双波长分光光度法的基本原理及应用(精)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双波长分光光度法的基本原理及应用

应用分光光度法对共存组分进行不分离定量测定时,通常采用的方法有双波长法,三波长法,导数光谱法、差谱分析法及多组分分析法等方法,其快速,简便的优点使这些方法在实用分析中得到越来越广泛的应用。其中以双波长法的应用为最多,该法的准确度和精密度要高于其它方法,是对共存组分不分离定量测定的有效方法之一。

实用中的双波长法主要采用等吸收波长法和系数倍增法两种分析方法,下面就其基本原理和应用作以介绍:一、等吸收波长法

1、基本原理

图 1是同一组分三个不同浓度供试液的吸收光谱图,经典分光光度法的定量测定通常是在被测组分的最大吸收波长处进行测定,根据兰伯一比耳定律,其吸光度值与被测组分的浓度 C 成正比,即:

依(3式测定被测组分 a ,则可完全消除 b 组分的干扰,达到共存组分不分离进行定量测定的目的。 2、影响因素

(1测定波长和组合波长的选择应使被测组分的△A 值尽可能大,以增加测定的灵敏度和精确度。

(2测定波长和组合波长应尽可能选择在光谱曲线斜率变化较小的波长处,以减小波长变化对测定结果的影响。

(3干扰组分等吸收波长(组合波长的选择必须精确,只有其△A 值等于零时才能完全消除干扰,否则会引入测定误差。为此,在实用分析中,都是先配制一个干扰组分b 的供试液,在仪器上准确找出等吸收波长 ,然后再对样品进行测定。

3 应用实例

等吸收波长法的一个典型应用实例为收载于《中华人民共和国药典》中的抗菌消炎药复方磺胺甲噁唑片的含量测定。复方磺胺甲噁唑片中含有磺胺甲噁唑(SMZ 和甲氧苄(TMP 两个成分,其吸收光谱见图 3。

当测定 SMZ 时,选择其最大吸收波长 257nm 为测定波长,可以在干扰组分 TMP 的光谱曲线上 304nm 附近找到等吸收波长为组合波长消除其干扰;当测定 TMP 时,选择 239nm 为测定波长,可以在干扰组分 SMZ 的光谱曲线上 295nm 附近找到等吸收波长为组合波长消除其干扰,分别对 SMZ 和 TMP 进行含量测定。

二、系数倍增法

1 基本原理

当测定被测组分时,并非都能在干扰组分的光谱曲线上找到等吸收波长(见图 4,这时,如果能在干扰组分 b 的光谱曲线上找到对应于被测组分 a 光谱曲线无吸收的组合波长

λ2,即可采用系数倍增法进行测定。

设被测组分的测定波长为λ1,在此波长处被测组分 a 和干扰组分 b 均有吸收,在组合波长λ2处,被测组分 a 无吸收而干扰组分 b 有吸收,用干扰组分 b 的对照品在λ1和λ2波长处测定吸光度,其比值为一常数 K ,可按下式计算,求得被测组分的吸光度值,再计算其含量。

2 影响因素

(1测定波长与组合波长应尽可能选择在光谱曲线斜变化较小的波长处,以减小波长变化对测定结果的影响。

(2组合波长λ2必须选择在被测组分无吸收干扰组分有吸收的波长处,这时共存组分在组合波长λ2处测得的吸光度值为干扰组分的净吸光度值。

(3先用干扰组分的对照品,在测定波长λ1和组合波长λ2处准确测定吸光度值,求得常数 K ,然后才能精确计算出共存组分中干扰组发 b 在λ1波长处的吸光度值Ab λ2。

3 应用实例

系数倍增法一个典型应用实例为收载于日本药局方中的解热镇痛药阿斯匹林铝的含量测定,阿斯匹林铝中因含有分解产物游离子杨酸而干扰其测定。

图 5中的 a 为纯阿斯匹林铝的光谱曲线, b 为水杨酸对照品的光谱曲线, c 为含游离子杨酸的阿斯匹林铝光谱曲线,在阿斯匹林铝的测定波长 278nm 处水杨酸有干扰,而在水杨酸的最大吸收波长 308nm 处,阿斯匹林铝已无吸收。当用水杨酸对照品测得AS’和 AS 的比值 K 后, 即可用系数倍增法对含有游离水杨酸的阿斯匹林铝进行含量测定。

三、结语

双波长分光光度法在对共存组分不分离定量测定时操作简便,测定结果准确,在普通分光光度计上均可进行测定。目前,双波长分光光度法已在新一代电子计算机控制的分光光度计如普析通用公司 TU -1800PC , TU -1901等仪器上被设计为一种专用的测定如计算程序,使得采用这一分析方法进行的测定和计算均可自动进行,因此,双波长分光光度法解决共存组分不分离定量测定中必将得到广泛的应用。

相关文档
最新文档