蛋白质化学

蛋白质化学
蛋白质化学

第一章蛋白质化学

一、蛋白质的分子组成

1.组成蛋白质的元素:主要有C、H、O、N等,其中含氮量在蛋白质中约占16%。

生物化学样本中的蛋白质克数=6.25*含氮克数

二.氨基酸的分类(在细胞内参与蛋白质合成的氨基酸只有20种,除脯氨酸外,其它的19种都是α-氨基酸。除了甘氨酸外,其余18种都是L-氨基酸。)

1.非极性中性氨基酸:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲

硫氨酸(含硫)、脯氨酸(环状结构)、苯丙氨酸(含苯环)、色氨酸(含苯环)

2.极性中性氨基酸:丝氨酸、苏氨酸、天冬酰胺(、谷氨酰胺、酪氨酸(含

苯环)、半胱氨酸(含硫)

3.酸性氨基酸:天冬氨酸、谷氨酸(速记口诀:天寒地冻谷子酸)

4.碱性氨基酸:赖氨酸、精氨酸、组氨酸(速记口诀:来京一族)

三.氨基酸的理化性质:苯丙氨酸(含苯环)吸收峰在280nm、色氨酸(含苯环)和

色氨酸(含苯环)吸收峰在280nm(主要由共轭双键引起的)

四.肽键与肽(课本p29页)

1. 肽键的形成:氨基酸之间以肽键相连接的

2.了解肽键平面或肽单元的慨念

3.肽:多个氨基酸通过肽键连接起来的分子称为肽。2~10个氨基酸连接的称为寡肽,

10个以上的称为多肽

4. 了解氨基酸残基的慨念P30页

5.氨基酸书写时习惯把N端写在左侧,C端写在右侧

6. 重要的寡肽——谷胱甘肽:是由谷氨酸的r-cooH与半胱氨酸和甘氨酸通过肽键

连接起来构成的r谷氨酰半胱氨酰甘氨酸三肽化合物。(具有抗氧化作用)

注意:蛋白质中具有特定构像的多肽,但多肽不一定是蛋白质

五.蛋白质的分子结构(重要内容)

补充:模体与结构域的关系,以及及其慨念P33页(本章重要内容)在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,又称为模体(motif)或基序。大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域(domain

记忆处方:一级结构像一串葡萄

二级结构像绳子中间打个圈

三级指整条链(蛋白质要有活性,必需要有三级结构)

四级亚基合成团

掌握亚基的慨念及其含义:在四级结构中,每一条具有三级结构的多肽链称为一个亚基

例:镰刀形红细胞贫血(描叙其发病机制)p37页

答:由于B链的N端第六个氨基酸残基有亲水的谷氨酸变异成疏水的缬氨酸,其与第1位的缬氨酸残基形成局部的连接,在低氧情况下异常血红蛋白聚合成长棒状聚合物而从红细胞析出,使整个红细胞扭曲成镰刀状,导致氧结合能力下降。

六.蛋白质的一般性质

一:蛋白质变构:配体与蛋白质非共价键结合,改变蛋白质的某些非共价键,,从而使构象发生变化,导致生物活性改变。

二、蛋白质具有两性电离的性质

1.蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH值条件下都

可解离成带负电荷或正电荷的基团。

2.蛋白质的等电点(pI)概念(重要):当蛋白质溶液处于某一pH值

时,蛋白质解离成正、负离子的趋势相等,即成

为兼性离子,净电荷为零,此时溶液的pH值称为蛋白质的等电点。(掌握电泳时蛋白质的移动方向)

3.蛋白质的变性概念:在某些物理和化学因素作用下,其特定的空间构

象被破坏,也即有序的空间结构变成

无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

本质:破坏非共价键和二硫键,只破坏构象,不改变蛋白质的一级结构4.造成变性的因素:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等。

变构与变性的比较

第二章核酸化学

1 概念:核酸(nucleic acid)是以核苷酸为基本组成单位的生物大分子,携带

和传递遗传信息。

2 分类:脱氧核糖核酸核糖核酸

3 核酸化学的组成

1元素组成:C、H、O、N、P(9~10%)

2结构单位——核苷酸

——碱基(base):嘌呤碱(A腺嘌呤 G鸟嘌呤),嘧啶碱(C胞嘧啶 U尿嘧啶 T胸腺嘧啶)

——戊糖(ribose):核糖,脱氧核糖

——磷酸(phosphate

3核苷的形成:碱基和核糖(脱氧核糖)通过糖苷键连接形成核苷(脱氧核苷)。

注:核苷:AR, GR, UR, CR

脱氧核苷:dAR, dGR, dTR, dCR

4核苷酸的结构:核苷(脱氧核苷)和磷酸以磷酸酯键连接形成核苷酸(脱氧核苷酸)。

注:核苷酸:AMP, GMP, UMP, CMP

脱氧核苷酸:dAMP, dGMP, dTMP, dCMP

5 体内重要的游离核苷酸及其衍生物:多磷酸核苷酸:NMP,NDP,NTP

6 连接方式比较:碱基与戊糖之间:糖苷键

核苷与磷酸之间:磷酸酯键

多磷酸核苷之间:酸酐键

核苷酸之间:磷酸二酯键

4 核酸的分子组成

1 DNA 一级结构

定义:核酸中核苷酸的排列顺序。由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。

连接方式:磷酸二酯键

2 DNA的二级结构

外观:DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,两链以-脱氧核糖-磷酸-为骨架,以右手螺旋方式绕同一公共轴盘。螺旋直

径为2nm,形成大沟(major groove)及小沟(minor groove)相间。

基因分布:DNA分子中的脱氧核糖核酸和磷酸交替连接,排列再外侧构成主链骨架

碱基作为侧链位于两条互补链内侧

碱基配对:A与T 之间:两个氢键C与G 之间: 三个氢键

相关参数: 相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。

作用力: 氢键——维持双链,横向稳定性

碱基堆积力——维持双链,纵向稳定性

3 DNA三级结构

闭环DNA——超螺旋

细胞核DNA:染色体:由DNA+蛋白质构成

基本单位:核小体DNA:约200bp 组蛋白:H1 H2A,H2B H3 H4

4 RNA结构

mRNA(信使RNA):种类数最多

功能:把DNA所携带的遗传信息,按碱基互补配对原则,抄录并传送至核糖体,用以决定其合成蛋白质的氨基酸排列顺序。

结构:1. 大多数真核mRNA的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸

的C′

也是甲基化,形成帽子结构:m7GpppN m-

2

2. 大多数真核mRNA的3′末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。

tRNA(转运RNA):含碱基最多

一级结构特点:含10~20% 稀有碱基,如DHU☆3′末端为— CCA-OH

5′末端大多数为G

3. tRNA的二级结构——三叶草形

DHU环(D环)、反密码子环、TΨC环、氨基酸臂、DHU臂(D臂)

、反密码子臂、TΨC臂

4.* tRNA的三级结构——倒L形

tRNA的功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译。

rRNA(核糖体RNA):含量最多

rRNA的功能:参与组成核糖体,作为蛋白质生物合成的场所。

rRNA的种类(根据沉降系数):

4核酶——具有催化作用的RNA

主要功能:催化RNA的自我剪接

5核酸的理化性质

紫外吸收:260nm 与碱基中的共轭双键有关

DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。

增高的现象

增色效应:DNA变性时其溶液OD

260

Tm:变性是在一个相当窄的温度范围内完成,在这一范围内,使DNA变性解链达50%时的温度称为DNA的解链温度,又称融解温度(melting temperature, Tm)。其大小与G+C含量成正比。

DNA复性:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象。

退火:热变性的DNA经缓慢冷却后即可复性

减色效应:DNA复性时,其溶液OD

降低。

260

第三章酶

一.单纯酶:仅由多肽构成的酶

蛋白质(也叫酶蛋白)

结合酶:

非蛋白物质部分(也叫辅助因子)

备注: 酶蛋白和辅助因子结合形成的结合酶才有催化作用

辅酶:辅酶与酶蛋白结合疏松

辅助因子分类:

辅基:与酶蛋白结合紧密

?金属离子作为辅助因子的作用

1.稳定酶的构象;

2.参与催化反应,传递电子;

3.在酶与底物间起桥梁作用;

4.中和阴离子,降低反应中的静电斥力等

二.1.各部分在催化反应中的作用:

?酶蛋白决定反应的特异性

?辅助因子决定反应的种类与性质

2.酶的活性中心:或称活性部位(active site),指酶蛋白构象的一个特定区域,能与底物特异结合,并将底物转化为产物。

酶的必需基团:与酶活性有关的基团

三;酶促反应的特点

1.高度不稳定

2.高度催化效率

3.高度特异性

4.可调节性

四.酶促反应动力学

Km是米氏常数

Vmax是指酶完全被底物饱和时的反应速度

①Km等于酶促反应速度为最大反应速度一半时的底物浓度。

②意义:

a) Km是酶的特征性常数之一;

b)同一酶对于不同底物有不同的Km值;

c)当k2>>k3 时,Km可近似表示酶对底物的亲和力。

重要:Km的值越大,其亲和力越小

五:最适pH :酶催化活性最大时的环境pH

六:抑制剂对反应速度的影响(P课本66页,本章重要内容)

1.酶的抑制剂(inhibitor)

能特异性地抑制酶的活性,从而抑制酶促反应,但不引起酶蛋白变性的物质称为酶的抑制剂。

①不可逆性抑制

2.抑制作用的竞争性抑制

②可逆性抑制非竞争性抑制

反竞争性抑制

①不可逆性抑制的常见类型:抑制剂以共价键与酶活性中心内的必需基团相结合,使酶失活。

举例

有机磷化合物→?丝氨酸酶

解毒-- -- -- 解磷定(PAM)

重金属离子及砷化合物→?巯基酶

解毒-- -- -- 二巯基丙醇(BAL)

②可逆性抑制:抑制剂通常以非共价键与酶或酶-底物复合物可逆性结合,使酶的活性降低或丧失;抑制剂可用透析、超滤等方法除去。(记住课本的几个常见例子和模式图,

磺胺类药物作用机制:磺胺类药物的化学机构与对氨基苯甲酸很相似,是二氢叶酸合成酶的竞争抑制剂,抑剂FH2的合成,进而减少FH4生成。因此可以抑剂细菌的生长繁殖。

七.酶原与酶原的激活

?酶原(zymogen)

有些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。

?酶原的激活

在一定条件下,酶原向有活性酶转化的过程。

描述酶原激活的生理意义:避免细胞产生的酶对细胞进行自身消化,并使酶在特定的部位和环境中发挥作用,保证体内代谢正常进行。有的酶原可以视为酶的储存形式。在需要时,酶原适时地转变成有活性的酶,发挥其催化作用。

八.同工酶

同工酶:是指催化相同的化学反应,而酶蛋白的分子结构理化性质乃至免疫学性质不同的一组酶。

熟悉掌握L—乳酸脱氢酶(p75页)

酶活性大小表示方法(p70页)

第四章维生素

概念:Vit.是维持动物生长和细胞正常代谢所必需的一类低分子有机化合物,是人体重要的营养物质之一。

分类根据溶解性质不同,将维生素分为两大类:

1.水溶性维生素Vit.C和B族Vit.(B1、B2、PP、B6、生物素、泛酸、叶酸、B12 、硫辛酸)

共同特点:

1. 易溶于水

2. 机体储存量少

3. 摄入过多,部分可由尿液排出体外,不会在体内累积引起中毒

NAD+ / NADP+: 吡啶环;FH4: N5和N10 。

2.脂溶性维生素Vit.A、D、E 、K

共性:不溶于水,易溶于脂肪或有机溶剂;

在食物中与脂类共存,并随脂类吸收而吸收;

大多储存在肝脏,易蓄积、引起毒性。

脂溶性维生素的活性形式及主要生化作用。缺乏病

维生素C的功能需补充p89

VitA原和VitD原

掌握叶酸与VitB12与巨幼红细胞贫血症的关系(p87与p88页)

第五章生物氧化

1定义: 物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体

内分解时逐步释放能量,最终生成CO

2 和 H

2

O的过程。

2体内外氧化分解的不同点

体内体外(1)反应条件:温和剧烈(2)反应过程:分步反应一步反应

能量逐步释放能量突然释放(3)能量形式:热能、高能化合物热能、光能

(4)CO

2生成:脱羧 C和O

2

直接反应

(5)H

2O生成:脱下的H经传递 H和O

2

直接反应

与O

2

结合

3几种常见的高能化合物:课本128页表9-3

4 CO

2

的生成方式 :(1)α-单纯脱羧(2)α-氧化脱羧(3 β -单纯脱羧(4)β-氧化脱羧

5 ATP的合成:底物水平磷酸化氧化磷酸化

6底物水平磷酸化定义:在生物氧化过程中,底物因脱氢、脱水等反应而使能

量在分子内重新分布,形成高能化合物,然后将高能化

合物中的能量转移给ADP(或GDP),生成ATP (或GTP)

的过程。

7氧化磷酸化定义:在生物氧化过程中,营养物质氧化释放的电子经呼吸链传

递O

2生成H

2

O,所释放的自由能推动ADP磷酸化生成ATP

的过程。

呼吸链:线粒体内膜上一组排列有序的递氢体和递电子体(酶与辅酶)构成的功能单位,也称电子传递链

呼吸链组成:课本125页表9-2

呼吸链成分的排列顺序:

1. NADH氧化呼吸链

NADH →复合体Ⅰ→Q→复合体Ⅲ→Cyt c →复合体Ⅳ→O

2

2. 琥珀酸氧化呼吸链

琥珀酸→复合体Ⅱ→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O

2

8 氧化磷酸化偶联部位:复合体Ⅰ、Ⅲ、Ⅳ根据P/O比值和自由能变化

P/O比值:每消耗1摩尔氧原子所消耗Pi的摩尔数或合成ATP的摩尔数。

9影响氧化磷酸化的因素:

(一)抑制剂:

1. 呼吸链抑制剂阻断呼吸链中某些部位电子传递。

2. 解偶联剂使氧化与磷酸化偶联过程脱离。如:解偶联

蛋白

3. 氧化磷酸化抑制剂对电子传递及ADP磷酸化均有抑制作用。

如:寡霉素

(二)ADP的调节作用

呼吸控制率

(三)甲状腺激素

Na+,K+–ATP酶和解偶联蛋白基因表达均增加。

(四)线粒体DNA突变

与线粒体DNA病及衰老有关

10 胞浆中NADH的氧转运机制:

α-磷酸甘油穿梭(肌肉、神经组织)传递给FAD呼吸链

苹果酸-天冬氨酸穿梭(心肌、肝脏)传递给NADH呼吸链

注:磷酸肌酸:肌肉与脑组织中能量的暑存形式

第四章 蛋白质化学题答案

第四章蛋白质化学 一、单项选择题 1.蛋白质分子的元素组成特点是 A.含大量的碳B.含大量的糖C.含少量的硫D.含少量的铜E.含氮量约16% 2.一血清标本的含氮量为5g/L,则该标本的蛋白质浓度是 A.15g/L B.20g/L C.31g/L D.45g/L E.55g/L 3.下列哪种氨基酸是碱性氨基酸? A.亮氨酸B.赖氨酸C.甘氨酸D.谷氨酸E.脯氨酸 4.下列哪种氨基酸是酸性氨基酸? A.天冬氨酸B.丙氨酸C.脯氨酸D.精氨酸E.甘氨酸 5.含有两个羧基的氨基酸是 A.丝氨酸B.苏氨酸C.酪氨酸D.谷氨酸E.赖氨酸 6.在pH6.0的缓冲液中电泳,哪种氨基酸基本不移动? A.丙氨酸B.精氨酸C.谷氨酸D.赖氨酸E.天冬氨酸 7.在pH7.0时,哪种氨基酸带正电荷? A.精氨酸B.亮氨酸C.谷氨酸D.赖氨酸

E.苏氨酸 8.蛋氨酸是 A.支链氨基酸B.酸性氨基酸 C.碱性氨基酸D.芳香族氨酸 E.含硫氨基酸 9.构成蛋白质的标准氨基酸有多少种? A.8种B.15种 C.20种D.25种 E.30种 10.构成天然蛋白质的氨基酸 A.除甘氨酸外,氨基酸的α碳原子均非手性碳原子 B.除甘氨酸外,均为L-构型C.只含α羧基和α氨基D.均为极性侧链E.有些没有遗传密码11.天然蛋白质中不存在的氨基酸是 A.瓜氨酸B.蛋氨酸 C.丝氨酸D.半胱氨酸 E.丙氨酸 12.在中性条件下大部分氨基酸以什么形式存在? A.疏水分子B.非极性分子 C.负离子D.正离子 E.兼性离子 13.所有氨基酸共有的显色反应是 A.双缩脲反应B.茚三酮反应 C.酚试剂反应D.米伦反应 E.考马斯亮蓝反应 14.蛋白质分子中的肽键 A.氨基酸的各种氨基和各种羧基均可形成肽键 B.某一氨基酸的γ-羧基与另一氨基酸的α氨基脱水形成 C.一个氨基酸的α-羧基与另一氨基酸的α氨基脱水形成 D.肽键无双键性质

蛋白质化学练习题及参考答案

-第一章蛋白质化学测试题-- 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少? A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g 2.下列含有两个羧基的氨基酸就是: A.精氨酸 B.赖氨酸 C.甘氨酸 D.色氨酸 E.谷氨酸 3.维持蛋白质二级结构的主要化学键就是: A.盐键 B.疏水键 C.肽键 D.氢键 E.二硫键 4.关于蛋白质分子三级结构的描述,其中错误的就是: A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要就是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素就是氨基酸残基 5.具有四级结构的蛋白质特征就是: A.分子中必定含有辅基 B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成 C.每条多肽链都具有独立的生物学活性 D.依赖肽键维系四级结构的稳定性 E.由两条或两条以上具在三级结构的多肽链组成 6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定: A.溶液pH值大于pI B.溶液pH值小于pI C.溶液pH值等于pI D.溶液pH值等于7.4 E.在水溶液中 7.蛋白质变性就是由于: A.氨基酸排列顺序的改变 B.氨基酸组成的改变 C.肽键的断裂 D.蛋白质空间构象的破坏 E.蛋白质的水解 8.变性蛋白质的主要特点就是:

A.粘度下降 B.溶解度增加 C.不易被蛋白酶水解 D.生物学活性丧失 E.容易被盐析出现沉淀 9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为: A.8 B.>8 C.<8 D.≤8 E.≥8 10.蛋白质分子组成中不含有下列哪种氨基酸? A.半胱氨酸 B.蛋氨酸 C.胱氨酸 D.丝氨酸 E.瓜氨酸 二、多项选择题(在备选答案中有二个或二个以上就是正确的,错选或未选全的均不给分) 1.含硫氨基酸包括: A.蛋氨酸 B.苏氨酸 C.组氨酸 D.半胖氨酸 2.下列哪些就是碱性氨基酸: A.组氨酸 B.蛋氨酸 C.精氨酸 D.赖氨酸 3.芳香族氨基酸就是: A.苯丙氨酸 B.酪氨酸 C.色氨酸 D.脯氨酸 4.关于α-螺旋正确的就是: A.螺旋中每3.6个氨基酸残基为一周 B.为右手螺旋结构 C.两螺旋之间借二硫键维持其稳定 D.氨基酸侧链R基团分布在螺旋外侧 5.蛋白质的二级结构包括: A.α-螺旋 B.β-片层 C.β-转角 D.无规卷曲 6.下列关于β-片层结构的论述哪些就是正确的: A.就是一种伸展的肽链结构 B.肽键平面折叠成锯齿状 C.也可由两条以上多肽链顺向或逆向平行排列而成 D.两链间形成离子键以使结构稳定 7.维持蛋白质三级结构的主要键就是: A.肽键 B.疏水键 C.离子键 D.范德华引力 8.下列哪种蛋白质在pH5的溶液中带正电荷? A.pI为4、5的蛋白质 B.pI为7、4的蛋白质 C.pI为7的蛋白质 D.pI为6、5的蛋白质 9.使蛋白质沉淀但不变性的方法有:

蛋白质化学复习题1

第一章蛋白质化学复习题 一、填充 1.在生理条件下(pH 7.0左右),蛋白质分子中的赖氨酸侧链和精氨酸侧链几乎完全带正电荷,但是组氨酸侧链则带部分正电荷。 2. 脯氨酸和羟脯氨酸与茚三酮反应产生黄色的物质,而其他氨基酸与茚三酮反应产生蓝紫色的物质。 3.范斯莱克(van Slyke)法测定氨基氮主要利用α- 氨基与亚硝酸作用生成羟酸和N2 。 4.实验室常用的甲醛滴定是利用氨基酸的氨基与中性甲醛反应,然后用碱(NaOH)来滴定N+H3基上放出的H+ 。 5.常用的肽链N端分析的方法有 2,4-二硝基氟苯法、丹磺酰氯法、本异硫氰酸法和氨肽酶 法。C端分析的方法有肼解法和羧肽酶 法等。 6.蛋白质的超二级结构是指二级结构的基本单位(α螺旋、β折叠等)相互聚集形成有规律的二级结构的聚合体,其基本组合形式为αα结构、βαβ结构、 Rossmann折叠(βαβαβ结构)、β发夹结构(ββ结构)、β曲折结构和希腊钥匙结构等。

7.蛋白质的二级结构有酰胺平面、α螺旋结构、β折叠结构、β转角结构和Ω环等几种基本类型。 8.确定蛋白质中二硫键的位置,一般先采用酶水解原来的蛋白质,然后用离子交换层析技术分离水解后的混合肽段。P107~109 9.通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的苯丙氨酸、酪氨酸和色氨酸三种氨基酸的共轭双键有紫外吸收能力。 10.两条相当伸展的肽链(或同一条肽链的两个伸展的片段)之间形成氢键的结构单元称为。 11.在蛋白质分子中相邻氨基酸残基的β-碳原子如具有侧链会使α螺旋不稳定。因此当脯氨酸、甘氨酸和异亮氨酸三种氨基酸相邻时,会破坏α螺旋。 12.在α螺旋中C=O和N—H之间形成的氢键最稳定,因为这三个原子以平行排列。 13.氨基酸的结构通式为。 14.组成蛋白质分子的碱性氨基酸有精氨酸、组氨酸和赖氨酸。酸性氨基酸有天冬氨酸和谷氨酸。 15.在下列空格中填入合适的氨基酸名称。 (1) 酪氨酸是带芳香族侧链的极性氨基酸。

蛋白质化学习题答案

(一)名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),

使蛋白质溶解度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 23.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。 24.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

生物化学知识点与题目 第四章 蛋白质化学.

第四章蛋白质化学 知识点: 一、氨基酸 蛋白质的生物学功能 氨基酸:酸水解:破坏全部色氨酸以及部分含羟基氨基酸。碱水解:所有氨基酸产生外消旋。氨基酸的分类:非极性氨基酸(8种):Ala、V al、Leu、Ile、Pro、Met、Phe、Trp;极性氨基酸(12种):带正电荷氨基酸Lys、Arg、His;带负电荷氨基酸Asp和Glu;不带电荷氨基酸Ser、Thr、Tyr、Asn、Gln、Cys、Gly。 非蛋白质氨基酸: 氨基酸的酸碱性质: 氨基酸的等电点,氨基酸的可解离基团的pK值,pI的概念及计算, 高于等电点的任何pH值,氨基酸带有净负电荷,在电场中将向正极移动。 氨基酸的光吸收性:芳香族侧链有紫外吸收,280nm, 氨基酸的化学反应:α-氨基酸与水合茚三酮试剂共热,可发生反应,生成蓝紫化合物。茚三酮与脯氨酸和羟脯氨酸反应则生成黄色化合物。 二、结构与性质 肽:基本概念;肽键;肽;氨基酸残基;谷胱甘肽;肽键不能自由转动,具有部分双键性质;肽平面 蛋白质的分子结构:一级结构,N-末端分析,异硫氰酸苯酯法;C-末端分析,肼解法 蛋白质的二级结构:是指蛋白质分子中多肽链骨架的折叠方式,包括α螺旋、β折叠和β转角等。 超二级结构:超二级结构是指二级结构的基本结构单位(α螺旋、β折叠等)相互聚集,形成有规律的二级结构的聚集体。 结构域: 蛋白质的三级结构:蛋白质的三级结构指多肽链中所有氨基酸残基的空间关系,其具有二级结构或结构域。 球状蛋白质分子的三级结构特点:大多数非极性侧链(疏水基团)总是埋藏在分子内部,形成疏水核;大多数极性侧链(亲水基团),总是暴露在分子表面,形成一些亲水区。 蛋白质的四级结构:蛋白质的四级结构是由两条或两条以上各自独立具有三级结构的多肽链(亚基)通过次级键相互缔合而成的蛋白质结构。变构蛋白、变构效应;血红蛋白氧合曲线。维持蛋白质分子构象的化学键:氢键,疏水键,范德华力,盐键,二硫键等 三、蛋白质的分子结构与功能的关系 蛋白质的分子结构与功能的关系:一级结构决定高级结构,核糖核酸酶的可逆变性;变性、复性、镰刀型红细胞贫血症的生化机理; 四、蛋白质的性质及分离纯化 胶体性质:双电层,水化层;1. 透析;2. 盐析;3. 凝胶过滤; 酸碱性质:1. 等电点沉淀;2. 离子交换层析;3. 电泳 蛋白质的变性:蛋白质变性后,二、三级以上的高级结构发生改变或破坏,但共价键不变,一级结构没有破坏。

蛋白质的化学结构

第二章蛋白质 第三节蛋白质的化学结构 一、肽键及多肽链 (一)基本概念 肽键:蛋白质分子中不同氨基酸是以相同的化学键连接的,即前一个氨基酸分子的α-羧基与下一个氨基酸分子的α-氨基缩合,失去一个水分子形成肽(peptide),该C-N化学键称为肽键(peptide bond)。 多肽:由两个氨基酸分子缩合而成的肽称为二肽;含三个氨基酸的肽,称为三肽,以此类推; 含20个以上的称多肽(polypeptide)。 肽与蛋白质之间无明显界限,50个以上氨基酸构成的肽一般称蛋白质。 氨基酸残基:蛋白质中的氨基酸不再是完整的氨基酸分子,称为氨基酸残基。 H2N CH C O CH C OH O H2N CH C R O N CH C R OH O H 多肽链:通过肽键连接而成的链状结构称为多肽链(polypeptide chain),其骨架由-N-Cα-C-重复构成。 书写格式:把含有α-NH2的氨基酸残基写在多肽链的左边,称为N-末端(氨基端),把含有α-COOH的氨基酸残基写在多肽的右边,称为C-末端(羧基端)。 除肽键外,蛋白质中还含有其他类型的共价键,例如,蛋白质分子中的两个半胱氨酸可通过其巯基形成二硫键(-S-S-,又称二硫桥),这是蛋白质分子中一种常见的共价键,可存在于多肽链内部或两条肽链之间。 (二)肽类存在的生理意义 肽类作为小分子蛋白质,在体内有一些相当重要的功能,并有一定的应用价值。 如:1.神经肽的类似物内啡肽(endorphins),可作为天然的止痛药物; 2.动物体内的谷胱甘肽具有重要生理功能,它是由谷氨酸、半胱氨酸和甘氨酸构成,其中 谷氨酸以γ-羧基而不是α-羧基与半胱氨酸形成肽键。 二、蛋白质的一级结构 (一)蛋白质一级结构的概念

医学知识

第四章蛋白质化学 氨基酸是蛋白质的结构单位,合成蛋白质的氨基酸20种,称为标准氨基酸(编码aa) C、H、O、N是蛋白质的主要元素,有些还有P、S,N是蛋白质的特征性元素 生物样品中的含量=样品含量×6.25↘16%的倒数,1gN所代表蛋白质的质量 20种氨基酸中:脯氨酸是亚氨基酸,其他事–氨基酸,除脯氨酸和甘氨酸,其余的均为L-型–氨基酸。 氨基酸的性质:①紫外吸收:色氨酸和酪氨酸(都含有芳香环)在280nm波长附近有吸收峰②两性解离与等电点③茚三酮反应:发生氧化和缩合,生成蓝紫色化合物,在570nm有吸收峰。茚三酮反应做氨基酸的定量分析。 蛋白质的分子结构:一级结构(基本结构)--化学键:肽键为主键,二硫键为副键、二、三、四级结构(空间结构或构象)。二级结构--化学键:氢键,包括①–螺旋,② -折叠,③ -转角,④无归转曲。三级结构—化学键:二硫键、氢键、疏水键、离子键、范德华力,四级结构—化学键:氢键、疏水键、离子键、范德华力。肽键概念:P34 蛋白质分子中氨基酸的连接方式——肽键氨基酸通过肽键能连接构成的肽链有方向性,以N端为头 多肽链是蛋白质的基本结构,改变蛋白质的构象,生理活性也会改变。 蛋白质的理化性质:紫外吸收;①肽键结构对220nm以下的紫外线有强吸收两性解离与等电点;在某一PH值下,蛋白质的静电荷为零,该PH值就是蛋白质的等电点。⒈如果PHPI则蛋白质带负电,⒊如果PH=PI,蛋白质是兼性离子。 蛋白质不易透过半透膜,⒈电泳和透析是分离纯化蛋白质方法,⒉蛋白质从aq中析出的现象—蛋白质沉淀 沉降系数(S)=沉降速度/离心加速的 1S=10-13 盐析概念:P45 变性和复性P46 盐析得到的蛋白质沉淀经过透析脱盐后仍有生物活性变性的本质其共价键破坏,只破坏构象,不改变一级结构。蛋白质的凝固P46 蛋白质变性、沉淀、凝固的关系:①蛋白质变性导致构象破坏,活性丧失,但不一定沉淀; ②蛋白质沉淀是胶体溶液稳定因素破坏的结果,但构象和活性不一定改变和丧失,所以不一定变性;③蛋白质凝固时变性的一个类型,蛋白质形成坚硬的凝块。 第五章核酸化学 核酸的组成单位:核苷酸(C、H、O、N、P但是P含量较多)水解核苷酸得到三种成分:磷酸、戊糖、含氮碱基蛋白质生物合成的供能物质ATP、GTP; 磷脂合成的供能物质ATP、CTP;糖原合成的供能物质ATP、UTP 3,5磷酸二酯键概念P52 核酸种核苷酸的链接方式:3,5磷酸二酯键核酸有方向性,都是在5端开始到3端结束,与核酸的合成方向一致。核小体:由DNA和组蛋白构成,组蛋白有5种:H1、H2A、H2B、H3、H4。这四种H2A、H2B、H3、H4各两个亚基构成核小体的八聚体 ⒈m RNA 不同的m RNA编码不同的蛋白质,完成后被降解,在蛋白质的合成过程中作为模板帽子结构—P56 ⒉t RNA ①3端含有CCA-OH序列,是氨基酸的结合部位,5端大约都是鸟苷酸。②t RNA 都具有三叶草的二级结构,该结构有四臂三环:氨基酸臂、反密码子臂、反密码子环、T∮C臂、T∮C环、D臂、D环,其中氨基酸臂可以结合氨基酸,反密码子环含有三个碱基组

1蛋白质化学(答案)

1 蛋白质化学 一、名词解释 1、氨基酸的等电点(pI):在某一pH 的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH 值称为该氨基酸的等电点。 2、a-螺旋:多肽链沿长轴方向通过氢键向上盘曲所形成的右手螺旋结构称为α-螺旋。 3、b-折叠:两段以上折叠成锯齿状的多肽链通过氢键相连而并行成较伸层的片状结构。 4、分子病:由于基因突变导致蛋白质一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病。 5、电泳:蛋白质在溶液中解离成带电颗粒,在电场中可以向电荷相反的电极移动,这种现象称为电泳。 6、变构效应:又称变构效应,是指寡聚蛋白与配基结合,改变蛋白质构象,导致蛋白质生物活性改变的现象. 7、盐析:在蛋白质溶液中加入高浓度的中性盐,可有效地破坏蛋白质颗粒的水化层。同时又中和了蛋白质表面的电荷,从而使蛋白质颗粒集聚而生成沉淀,这种现象称为盐析(salting out )。 8、分段盐析:不同蛋白质析出时需要的盐浓度不同,调节盐浓度以使混合蛋白质溶液中的几种蛋白质分段析出,这种方法称为分段盐析。 9、盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 二、填空 1、不同蛋白质的含(N )量颇为相近,平均含量为(16)%。 2、在蛋白质分子中,一个氨基酸的α碳原子上的(羧基)与另一个氨基酸α碳原子上的(氨基)脱去一分子水形成的键叫(肽键),它是蛋白质分子中的基本结构键。 3、蛋白质颗粒表面的(水化层)和(电荷)是蛋白质亲水胶体稳定的两个因素。 4、赖氨酸带三个可解离基团,它们Pk 分别为2.18,8.95,10.53,其等电点为(9.74)。 <碱性氨基酸;PI= ()R k p k p '+'22 1> 5、氨基酸的结构通式为( )。 6、组成蛋白质分子的碱性氨基酸有(赖氨酸)、(精氨酸)和(组氨酸)。酸性氨基酸有(天冬氨酸)和(谷氨酸)。 7、氨基酸在等电点时,主要以(兼性或偶极)离子形式存在,在pH>pI 的溶液中,大部分以(阴)离子形式存在,在pH

第一章蛋白质化学(作业)

第一章蛋白质化学作业 一、名词解释 1. 氨基酸等电点pI 2. 氨基酸残基 3. 蛋白质一级结构 4. 蛋白质二级结构 5. 超二级结构 6. 蛋白质三级结构 7. 结构域 8. 蛋白质四级结构 9. 别构效应 10. 蛋白质的沉淀作用 11. 蛋白质的变性作用 12. 盐析作用 二、填空题 1.组成蛋白质分子的碱性氨基酸有、和。 酸性氨基酸有和。 2.在下列空格中填入合适的氨基酸名称。 (1)是带芳香侧链的极性氨基酸。 (2)和是带芳香族侧链的非极性氨基酸。 (3)是含硫的极性氨基酸。 3.氨基酸的等电点(pI)是指________________。 4..氨基酸在等电点时,主要以________________离子形式存在,在pH>pI的溶液中,大部分以________________离子形式存在,在pH

8.Pauling等人提出的蛋白质α螺旋模型,每圈螺旋包含个氨基酸残基,高度为 。每个氨基酸残基沿轴上升,并沿轴旋转度。 9.维持蛋白质构象的化学键有、、、和 。 10.测定蛋白质浓度的方法主要有、、和 。 11.用试剂可区分丙氨酸和色氨酸。 12.利用蛋白质不能通过半透膜的特性,使它和其他小分子物质分开的方法有和 。 13.蛋白质的二级结构有、、和。 14. α螺旋结构的稳定主要靠链内的,β折叠结构的稳定主要靠链间的。 三、是非题 1.[ ]蛋白质分子中所有的氨基酸(除甘氨酸外)都是左旋的。 2.[ ]自然界的蛋白质均由L-型氨基酸组成。 3.[ ]当溶液的pH大于某一可解离基团的pKa值时,该基团有一半以上被解离。 4.[ ]CNBr能裂解Gly-Met-Pro三肽。 5.[ ]双缩脲反应是肽和蛋白质特有的反应,所以二肽也有双缩脲反应。 6.[ ]天然氨基酸都具有一个不对称α-碳原子。 7.[ ]亮氨酸的疏水性比丙氨酸强。 8.[ ]用纸电泳法分离氨基酸主要是根据氨基酸的极性不同。 9.[ ]变性蛋白质溶解度降低是因为蛋白质分子的电荷被中和以及除去了蛋白质外面的水化层所引起的。 10.[ ] 蛋白质的氨基酸顺序(一级结构)在很大程度上决定它的构象(三维结构)。 11.[ ] 某蛋白质在pH6时向阳极移动,则其等电点小于6。 12.[ ]在水溶液中,蛋白质溶解度最小时的pH值通常就是它的等电点。 13. [ ]脯氨酸不能参与α螺旋,它使α螺旋弯曲,在肌红蛋白和血红蛋白的多肽链中,每一个弯曲处并 不一定有脯氨酸,但是每个脯氨酸却产生一个弯曲。 14. [ ]维持蛋白质三级结构最主要的作用力是氢键。 15. [ ]大多数蛋白质的主要带电基团是由它N端的氨基和C端的羧基组成。 16. [ ]蛋白质的亚基和肽链是同义的。 17. [ ]生活在空气稀薄的高山地区的人和生活在平地上的人比较,高山地区的人血液中2,3-二磷酸甘 油酸(2,3-DPG)的浓度较低。 18. [ ]血红蛋白和肌红蛋白的功能都是运输氧。 19. [ ]溶液的PH值可以影响氨基酸的等电点。 20. [ ]蛋白质分子的亚基与结构域是同义词。 21. [ ]一个化合物如能和茚三酮反应生成紫色,说明这化合物是氨基酸、肽或蛋白质。

蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

九年级下册化学元素 营养与健康 知识讲解

元素、营养与健康 【学习目标】 1.了解营养素是指蛋白质、糖类、油脂、维生素、无机盐和水等六类物质;掌握蛋白质、糖类、油脂、维生素与人体健康的关系;了解六大营养素对人体生命活动的重要意义及合理安排饮食的重要性。 2.了解人体的元素组成及一些元素对人体健康的影响。 【要点梳理】 要点一、蛋白质(高清课堂《化学与生活》课题1、一) 1.蛋白质:蛋白质是构成人体细胞的基本物质,是机体生长及修补受损组织的原料,也是人体不可缺少的营养物质。 一切重要的生命现象和生理功能都离不开蛋白质,可以说没有蛋白质就没有生命。蛋白质经水解最终生成各种氨基酸,所以氨基酸是组成蛋白质的基石。氨基酸不仅可以被氧化,放出供人体活动的热量,同时还会重新组成人体所需的各种蛋白质,维持人体的生长发育和组织更新。此外,调节生理机能的某些激素也是蛋白质,生物催化剂——酶的化学成分也是蛋白质,皮肤、毛发等也都是由蛋白质组成的。蛋白质是主要的生命基础物质之一,在人的生命活动中执行着各种功能,扮演着各种角色。 2.蛋白质在人的生命活动中执行着各种功能: (1)血红蛋白——人体内氧气的传输者 生命离不开氧气,人体内的血红蛋白是人类吸入氧气和呼出二氧化碳过程中的载体。但是空气中的污染物CO与血红蛋白的结合能力却特别强,是氧气的200倍。当CO浓度较大时,因CO与血红蛋白牢固结合,使其丧失输氧功能,会使人因缺氧而中毒,甚至窒息死亡。煤等燃料不完全燃烧时会生成CO,抽烟时吐出的烟气中也含有CO。 (2)酶(一类重要的、特殊的蛋白质)——生命过程中的催化剂 在我们人体内进行着许多化学反应,这些反应的共同点是在温和的条件下进行,反应速率大,反应十分完全,且易于灵活控制,能够按环境的变化和身体的需要不断地加以调整。这一切都依靠一类特殊的蛋白质——酶来完成。 酶的催化作用具有以下特点:a.条件温和,不需加热;b.具有高效催化作用。酶催化的化学反应速率比普通催化剂高107~1013倍。c.具有高度的专一性。如蛋白酶只能催化蛋白质的水解反应,淀粉酶只对淀粉水解起催化作用,如同一把钥匙开一把锁。 酶在其他行业已得到广泛应用,如淀粉酶应用于食品、发酵等工业;蛋白酶用于医药等方面;酶还可用于疾病的诊断;在洗涤剂中加入酶可增强去污效果。酶还有其他许多重要的应用,科学家们将应用酶来解决当今世界三大问题之一的粮食问题。 3.蛋白质的变性: 羊毛衣物为什么不能用普通肥皂(呈碱性)洗涤呢?高温蒸煮,为什么能杀菌消毒呢?这是因为当蛋白质分子受某些物理因素(如高温、紫外线、超声波、高电压等)和化学因素(如酸、碱、有机溶剂、重金属盐等)的影响时,其结构会被破坏,导致其失去生物活性(称为蛋白质的变性)。 例如,在许多建筑材料、绝缘材料、家具、清洁剂、化妆品,香烟烟雾中都含有甲醛,均会成为居室的污染源,对人类的健康造成危害。制作动物标本的福尔马林的化学成分为甲醛(防腐剂福尔马林的主要成分)会与蛋白质中的氨基酸反应,使蛋白质分子结构发生变化,从而失去生物活性并发生凝固,所以用福尔马林制作的标本能长久保存。 【要点诠释】 1.食物的成分主要有蛋白质、糖类、油脂、维生素、无机盐和水六大类,通常称为六大营养素。 2.蛋白质在人的生命活动中执行着各种功能,为了维持人的正常生命活动,我们必须注意防止有害物质(如甲醛、一氧化碳)对人的肌体蛋白质的侵害。 要点二、糖类、油脂、维生素

生物化学论文.蛋白质doc

生物化学论文 —蛋白质 蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新 蛋白质是由α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。、 蛋白质是荷兰科学家格利特·马尔德在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存 。 蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。 人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。

蛋白质的化学 (1)

蛋白质的化学 (总分:34.00,做题时间:90分钟) 一、A1型题(总题数:31,分数:31.00) 1.维系蛋白质二级结构稳定的主要化学键是 ?A.肽键 ?B.氢键 ?C.二硫键 ?D.离子键 ?E.疏水作用 (分数:1.00) A. B. √ C. D. E. 解析: 2.关于蛋白质二级结构的叙述,错误的是 ?A.涉及肽链.主链骨架原子的相对空间 ?B.涉及肽链中氨基酸残基侧链的原子空间排列 ?C.α-螺旋和β-折叠是其主要结构形式 ?D.折叠是以肽键平面(肽单元)为结构单位 ?E.不具有生物学功能 (分数:1.00) A. B. √ C. D. E. 解析: 3.胰岛素分子由两条肽链组成,其A链和B链的连接靠 ?A.肽键 ?B.氢键 ?C.二硫键 ?D.离子键 ?E.疏水键

(分数:1.00) A. B. C. √ D. E. 解析: 4.测得某样品的含氮量为8g/L,则该样品蛋白质的浓度约为 ?A.40g/L ?B.45g/L ?C.50g/L ?D.57.5g/L ?E.62.5g/L (分数:1.00) A. B. C. √ D. E. 解析: 5.下列哪一种物质不是生物活性肽 ?A.催产素(缩宫素) ?B.加压素 ?C.脑啡肽 ?D.血红素 ?E.促甲状腺素释放激素 (分数:1.00) A. B. C. D. √ E. 解析: 6.Hb的α亚基与O2结合后产生变构效应,其结果是 ?A.促进其他亚基与CO2结合

?B.抑制其他亚基与O2结合 ?C.促进其他亚基与O2结合 ?D.促进α亚基与O2结合,抑制β亚基与O2结合 ?E.抑制α亚基与O2结合,促进β亚基与O2结合 (分数:1.00) A. B. C. √ D. E. 解析:[解题思路] Hb各亚基以血红素中Fe与O2结合,结合存在协同效应,α亚基与O2结合后该亚基构象改变,并触发整个分子构象改变,如盐键断裂、亚基松散,带O2的。亚基促进其他亚基结合O2,使其他亚基与O2的亲和力逐渐加大。故C项符合。 7.维系蛋白质二级结构稳定的化学键是 ?A.盐键 ?B.二硫键 ?C.肽键 ?D.疏水作用 ?E.氢键 (分数:1.00) A. B. C. D. E. √ 解析: 8.蛋白质一级结构中的主要化学键是 ?A.氢键 ?B.盐键 ?C.肽键 ?D.疏水作用 ?E.范德华引力 (分数:1.00) A. B.

第一章 蛋白质化学习题及答案

第一章蛋白质化学 一、填空题 1.根据R基团对水分子的亲和性,氨基酸可分成和;根据对动物的营养价值,氨基 酸又可分成和。疏水性氨基酸亲水性氨基酸必需氨基酸非必需氨基酸 2.测定一级结构需要的蛋白质的样品纯度不低于。如果一种蛋白质分子含有二硫键,可使 用电泳法对二硫键进行准确定位。97% 对角线 3.目前已发现的蛋白质氨基酸有种,其中2种罕见的氨基酸是和,它们 分别由和密码子编码。22 硒半胱氨酸吡咯赖氨酸UGA UAG 4.蛋白质紫外吸收是由三种氨基酸造成的,最大吸收峰在nm。蛋白质的pI可使用的 方法测定,pI处蛋白质的溶解度。芳香族280 等电聚焦最小 5.蛋白质的功能主要由其特定的结构决定。蛋白质的一级结构决定其高级结构和功能。α- 角蛋白的主要二级结构是,β-角蛋白的二级结构主要是。三维α-螺旋β-折叠6.蛋白质变性是指蛋白质受到某些理化因素的作用,其结构被破坏、随之丧失的现象。 高级生物功能 7.氨基酸与的反应可用于Van Slyke定氮,试剂或可用来测定N端氨基酸。 在蛋白质氨基酸中,只有与茚三酮反应产生黄色物质,其余氨基酸生成物质。亚硝酸Sanger 丹磺酰氯脯氨酸蓝紫色 8.蛋白质的结构一般包括个层次的结构,但肌红蛋白的结构层次只有个。一种蛋白 质的全部三维结构一般称为它的构象。二级结构是指,它是由氨基酸残基的氢键决定的。最常见的二级结构由、、和,其中能改变肽链走向的二级结构是。4 3多肽链的主链骨架本身在空间上有规律的折叠和盘绕非侧链基团α-螺旋β-折叠β-转角无规卷曲β-转角 二、是非题 1.氨基酸可分为亲水氨基酸和疏水氨基酸,其中亲水氨基酸溶于水,疏水氨基酸一般不溶于水。错 2.到目前为止,已在蛋白质分子中发现22种L型氨基酸。错 3.可使用双缩脲反应区分二肽和氨基酸。错 4.一种特定的氨基酸序列通常能决定几种不同的稳定的特定三维结构。错 5.许多明显不相关的氨基酸序列能产生相同的三维蛋白质折叠。正确 6.吡咯赖氨酸和羟赖氨酸都属于蛋白质翻译好后的赖氨酸残基的修饰产物。错 7.二硫键能稳定蛋白质的三级结构,但它又属于一级结构的内容。正确 8.胞外蛋白质通常具有二硫键,而胞内酶通常没有。正确 9.肽链上Pro-X之间的肽键可能是顺式,也可能是反式。错 10.存在与疏水环境中,α-螺旋比在亲水环境中的α-螺旋要稳定。正确 11.靠近α-螺旋N端的Arg残基的侧链的存在可稳定螺旋。错误。 12.大多数单核苷酸突变导致蛋白质的三维结构变得不稳定。错 三、选择题 1.六肽K-Q-C-D-E-I在pH7时的静电荷是()。B A.-2 B.-1 C.0 D.+1 E.+2 2.七肽A-S-V-D-E-L-G形成α-螺旋,与A的羰基形成氢键的氨基酸残基是()。D A.S B.V C.D D.E E.L 3.如果一种蛋白质含有一个完全由α-螺旋组成的跨膜结构域,那么最有可能出现在跨膜结构域的氨基酸残基是()。D A.P B.E C.K D.L E.R 4.以下五种氨基酸H、A、D、P、Y和R按照等电点递增的排列顺序是()。D A.DAPYHR B.DPAYHR C.DPYAHR D.DYAPHR E.DPYAHR

湖北民族学院医学院生物化学试题——蛋白质化学

一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分 为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具 有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸 和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是;组氨酸的侧链基团 是。这三种氨基酸三字母代表符号分别是、、、4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是a—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、;次级键中属于共价键的是键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子b亚基的第六位氨酸 被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者 为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.蛋白质二级结构的基本类型有、、和。其中维持前三种二级结构稳定键的次级键为键。而当肽链中出现脯氨酸残基的时候,多肽链的a-螺旋往往会。8.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是和。 9.蛋白质处于等电点时,所具有的主要特征是、。 10.在适当浓度的b-巯基乙醇和8M脲溶液中,RNase(牛)丧失原有活性。这主要是因为RNA酶 的被破坏造成的。其中β-巯基乙醇可使RNA酶分子中的键破坏。而8M脲可使键破坏。当用透析方法去除b-巯基乙醇和脲的情况下,RNA酶又恢复原有催化功能,这种现象称为。 11.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性 是、。 12.在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这些氨基酸组分)。 13.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI时,氨基酸(主要)以离子形式存在;当pH<pI时,氨基酸(主要)以离子形式存在。 14.侧链含—OH的氨基酸有、和三种。侧链含—SH的氨基酸是氨基酸。15.人体必需氨基酸是指人体自身不能合成的、必须靠食物提供的氨基酸。这些氨基酸包括、、、、、、、等八种。 16.蛋白质变性的主要原因是被破坏;蛋白质变性后的主要特征 是;变性蛋白质在去除致变因素后仍能(部分)恢复原有生

教案精选:初三化学《蛋白质和维生素》教学设计

教案精选:初三化学《蛋白质和维生素》教 学设计 教案精选:初三化学《蛋白质和维生素》教学设计 课题 蛋白质和维生素 知识与技能 (1)知道蛋白质、维生素都是有机化合物,知道蛋白质的组成元素; (2)了解蛋白质和氨基酸的关系,知道蛋白质是分子结构复杂的高分子化合物,通过简单实验了解蛋白质的一些性质特征; (3)了解蛋白质的营养作用,知道几种人们熟知的维生素的名称、来源和作用,从那些食品中可以摄入蛋白质和维生素; (4)学习用实验的方法了解有机物的性质、区别某些有机物。 过程和方法 (1)通过对本节课的预习,培养学生从生活中获取信息的能力,并对获取的信息进行整理。

(2)联系日常生活和生物医学的常识帮助学生正确理解有关蛋白质和维生素的知识。会用实验的方法区别某些有机物。 (3)通过小组实验并与他人进行交流和讨论,从实验中获取知识逐步形成良好的思维能力和动手做实验的好习惯。 (4)提出问题,进行初步的科学探究。 情感态度 与价 值观 (1)养成合理膳食的习惯 (2)鼓励学生通过调查访问和查找资料扩大知识面,培养学习兴趣。 重点 了解蛋白质的营养作用和性质特征,知道人们熟知的维生素的名称来源和作用。 难点 用实验的方法了解有机物的性质并会区分某些有机物。 课前准备 教师:酒精灯、试管、试管夹、火柴、镊子、鸡蛋白(生)、棉纱线、饱和硫酸钠溶液、浓硝酸、乙酸铅溶液、0.5%的淀粉溶液、碘溶液、PH试纸

学生:(1)联系日常生活实际,举例说出几种富含蛋白质和维生素的食品 (2)头发、维生素C片、梨汁、白菜汁、橘子汁(约30ml) 教学环节 教师调控 学生活动 设计意图 创设情境引入新课: 那些食物中含有蛋白质和维生素 蛋白质的作用 蛋白质的利用及存在 蛋白质的性质 创设问题情境: 你昨天一天吃了那些东西?那些食物中含有蛋白质?那些食物中含有维生素? 提出问题: 吃了这些含有蛋白质的食物,你知道蛋白质是什么样的物质吗?它对人体有什么作用吗? 创设问题情境: 1. 既然蛋白质那么重要,你知道它在人体中是怎样被利用的吗?

相关文档
最新文档