧毁和损坏风险。

3.难以检测故障:由于中性点与地之间的隔离,当系统发生接地故障时,可能无法轻易检测到接地电流,增加了故障诊断的难度。

绝缘中性点接地方式适用于电力系统规模较大、对地电流要求较低、对接触电压要求较高的场景。

高阻中性点接地方式高阻中性点接地方式是在电力系统中采用高阻抗装置将中性点与地之间接地的方式。

高阻中性点接地方式有以下特点:1.高接地电阻:高阻中性点接地方式中,通过引入高阻抗装置,使中性点与地之间形成高阻抗连接,有效提高了接地电阻。

中性点运行方式

中性点运行方式

中性点运行方式
我国电力系统常用的中性点接地方式一共有四种:中性点不接地、中性点经消弧线圈接地、中性点直接接地、中性点经电阻或电抗接地。

其中中性点经阻抗接地按接地电流大小又分经高阻抗接地和低阻抗接地。

目前在我国,330KV和500KV的超高压电力网,采用中性点直接接地方式,110-220KV电力网也采用中性点直接接地方式,只是在个别雷害事故较为严重的地区和某些大网的110KV采用中性点经消弧线圈接地方式,以提高供电可靠性;20-60KV电力网,一般采用中性点消弧线圈接地方式,当接地电流小于10A时也采用不接地方式,而在电缆供电的城市电网,则一般采用经小电阻接地当时,3-10KV电力网,一般均采用中性点不接地方式,当接地电流大于30A 是,应采用经消弧线圈接地方式,同样,在城网使用电缆线路是,有时才采用经小电阻接地方式。

1000V以下的电力网,可以采用中性点接地或不接地的方式,只有380、220v的三相四线电力网,为保证人员安全,其中性点必须直接接地。

中性点不接地,经消弧线圈接地,直接接地
35kv及其以下一般是配电网,采用中性点不接地、经消弧线圈接地,作用是保证供电可靠性。

35kv以上一般是高压输电网,直接接地,目的是限制短路电流和相电压。

电力系统中性点接地方式有哪些

电力系统中性点接地方式有哪些

平丰电气6月6日山东平丰电气设备有限公司主要生产高中低压电力电气产品,我们将提供有价值的阅读,与中国电力电气企业共同成长。

——电力系统中性点接地方式是一个很重要的综合性问题,今天我们来聊一聊这方面的问题。

电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。

电力系统中性点与大地间的电气连接方式称为电力系统中性点接地方式(即中性点运行方式)。

中性点非有效接地,发生单相接地时,因发生单相接地时由于不构成短路回路,接地电流被限制到较小数值,故又称为小接地电流系统;而中性点有效接地系统,接地电流很大,故又称为大接地电流系统。

我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。

电力系统中性点的运行方式不同,其技术特性和工作条件也不同,还与故障分析、继电保护配置、绝缘配合等均密切相关。

那么究竟采用哪一种中性点运行方式呢?这就要综合考虑到电网的绝缘水平、系统供电的可靠性和连续性的要求、电网的造价以及对通信线路的干扰程度等多方面因素。

为了分析这个问题,首先我们要了解中性点接地与否,在单相接地故障时,故障电压的情况。

1、中性点不接地如上图所示,当中性点不接地系统发生单相接地故障时,故障相电压为零。

非故障相相电压上升为线电压,为原来的1.732倍。

但线电压不变,对电力用户没有影响,系统还可以继续供电,一般可允许继续运行两个小时,此期间应发出信号,由工作人员尽快查清原因并解除故障,使系统正常运行。

故当线路不长、电压不高时,接地电流较小,电弧一般能自动熄灭,特别是35kV 及以下的系统中,绝缘方面的投资增加不多,而供电可靠性较高的优点突出,所以中性点宜采用不接地的运行方式。

当电压高、线路长时,接地电流较大。

可能产生稳定电弧或间歇性电弧,而且电压等级较高时,整个系统绝缘方面的投资大为增加。

上述优点便不存在了。

2、中性点经消弧线圈接地单相接地时,当接地电流大于10A而小于30A时,有可能产生不稳定的间歇性电弧,随着间歇性电弧的产生将引起幅值较高的弧光接地过电压。

电力系统中性点接地方式

电力系统中性点接地方式

电力系统中性点接地方式接地,一个耳熟能详的词语,虽然很普通,可其中蕴含丰富的知识。

中性点接地,生活中无处不在,但伸出手来,却仿佛感受不到,知其然更需知其所以然。

一、基本概念电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。

三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。

中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择,过电压水平及继电保护方式,通讯干扰等。

二、基本接地方式我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。

1、中性点不接地当中性点不接地系统发生单相接地故障时,故障相电压为零。

非故障相相电压上升为线电压,为原来的1732倍。

但线电压不变,对电力用户没有影响,系统还可以继续供电,一般可允许继续运行两个小时,此期间应发出信号,由工作人员尽快查清原因并解除故障,使系统正常运行。

u故当线路不长、电压不高时,接地电流较小,电弧一般能自动熄灭,特别是35kV及以下的系统中,绝缘方面的投资增加不多,而供电可靠性较高的优点突出,所以中性点宜采用不接地的运行方式。

当电压高、线路长时,接地电流较大。

可能产生稳定电弧或间歇性电弧,而且电压等级较高时,整个系统绝缘方面的投资大为增加,上述优点便不存在了。

2、中性点经消弧线圈接地单相接地时,当接地电流大于IOA而小于30A时,有可能产生不稳定的间歇性电弧,随着间歇性电弧的产生将引起幅值较高的弧光接地过电压。

该方式就是在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流补偿线路接地的电容电流,使流过接地点的电流减小到能自行熄灭的范围。

中性点经消弧线圈接地,保留了中性点不接地方式的全部优点。

由于消弧线圈的电感电流补偿了电网接地电容电流,使得接地点残流减少到5A及以下,降低了故障相接地电弧恢复电压的上升速度,以致电弧能够自行熄灭,从而提高供电可靠性。

电力系统中性点接地方式

电力系统中性点接地方式

32 3 1k 电 网 . -0v
以考 虑供 电可靠性 和故障后果 为主 ,一 般均采用 中性点不接地的运行方式 ,当接地电 流不大于 3 A时 ,采用经消弧线圈接地。 0 33 1 ~ 0 V 电力 网 . 06k 般 线路不 长 ,是 目前 的工业 企业受 电 最主要的电力网 ,过电压和绝缘水平 对电力 网 的建设 投资 影 响小 ,主要从供 电可靠 性来 考 虑 ,采用小接地电流系统 。 3 k . l V以 下 电力 网 4 绝缘水 平要求 低 ,故 障波及范 围小 ,采 用何种接地方 式均可 。 35 2O3 O . 2 ,8 V的三相四线制电力网 从安全用电角度考虑 ,中性点直 接接地 。 结语 总之 ,电力 系统采用何 种接地方 式要考 虑各方面的因素 ,灵活选择。
图书馆 学刊Leabharlann ,034 :14 . 20 ()4_ 3 _
嘲于 良之. 图书馆 学导论 . 北京: 学 出版社 , 科
2 o. 03
f 衍玲 高 校图书 馆核心竞争力的培养和构建研
究周 书馆---]0 4 () 53 . ik-. 0 ,1. -7:  ̄L 2 [ J 3
lJ 7尹红 _ ann l rig环境下高校图书馆教育资源服 e 务研 究[1 O. 四川大学公共管理学院 2 0 ,5. 0 4( ) 作者简介: 刘青年(9 9 )男, 15 ~ , 大学本科 , 唐 山学院图书馆, 已发表论文 4篇。
我 国 目前 各 级 电 力 系统 的 中性 点 运行 方 式 。
关键词 : 中性 点 ; 地 方 式 ; 类 ; 接 分 比较 ; 行 方 式 运
引 言
电 力 系 统 中性 点 的接 地 方 式 要 通 过 电 气

电力系统有哪几种接地方式?

电力系统有哪几种接地方式?

电力系统有哪几种接地方式?在电力系统里边,中性点的工作接地方式有:中性点的直接接地、中性点经过消弧线圈接地和中性点不接地等三种。

其中中性点不接地的方式始终是我国配电网使用最多的一种方式。

1、对于一次的设备接地,主要有直接的接地,经过电阻接地和经过消弧线圈接地。

2、在220kV以上的系统中,主变压器中性点采纳直接接地的,称之为大电流接地系统。

3、在110及66kv系统中,主变压器中性点消弧线圈接地的相对比较多,称之为小电流接地系统。

4、对于10kV系统而言,常见系统的有不接地系统,主要是由于电容电流较小,发生单相接地对设备损害比较小,可以带故障运行并为检修人员来供应检修时间。

可以通过配备小电流选线装置来提高查找故障的速度。

当然10kV经电阻接地的也比较多,一般是用于电容电流比较大的10kV系统,它通过接入电阻将单相故障电流限定在某一范围内,然后来实现动作与跳闸。

5、对于6到10kV的系统,由于设备绝缘水平按线电压考虑对于设备的造价影响不大,为了提高供电方面的牢靠性,一般都采纳中性点不接地或者经消弧线圈接地的方式。

6、至于110kV及以上的系统,重点考虑降低设备绝缘水平,简化继电等爱护装置,一般都采纳中性点直接接地的方式。

并采纳了送电线路全线架设避雷线和装设自动重合闸装置等措施来执行,这样保证供电牢靠性。

7、在20到60kV范围的系统,这算是一种中间状况,一般一相接地时候的电容电流不很大,网络也不很简单,设备绝缘水平的提高或者降低对于造价影响不很显著,因此一般均采纳中性点经消弧线圈接地方式。

8、至于1KV以下的电网,中性点采纳不接地方式来运行。

然而电压为380/220V的系统,采纳了三相五线制,零线是为了取到机电压,而地线是为了确保平安。

中性点接地方式ppt课件

中性点接地方式ppt课件

下应该使零序与正序电抗之比(X0/X1)为正值且不大于3,而其零序 电阻与正序电抗之比(R0/X1)为正值且不大于1。
110kV及220kV系统中变压器中性点直接或经低阻抗接地,部分
变压器中性点也可不接地。
330kV及500kV系统中不允许变压器中性点不接地运行。
6kV 和 10kV 配 电 系 统 以 及 发 电 厂 厂 用 电 系 统 , 单 相 接 地 故 障
对地电容电流。当超过允许值时,将烧伤定子铁芯,进而损坏定子
绕组绝缘,引起匝间或相间短路,故需要在发电机中性点采取措施,
以保护发电机免遭损坏。
发电机中性点可采用不接地、经消弧线圈或高电阻接地的方式。
容量为300MW及以上的发电机应采用中性点经消弧线圈或高电阻接
地的方式。
3~20kV具有发电机的系统,发电机内部发生单相接地故障不
18.1.4 消弧线圈的补偿容量,
发电机Ic=1.732×2×3.14259×50×0.1×10-6×10.5×103=0.571(A)
Q
KIC
UN 3
=1.35×3.571×10.5/1.732=29.23(KVA)
完整版ppt课件
15
其中 k 为补偿系数,过补偿取 1.35。k 的取值可根据DL/T5222-2005 第
Q
KIC
UN 3
= 1.35 × 6 ×6 ×2 ×10/1.732= 561.2KVA,故选C。
完整版ppt课件
14
5、假定10.5kV母线上连接有发电机、变压器和直配线,在发生单相接
地故障时,直配线总的对地电容电流为3A,发电机每相对地电容为0.1
微法,如忽略母线、变压器低压绕组等其他元件的对地电容电流,若允

电力系统继电保护实用技术问答

电力系统继电保护实用技术问答

电⼒系统继电保护实⽤技术问答电⼒系统继电保护基础知识第⼀章⼀、电⼒系统继基本知识6、我国电⼒系统中中性点接地⽅式有哪⼏种?它们对继电保护的原则要求是什么?答:我国电⼒系统中中性点接地⽅式有三种:①中性点直接接地⽅式;②中性点经消弧线圈接地⽅式;③中性点不接地⽅式。

110kV及以上电⽹的中性点均采⽤第①种接地⽅式。

在这种系统中,发⽣单相接地故障时接地短路电流很⼤,故称其为⼤接地电流系统。

在⼤接地电流系统中发⽣单相接地故障概率较⾼,可占总短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速地切除接地短路故障,以免危及电⽓设备的安全。

3~35kv电⽹的中性点采⽤第②或③种接地⽅式。

在这种系统中,发⽣单相接地障时接地短路电流很⼩,故称其为⼩接地电流系统。

在⼩接地电流系统中发⽣单相接地故障时,并不破坏系统线电压的对称性,系统还可以继续运⾏1~2h。

同时,绝缘监察装置发出⽆选择信号,可由值班⼈员采取措施加以消除。

只有在特殊情况或电⽹⽐较复杂、接地电流⽐较⼤时,根据技术保安要求,才装设有选择性的接地保护,动作于信号或跳闸。

所以⼩接地电流系统的接地保护带有很⼤的特殊性。

16、⼩接地电流系统中,为什么采⽤中性点经消弧线圈接地?答:中性点⾮直接接地系统发⽣单接地故障时,接地点将通过接地线路对应电压等级电⽹的全部对地电容电流。

如果此电容电流相当⼤,就会在接地点产⽣间歇性电弧,引起过电压,从⽽时⾮故障相对地电压极⼤增加。

在电弧接地过电压作⽤下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩⼤。

为此,我国采取的措施是:当各级电压电⽹单相接地故障时,如果接地电容电流超过⼀定数值(35kv电⽹为10A,10kv电⽹为10A,3~6kv 电⽹为30A),就在中性点装设消弧线圈,其⽬地市利⽤消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少,以致⾃动熄弧,保证继续供电。

17、什么是消弧线圈的⽋补偿、全补偿、过补偿?答:中性点装设消弧线圈的⽬的是利⽤消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少。

中性点接地与不接地

中性点接地与不接地

我国电力系统中性点接地方式主要有两种,即:1、中性点直接接地方式(包括中性点经小电阻接地方式)。

2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。

中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。

中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。

在我国划分标准为:X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统属于小接地电流系统注:X0为系统零序电抗,X1为系统正序电抗。

中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

电力系统接地讲解

电力系统接地讲解

小电流接地系统
当系统发生变化(增加或减少线路长度)时消 弧线圈的分接应按规定(过补偿、欠补偿)跟 随调节。目前电网发展和变化速度较快,至使 许多小电流接地系统的对地电容电流变化很快, 人工操作频繁。随着电网进一步扩大,电容电 流也超过100A,消弧线圈的工作电流超过系统 电容电流的10%并且不超过10A的目标无法实现。 于是人们开发了自动补偿消弧线圈。 简单介绍两种:
大电流接地系统
作为220kV负荷变电站的主变必须分列运行。 此时所有主变的220kV侧中性点必须通过间隙接地, 110kV侧中性点全部接地运行。所有主变不能向 220kV系统提供零序电流,110kV侧零序阻抗稳定。 主变220kV侧中性点加装间隙保护,保护动作跳开 各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并 列运行并有两个电源。虽然主变分列运行,但必 须有一台主变的220kV侧中性点直接接地,其他 主变的220kV侧中性点通过间隙接地。110kV侧中 性点必须全部直接接地。主变220kV侧中性点加 装间隙保护,保护动作跳开各侧断路器。
跟踪式
它由一个带短路线圈的变压器、可控硅及消除谐波装 置柜和控制器组成。变压器在短路线圈开路时一次线 圈的电流很小,为变压器的空载电流。短路线圈短路 时一次线圈的电流就是消弧线圈的额定电流。控制双 向可控硅的导通角可调整短路线圈的短路程度,进而 调整消弧线圈的工作电流。整个装置运行后控制器通 过不停变换可控硅的导通角,得到不同的弧线圈的工 作电流点,再经过测量该电流点的中性点(开口三角 电压)电压,计算出系统的电容电流,并进行记忆。 系统的电容电流变化时控制器随时测量并改变记忆。 系统发生单相接地(母线PT开口三角电压达到30V以 上)时,可控硅导通角按记忆迅速开通,接地点电容 电流被补偿接近为零。电弧可迅速熄灭。系统接地恢 复后,可控硅关闭。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统中性点接地方式有哪几种
1、中性点不接地(绝缘)的三相系统
各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。

这时中性点接地与否对各相对地电压没有任何影响。

可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。

这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。

在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。

二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。

但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。

所以在这种系统中,一般应装设绝缘监视或接地保护装置。

当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。

一相接地系统允许继续运行的时间,最长不得超过2h。

三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。

弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发。

相关文档
最新文档