电磁感应中的“双杆问题

合集下载

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的双杆双动导轨滑轨能量动量问题⼤综合问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培⼒、⽜顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学⽣综合上述知识,认识题⽬所给的物理情景,找出物理量之间的关系,因此是较难的⼀类问题,也是近⼏年⾼考考察的热点。

下⾯对“双杆”类问题进⾏分类例析1.“双杆”向相反⽅向做匀速运动当两杆分别向相反⽅向运动时,相当于两个电池正向串联。

[例5] 两根相距d=0.20m的平⾏⾦属长导轨固定在同⼀⽔平⾯内,并处于竖直⽅向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上⾯横放着两条⾦属细杆,构成矩形回路,每条⾦属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两⾦属细杆在平⾏于导轨的拉⼒的作⽤下沿导轨朝相反⽅向匀速平移,速度⼤⼩都是v=5.0m/s,如图所⽰,不计导轨上的摩擦。

(1)求作⽤于每条⾦属细杆的拉⼒的⼤⼩。

(2)求两⾦属细杆在间距增加0.40m的滑动过程中共产⽣的热量。

解析:(1)当两⾦属杆都以速度v匀速滑动时,每条⾦属杆中产⽣的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度⼤⼩为:因拉⼒与安培⼒平衡,作⽤于每根⾦属杆的拉⼒的⼤⼩为F1=F2=IBd。

由以上各式并代⼊数据得N(2)设两⾦属杆之间增加的距离为△L,则两⾦属杆共产⽣的热量为,代⼊数据得Q=1.28×10-2J。

2.“双杆”同向运动,但⼀杆加速另⼀杆减速当两杆分别沿相同⽅向运动时,相当于两个电池反向串联。

[例6] 两根⾜够长的固定的平⾏⾦属导轨位于同⼀⽔平⾯内,两导轨间的距离为L。

导轨上⾯横放着两根导体棒ab和cd,构成矩形回路,如图所⽰。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平⾯内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨⽆摩擦地滑⾏。

高三物理专题复习:电磁感应中的“双杆问题”

高三物理专题复习:电磁感应中的“双杆问题”

电磁感应中的“双杆问题”教学目标:综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法学习难点:电磁感应等电学知识和力学知识的综合应用,主要有1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。

重点知识及方法点拨:1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

2.“双杆”中两杆都做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

3.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

4.电磁感应中的一个重要推论——安培力的冲量公式RBLBLq t BLI t F ∆Φ==∆=∆ 感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。

在时间△t 内安培力的冲量RBL BLq t BLI t F ∆Φ==∆=∆,式中q 是通过导体截面的电量。

利用该公式解答问题十分简便。

电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b =34m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少?2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

电磁感应中的双金属棒运动分析

电磁感应中的双金属棒运动分析

(1)在运动中产生的焦耳热最多是多少. (2)当a棒的速度变为初速度的3/4时,b棒的加速度是多少? 解:(1)a、b两棒产生电动势和受力情况如图2所示。a、b两棒分 别在安培力作用下做变减速运动和变加速运动,最终达到共同速度, 开始匀速运动。由于安培力是变化的,故不能用功能关系求焦耳热; 由于电流是变化的,故也不能用焦耳定律求解。 在从初始至两棒达到速度相同的过程中,由于两棒所受安培力等大 反向,故动量守恒,有
最小电流 当v2=v1时: I=0 v0
Blv0 Im R1 R2
v
3.速度特点
v共
二、两杆在除安培力之外的力作用运动问题
例题2:如图3所示,两根平行的金属导轨,固定在同一水平面上, 磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨电阻忽略 不计,导轨间的距离L=0.20m。两根质量均为m=0.10kg的金属杆甲、 乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属 杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导 轨平行,大小为0.20N的力F作用于金属杆甲上,使金属杆在导轨上滑 动。 (1)分析说明金属杆最终的运动状态? ( 2 )已知当甲的位移为 7m 时,金属杆甲的加速度 a=1.6m/s2 ,甲、 乙两杆产生的焦耳热为Q=0.1J,求此时两金属杆的速度各为多少?
(1)分析说明金属杆最终的运动状态? ( 2 )已知当甲的位移为 7m 时,金属杆甲的加速度 a=1.6m/s2 ,甲、 乙两杆产生的焦耳热为Q=0.1J,求此时两金属杆的速度各为多少?
解:(1)甲、乙产生电动势和受力情况如图4所示。由于开始甲速 度大于乙的速度,所以甲杆产生的电动势大,电流沿逆时针方向。随 着电流增大,安培力增大,甲的加速度减小,乙的加速度增大,当二 者加速度相同时,两棒的速度差不再改变,电流恒定,这样甲、乙最 终以相同的加速度做匀加速运动,而例1中两棒最终做匀速运动。

电磁感应双杆问题

电磁感应双杆问题

电磁感应双杆问题(排除动量范畴)1.导轨间距相等例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。

匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。

两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。

已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。

求此时杆2克服摩擦力做功的功率。

解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ①感应电流 21R R EI += ②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ①对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212202R R l B g m v g m P g +-=μμ ⑤2. 导轨间距不等例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。

11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

电磁感应中的动力学问题“双杆”滑轨问题

电磁感应中的动力学问题“双杆”滑轨问题
分析:ab 在F作用下向右加速运动,切割磁感应线,产生感应 电流,感应电流又受到磁场的作用力f,画出受力图:
a=(F-f)/m
v
E=BLv
I= E/R
f=BIL
最后,当f=F 时,a=0,速度达到最大,
F=f=BIL=B2 L2 vm /R
a
vm=FR / B2 L2
vm称为收尾速度.
R f1
F
f2
⑴在运动中产生的焦耳热最多是多少 ⑵当ab棒的速度变为初速度的3/4时, cd棒的加速度是多少?
精选版ppt
21
例4:如图所示,两根平行的金属导轨,固定在同一水平面上,磁 感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻 很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为 m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动 过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0 时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s, 金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为 多提少高?:两金属杆的最大速度差为多少?
作业一:两根足够长的固定的平行金属导轨位于同一水 平面内,两导轨间的距离为L。导轨上面横放着两根导 体棒ab和cd,构成矩形回路,如图所示.两根导体棒的 质量皆为m,电阻皆为R,回路中其余部分的电阻可不 计.在整个导轨平面内都有竖直向上的匀强磁场,磁感 应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开 始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导
由于安培力和导体中的电流、运动速度
均有关, 所以对磁场中运动导体进行动态分
析十分必要。

(完整版)电磁感应中双杆模型问题答案

(完整版)电磁感应中双杆模型问题答案

电磁感应中双杆模型问题一、 在竖直导轨 上的“双杆滑动”问题1.等间距型如图 1 所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒 导轨紧密接触且可自由滑动,先固定 a ,释放 b ,当 b 速度达到 10m/s 时,再释放 a ,经 1s 时间 a的速度达到 12m/s ,则:A 、 当 va=12m/s 时, vb=18m/sB 、当 va=12m/s 时, vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放 b ,后释放 a ,所以 a 、b 一开始速度是不相等的,而且 b 的速度要大于 a 的速度, 轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判 断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力, 对两杆进行受力分析如图 1。

开始两 者的速度都增大,因安培力作用使 a 的速度增大的快, b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了 感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作 用下向下做加速度为 g 的匀加速直线运动。

在释放 a 后的 1s 内对 a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的, 设在 1s 内它的冲量大小都为 I ,选向下的方向为正方向。

当 棒先向下运动时, 在 和 以及导轨所组成的闭合回路中产生感应电流, 于是 棒受到向下的安培力, 棒受到向 上的安培力,且二者大小相等。

释放 棒后,经过时间 t ,分别以 和 为研究对象,根据动量定理,则有:对 a 有: ( mg + I ) t ·= m v a0,对 b 有: ( mg - I ) t · = m v b - m v b0 联立二式解得: v b = 18 m/s ,正确答案为: A 、 C 。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。

MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。

t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。

求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。

MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。

t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。

求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。

电磁感应中的双杆运动问题

电磁感应中的双杆运动问题

电磁感应中的双杆运动问题江苏省特级教师 戴儒京 有关“电磁感应”问题,是物理的综合题,是⾼考的重点、热点和难点,往往为物理卷的压轴题。

电磁感应中的“轨道”问题,较多见诸杂志,⽽电磁感应中的“双杆运动”问题的专门研究⽂章,在物理教学研究类杂志还很咸见,兹举例说明如下。

例1(2006年⾼考重庆卷第21题)两根相距为L的⾜够长的⾦属直⾓导轨如图所⽰放置,它们各有⼀边在同⼀⽔平内,另⼀边垂直于⽔平⾯。

质量均为m的⾦属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为µ,导轨电阻不计,回路总电阻为2R。

整个装置处于磁感应强度⼤⼩为B,⽅向竖直向上的匀强磁场中。

当ab杆在平⾏于⽔平导轨的拉⼒F作⽤下以速度V1沿导轨匀速运动时,cd杆也正好以速度V2向下匀速运动。

重⼒加速度为g。

以下说法正确的是( ) A.ab杆所受拉⼒F的⼤⼩为µmg+ B.cd杆所受摩擦⼒为零 C.回路中的电流强度为 D.µ与V1⼤⼩的关系为µ= 【解析】因4个选项提出的问题皆不同,要逐⼀选项判断。

因为ab杆做匀速运动,所以受⼒平衡,有,其中, ,,, 所以,所以F=µmg+,A正确; 因为cd杆在竖直⽅向做匀速运动,受⼒平衡,所以cd杆受摩擦⼒⼤⼩为,或者,因为cd杆所受安培⼒作为对轨道的压⼒,所以cd杆受摩擦⼒⼤⼩为,总之,B错误; 因为只有ab杆产⽣动⽣电动势(cd杆运动不切割磁感线),所以回路中的电流强度为,C 错误; 根据B中和,得µ=,所以D正确。

本题答案为AD。

【点评】ab杆和cd杆两杆在同⼀个⾦属直⾓导轨上都做匀速运动,因为ab杆切割磁感线⽽cd杆不切割磁感线,所以感应电动势是其中⼀个杆产⽣的电动势,即,⽽不是,电流是,⽽不是。

例2(2006年⾼考⼴东卷第20题)如图所⽰,在磁感应强度⼤⼩为B,⽅向垂直向上的匀强磁场中,有⼀上、下两层均与⽔平⾯平⾏的“U”型光滑⾦属导轨,在导轨⾯上各放⼀根完全相同的质量为的匀质⾦属杆和,开始时两根⾦属杆位于同⼀竖起⾯内且杆与轨道垂直。

电磁感应中“双杆同时 切割磁感线”问题分析

电磁感应中“双杆同时 切割磁感线”问题分析
2 双 杆 反 向 运 动 切 割 磁 感 线
这类 问题 可将 两棒 等效 为两 电源 , 并 同 向 串联 来
处理 , 进行 分 析可求 解.
例 2 水 平 面 上有 两 根 相 互平 行 的 金 属 导 轨 , 相距 d 一
◇ 江苏 李 全备
0 . 2 0 m. 磁 感 应 强 度 B- =0 . 2 0
将 两 金属杆 等效 为 2个 电源. 不 论磁 场方 向
, 解析 如 何 两者 均构 成反 向 串联 关 系. 设时刻 t 时

共产 生 的 热量 为 : Q一 , Rt
据 可得 : Q一 1 _ 2 8 ×1 O J .
・ 2 r ・
, 代 入 已 知 数
金 属杆 甲、 乙速度 大小 为 ・ U 干 n . _ 者 产 生 的 电动势 分别为: E 一B z 。 , E 。 一B £ u . 则 路 中的感 应 电动势
I 一 1 2 , 一

金 属 柯: 甲: F~Bl l —l Y l a . 金 属 杆 甲 和 乙 上 的 安 培
始终 保持 大 小 相 等 、 方 向相 反 , 因 此两 杆 的 动 量 等 于拉 F的 冲量 : F t — +I f t ; U 2 .
串联 电路 性 质 、 电功 率 等 公 式 的应 片 j . 力
联关系. 两 金 属 杆 各 自产 生 的 电 动 势 为 : E 一E , 一
B d v , 则 同路 中的 总感 应 电 动势 E— E +E! 一2 B d v , 故 同路 中 的电流 为 j 一 . 由于拉 力 与安培 力平 衡 , 作 于 每 根 金属 杆 的拉
何下手, 还有 些 同学 冈考虑 欠周 到 , 往 往 分 析不 到 位 ,

电磁感应中的动力学问题“双杆”滑轨问题

电磁感应中的动力学问题“双杆”滑轨问题

两棒以共同速度匀速运动, 当E1=E2时,I=0,F=0,两棒以共同速度匀速运动,vt =1/2 v , 两棒以共同速度匀速运动 B B F 1 E1 I
v
2 E2 F
F 1
E1 v I t
2 E2
F
vt
由楞次定律, 由楞次定律,感应电流的效果总要阻碍产生感应 棒向右运动时, 棒也要向右运动 棒也要向右运动。 电流的原因, 棒向右运动时 电流的原因,1棒向右运动时, 2棒也要向右运动。 做变减速运动, 做变加速运动, 杆1做变减速运动,杆2做变加速运动,稳定时, 做变减速运动 做变加速运动 稳定时, 两杆的加速度为0,当两棒相对静止时, 两杆的加速度为 ,当两棒相对静止时,没有感应 电流,也不受磁场力作用,以共同速度匀速运动。 电流,也不受磁场力作用,以共同速度匀速运动。 由动量守恒定律: 由动量守恒定律 mv=(m+m)vt 共同速度为vt =1/2 v 共同速度为 它们的速度图象如图示: 它们的速度图象如图示:
2
⑴ ⑵ ⑶
P表示杆 克服摩擦力做功的功率, 表示杆2克服摩擦力做功的功率 以P表示杆2克服摩擦力做功的功率,则有
P = PF − I (R 1 + R 2 ) − µ m1gv 0
由以上各式得
(4 )
P = µ m 2g[v 0 −
µ mgg Bl
2 2
(R1 + R 2 )]
(5 )
M 2
1
N v0 Q
电磁感应和力学规律 的综合应用
双杆” 专题五“双杆”滑轨问题
电磁感应中产生的感应电流在磁场中将受 到安培力的作用,因此, 到安培力的作用,因此,电磁感应问题往往跟 力学问题联系在一起, 力学问题联系在一起,解决这类电磁感应中的 力学问题,不仅要应用电磁学中的有关规律, 力学问题,不仅要应用电磁学中的有关规律, 如楞次定律、法拉第电磁感应定律、 如楞次定律、法拉第电磁感应定律、左右手定 安培力的计算公式等, 则、安培力的计算公式等,还要应用力学中的 有关规律,如牛顿运动定律、动量定理、 有关规律,如牛顿运动定律、动量定理、动能 定理、动量守恒定律、机械能守恒定律等。 定理、动量守恒定律、机械能守恒定律等。要 将电磁学和力学的知识综合起来应用。 将电磁学和力学的知识综合起来应用。 由于安培力和导体中的电流、 由于安培力和导体中的电流、运动速度 均有关, 所以对磁场中运动导体进行动态分 均有关, 所以对磁场中运动导体进行动态分 十分必要。 析十分必要。

电磁感应中的双杆问题

电磁感应中的双杆问题

匀速运动,v
m=m
gRsin B2L2
α
(2)双杆模型 ①模型特点 a.一杆切割时,分析同单杆类似。 b.两杆同时切割时,回路中的感应电动势由两杆共同决定,E=ΔΔΦt =Bl(v1-v2)。
a.初速度不为零,不受其他水平外力的作用 光滑的平行导轨
光滑不等距导轨
示意图
质量m1=m2电阻r1=r2长度L1= L2
第四章 电磁感应
电磁感应中的双杆问题
模型一(v0≠0) 模型二(v0=0) 模型三(v0=0) 模型四(v0=0)
示 意 图
单 杆 ab 以 一 定 初速度 v0 在光 滑水平轨道上
轨道水平光 滑,单杆 ab 质 量为 m,电阻
轨道水平光 滑,单杆 ab 质 量为 m,电阻 不计,两导轨
轨道水平光 滑 , 单 杆 aห้องสมุดไป่ตู้ 质量为 m,电 阻不计,两导
E = BLv↑ ⇒ I↑⇒安培力 F 安=BIL↑,由 F -F 安=ma 知 a↓ ,当 a = 0
⇒感应电动势 E=BLv↑, 经过 Δt 速度为 v+Δv,此时 感 应 电 动 势 E′ = BL(v + Δv),Δt 时间内流入电容器的 电荷量 Δq=CΔU=C(E′-
E)=CBLΔv,电流 I=ΔΔqt = CBLΔΔvt =CBLa,安培力 F 安
⑵整个运动过程中感应电流
最多产生了多少热量;
⑶当杆A2与杆A1的速度比为 1∶3时,A2受到的安培力大小。
3.如图所示,两根平行的金属导轨,固定在同一水平面上, 磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导 轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两 根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无 摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆 的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。 现有一与导轨平行、大小为0.20N的恒力F作用于金属杆 甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的 加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的双杆双动导轨滑轨能量动量问题大综合————————————————————————————————作者:————————————————————————————————日期:问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

电磁感应中的双杆问题

电磁感应中的双杆问题

电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

(完整版)电磁感应中双杆模型问题答案

(完整版)电磁感应中双杆模型问题答案

电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

电磁感应中的“双杆问题

电磁感应中的“双杆问题

电磁感应中的“双杆问题”1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。

ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。

电磁感应双杆问题含电容器问题

电磁感应双杆问题含电容器问题

电磁感应双杆问题+含电容器电路1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

2•“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时, 相当于两个电池反向串联。

3.“双杆”中两杆在等宽导轨上做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

典型例题1.如图所示,间距为I、电阻不计的两根平行金属导轨MN、PQ (足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M的物体C,整个装置放在方向竖直向上、磁感应强度大小为B的匀强磁场中。

开始时使a、b、C都处于静止状态,现释放C,经过时间t, C的速度为、b的速度为v2 o不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g,求:(1)t时刻C的加速度值;的感应电动势£ == ①回路中感应电流I =—②2R以"为研究对象,根据牛顿第二定律T - B" ma ③ 以C 为研完对象,根据牛顿第二定律Mg_ T= Ma ④2R (M +〃z )<2)解法一:单位时问内,通过。

棒克服安培力做功,把C 物体的一部分亟力势能转化为闭合 回路的电能,而闭合回路电能的-啷分以隹耳热的形式消耗掉.另一部分则转化为“梓的动能. 所以,f 时刻闭合回路的电功率等于“棒克服安培力做功的功率,即P = Bll u f (5-5)勺12R解法二:&棒可等效为发电机,方棒可等效为电动机"棒的感应电动势为E<t = 闭合回路消耗的总电功率为P=IE联立①®©©解得P 二-一5)5故闭合回路消耗的总电功率为P = P 热+G =丹(5 一。

电磁感应双杆问题

电磁感应双杆问题

电磁感应双杆问题电磁感应双杆问题(排除动量范畴)1.导轨间距相等例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。

匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。

两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。

已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。

求此时杆2克服摩擦力做功的功率。

解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ① 感应电流21R R EI +=②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③导体杆2克服摩擦力做功的功率 gvm P 2μ=④解得)]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--B I l g m F μ ①对杆2有2=-g m B I l μ ②v外力F 的功率Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P Fμ-+-= ④由以上各式得)]([212202R R lB g m v g m P g +-=μμ ⑤2. 导轨间距不等例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。

11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

电磁感应现象中的双杆问题探讨

电磁感应现象中的双杆问题探讨

电磁感应现象中的双杆问题探讨摘要:“双杆”作为电磁感应现象中一项重要考点,历年来都是高考的热点,这主要是该项内容是电学和力学的综合问题,是考察学生综合应用知识能力的一类问题。

该问题在分析过程中涉及到了动量、力学、能量等多个方面的知识,而且还会涉及到极值、临界等问题,因此,是学生在学习过程中的一个难点。

关键词:电磁感应;双杆问题;磁场力;电流电磁感应现象中的双杆问题涉及到物理过程部分,状态变化期间涉及到变量较多,在对这一问题分析期间,需要明确状态变化期间的变量中“变”的与特点,对物理变化期间的最终稳定状态进行确定,这是分析与解题的关键。

1 竖直面“双杆”问题分析1.1间距相对的竖直“双杆”问题分析ab和cd两个金属杆的长度都为L,两者对电阻值都为R,ad的质量为M,cd质量为m,利用两根不可伸长,其电阻与质量都可以忽略不计的导线连接,从而形成一个闭合回路,悬挂在水平光滑不导电圆棒两侧,金属杆处于水平位置,具体情况如图1所示,该装置位于与平面垂直匀强磁场中,磁钢强度为B,若装置内的ab杆可以匀速向下运行,求ab杆速度。

图1问题分析:通过分析可以发现,磁场垂直指向直面内侧,因为ab与cd两者由不可伸长的导线连接,ab匀速向下运动,cd受导线的牵引,将会匀速向上运动,在该状态下,两杆做切割磁感线运动,将会形成同方向感应电流和电动势,两杆在运行期间受到的安培力方向相反,而随着运行速度的变大,电流也会变大,产生的安培力也会进一步加大,最终ad和cd两个金属杆受力处于平衡时,保持匀速直线运动。

对整个回路中形成的感应电动势进行分析,感应电动势E=E1+E2=2BLv;回路中电流I=E/2R=BLv/R;ab与cd两者的受力方向相反,ab受力竖直向上,cd受力竖直向下,连这个和大小相同,F=BIL=B2L2v/R;设软导线对两杆的拉力都为T,因为ad与cd两者都处于匀速状态,因此,两者受力处平衡状态,通过对ab和cd受力平衡条件分析:ad的受力平衡条件分析:T+F=Mg;cd的受力平衡条件分析:T=mg+F;因此可以得到,2B2L2v/R=(M-m)g,最终得到v=(M-m)gR/2B2L2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。

ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。

在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速。

两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动。

(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有根据能量守恒,整个过程中产生的总热量(2)设ab棒的速度变为初速度的3/4时,cd棒的速度为v1,则由动量守恒可知:此时回路中的感应电动势和感应电流分别为:,此时棒所受的安培力:,所以棒的加速度为由以上各式,可得。

3. “双杆”中两杆都做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

[例7](全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m。

两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。

在t=0时刻,两杆都处于静止状态。

现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。

经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?解析:设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间△t,杆甲移动距离v1△t,杆乙移动距离v2△t,回路面积改变由法拉第电磁感应定律,回路中的感应电动势回路中的电流杆甲的运动方程由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力F的冲量联立以上各式解得代入数据得点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定则求解:设甲、乙速度分别为v1和v2,两杆切割磁感线产生的感应电动势分别为E1=Blv1 ,E2=Blv2 由右手定则知两电动势方向相反,故总电动势为E=E2―E1=Bl(v2-v1)。

分析甲、乙两杆的运动,还可以求出甲、乙两杆的最大速度差:开始时,金属杆甲在恒力F作用下做加速运动,回路中产生感应电流,金属杆乙在安培力作用下也将做加速运动,但此时甲的加速度肯定大于乙的加速度,因此甲、乙的速度差将增大。

根据法拉第电磁感应定律,感应电流将增大,同时甲、乙两杆所受安培力增大,导致乙的加速度增大,甲的加速度减小。

但只要a甲>a乙,甲、乙的速度差就会继续增大,所以当甲、乙两杆的加速度相等时,速度差最大。

此后,甲、乙两杆做加速度相等的匀加速直线运动。

设金属杆甲、乙的共同加速度为a,回路中感应电流最大值Im。

对系统和乙杆分别应用牛顿第二定律有:F=2ma;BLIm=ma。

由闭合电路欧姆定律有E=2ImR,而由以上各式可解得4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

[例8](全国理综卷)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。

导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。

x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R。

F为作用于金属杆x1y1上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

解析:设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小①回路中的电流②电流沿顺时针方向。

两金属杆都要受到安培力作用,作用于杆x1y1的安培力为③方向向上,作用于杆x2y2的安培力为④方向向下,当杆作匀速运动时,根据牛顿第二定律有⑤解以上各式得⑥⑦作用于两杆的重力的功率的大小⑧电阻上的热功率⑨由⑥⑦⑧⑨式,可得⑩问题4:电磁感应中的一个重要推论——安培力的冲量公式感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI。

在时间△t内安培力的冲量,式中q是通过导体截面的电量。

利用该公式解答问题十分简便,下面举例说明这一点。

[例9] 如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a<L)的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v(v<v0)那么()A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的解析:设线圈完全进入磁场中时的速度为vx。

线圈在穿过磁场的过程中所受合外力为安培力。

对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:由上述二式可得,即B选项正确。

[例10] 光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。

求导体棒的最终速度。

解析:当金属棒ab做切割磁力线运动时,要产生感应电动势,这样,电容器C将被充电,ab棒中有充电电流存在,ab棒受到安培力的作用而减速,当ab棒以稳定速度v匀速运动时,有:BLv=UC=q/C而对导体棒ab利用动量定理可得:-BLq=mv-mv0由上述二式可求得:问题5:电磁感应中电流方向问题[例11](广东物理卷)如图所示,用一根长为L质量不计的细杆与一个上弧长为,下弧长为的金属线框的中点联结并悬挂于O点,悬点正下方存在一个上弧长为、下弧长为的方向垂直纸面向里的匀强磁场,且<<先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦。

下列说法正确的是()A. 金属线框进入磁场时感应电流的方向为:a→b→c→d→aB. 金属线框离开磁场时感应电流的方向为:a→d→c→b→aC. 金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等D. 金属线框最终将在磁场内做简谐运动分析:金属线框进入磁场时,由于电磁感应,产生电流,根据楞次定律判断电流的方向为:a→d→c→b→a。

金属线框离开磁场时由于电磁感应,产生电流,根据楞次定律判断电流的方向为a→b→c→d→a 。

根据能量转化和守恒,可知,金属线框dc边进入磁场与ab边离开磁场的速度大小不相等。

如此往复摆动,最终金属线框在匀强磁场内摆动,由于<<,单摆做简谐运动的条件是摆角小于等于10度,故最终在磁场内做简谐运动。

答案为D。

小结:本题考查了感应电动势的产生条件,感应电流方向的判定,物体做简谐运动的条件,这些是高中学生必须掌握的基础知识。

感应电动势产生的条件只要穿过回路的磁通量发生变化,回路中就产生感应电动势,若电路闭合则有感应电流产生。

因此弄清引起磁通量的变化因素是关键,感应电流的方向判定可用楞次定律与右手定则,在应用楞次定律时要把握好步骤:先明确回路中原磁场的方向及磁通量的变化情况,再依楞次定律确定感应电流的磁场方向,然后根据安培定则确定感应电流的方向。

线圈在运动过程中的能量分析及线框最终的运动状态的确定为此题增大了难度。

练习:[四川卷] 如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同。

图中O 位置对应于弹簧振子的平衡位置,P、Q两位置对应于弹簧振子的最大位移处。

若两导轨的电阻不计,则()A. 杆由O到P的过程中,电路中电流变大B. 杆由P到Q的过程中,电路中电流一直变大C. 杆通过O处时,电路中电流方向将发生改变D. 杆通过O处时,电路中电流最大解答:D问题6:电磁感应中的多级感应问题[例12] 如图所示,ab、cd金属棒均处于匀强磁场中,cd 原静止,当ab向右运动时,cd如何运动(导体电阻不计)()A. 若ab向右匀速运动,cd静止;B. 若ab向右匀加速运动,cd向右运动;C. 若ab向右匀减速运动,cd向左运动分析:这是多级电磁感应问题,ab相当于一个电源,右线圈相当于负载;左线圈相当于电源,cd相当于负载。

相关文档
最新文档