数值解与解析解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析解是解的形式可以表达为一个显式函数的表达式的解;而数值解其解的形式不能表达为显式函数,只能通过数值计算的方式求解,得到的是一系列离散的数值,不能表达为一个明确的函数的形式。对于大多数问题是得不到解析解的,只能得到数值解。能得到解析解的只是一小部分问题,而且通常有比较严格的限制条件。解析解能够很直观的体现各参数之间的关系,对于定性分析是很重要的。对于得不到解析解的问题,进行数值计算得到数值解,对于工程应用很重要。

所谓精确解和近似解,是从算法上决定的。一般的力学模型都是有一定的使用和假设条件的,主要是看在求解有关的问题时,计算的结果与模型的真实值的误差是否为零,如果为零,则是精确解法,如算法本身不能保证得到真实值,则是近似解法,与其是否是解析解无关,与是否是手算和机算也无关。简单的例子,如结构力学中的结构有限元法得出的是精确解,而对于多高层结构的分层法则是近似解法。以上两种方法都是数值解法,但有限元法(指结构力学中的矩阵位移法)直接求解的结构的平衡方程,求解过程中没有对方程进行近似的假设,而分层法对则是利用力矩分配法的研究成果,对于不符和利用力矩分配法的高层结构进行了近似,所以求得的是近似解。有限元法多在计算机上进行实现,而分层法是早期计算机没有出现或还不普及的时候,工程师们解决实际问题的时候所采用的方法。分层法所得到的结果虽然是近似的,与真实结果有一定的误差,但只要误差在一定的范围内,则是可以作为设计的依据进行使用的。再如有限元法和力矩分配法,两种算法都是精确解法,只要单元取得足够多,或者分配的次数足够多,算法本身能够保证其结果是精确解。但是很多情况下是没有必要的,单元太多或者分配次数太多,往往会带来计算量过大的问题,只要误差在一定的范围内,是可以满足工程应用的要求的。

对于非线性问题,由于计算上的困难,一般得到的是近似的数值解。

对于该问题的理解,楼主可以看看龙驭球院士编的《结构力学教程》。

解非线性方程组的方法有很多,比如直接降维、搜索(用最小二乘、牛顿迭代及最优化法)、连续法等等!直接降维操作较难,求解时间长;牛顿迭代有局部收敛性;最优化必须给出真实解的初始值;连续发需要构造同伦方程。

相关文档
最新文档